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Abstract: To study the applicability of the new geopolymer grouting material for super-long and
large-diameter post-grouting bored piles in silty fine sand geology, this paper compares the bearing
capacity of two grouting materials, geopolymer and normal Portland cement, and different grouting
volume pile side-distributed grouting piles in silty fine sand based on field model tests are analyzed
through the diffusion forms of the two materials in silty fine sand through the morphology of the
grouted body after excavation. The results show that the ultimate bearing capacities of P0 (ungrouted
pile), P1 (8 kg cement grouted pile), P2 (6 kg geopolymer-grouted pile), P3 (8 kg geopolymer-grouted
pile) and P4 (10 kg geopolymer-grouted pile) are 5400 N, 8820 N, 9450 N, 11,700 N and 12,600 N,
respectively, and that the ultimate bearing capacity of the grouted pile is improved compared with
that of the ungrouted pile since, under the same grouting amount, the maximum bearing capacity
of the pile using geopolymer grouting is increased by 133% compared with that of the pile with
cement grouting. This further verifies the applicability of the geopolymer grouting material for the
post-grouting of the pile foundation in silty fine sand. Under the action of the ultimate load, the pile
side friction resistance of P1, P2, P3 and P4 is increased by 200%, 218%, 284% and 319% compared with
that of P0. In addition, the excavation results show that the geopolymer post-grouting pile forms the
ellipsoidal consolidation body at the pile side grouting location, which mainly comprises extrusion
diffusion with a small amount of infiltration diffusion, and the cement grouting pile forms a sheet-like
consolidation body at the lower grouting location, which primarily comprises split diffusion. This
study can provide a reference basis for the theoretical and engineering application of post-grouting
piles using geopolymers.

Keywords: geopolymer; pile side-distributed grouting piles; model test; bearing capacity;
diffusion form

1. Introduction

This study relies on the Yellow River super bridge project (Figure 1) of the Yuanyang
to Zhengzhou section of the AnLuo expressway that is located in the Yellow River alluvial
plain with perennial yellow sand siltation and a super-thick sandy soil layer covering the
riverbed, which is prone to liquefaction under complex loads. In order to meet the bearing
capacity requirements and control the upper settlement, the project adopts super-long- and
large-diameter post-grouting bored piles for the bridge abutment’s foundation [1,2]. Due
to the inherent defects of bored piles, such as mud skin on the pile side, slag at the pile
end and stress relaxation in the soil around the pile, their bearing capacity is significantly
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reduced; to solve such problems, technology for the post-grouting of the pile foundation is
widely used due to its good engineering benefits [3–5].
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Super-long and large-diameter post-grouting bored piles exhibit typical friction pile
characteristics. Some studies have shown [6] that the end resistance of super-long piles
under maximum load without grouting and post-grouting piles only accounts for 5.0% and
10.5% of the top load, respectively, and the effect of post-grouting on end resistance is not
apparent. Pile-side grouting can meet the bearing capacity demand of super-long piles.

Pile-side post-grouting technology has been developed over the years; different grout-
ing processes have been developed, e.g., Mullins et al. [7] developed a pile-side grouting
device with a vertical porous tube wrapped in rubber film. Sze et al. [8] introduced a device
with a grouting flower tube welded on the outside of the reinforcement cage. Nguyen
et al. [9] introduced a pile-side grouting device that is composed of a grouting core tube and
two upper and lower sealing airbags. During grouting, the device is lowered to the grouting
section of the grouting outer tube, inflated to seal and then the slurry is injected into the
soil around the pile. Studies have shown that the bearing capacity of grouting piles is twice
that of non-grouting piles in sand. In these studies, the researchers temporarily blocked
the outlet hole with a rubber film before using a pressure grouting device. Thiyyakkandi
et al. [10] designed a pile-side grouting device consisting of multiple grouting pipes of
different lengths that can be designed according to different grouting areas. The outlet
holes are left at a certain distance in the lower part of each grouting pipe and wrapped with
elastic rubber. Huang et al. [11] introduced a pile-side grouting device, which consisted of a
vertical steel pipe, to convey the slurry into a horizontal pipe. Zhang et al. [12] introduced
an annular pipe-type grouting device that has multiple annular pipes in the pile body. A
vertical steel pipe connected each annular pipe. The slurry entered the annular pipe from
the vertical pipe, and there was a one-way grouting head distributed on the annular pipe.
Fiscina et al. [13] developed a new micro-steel pipe pile-side grouting device in which the
small-diameter steel pipe on the pile side directly punched holes to be used as grouting
holes. After the steel pipe pile was driven into the ground, the grouting pipe was placed
at the location of the steel pipe pile grouting holes and blocked from above so that the
slurry could be injected in sections, which made the slurry distributed more uniformly.
With the continuous improvement in the post-pile grouting process, the most commonly
used methods are the straight pipe method, with a grouting straight pipe placed along
the longitudinal direction of the reinforcement cage, and annular pipe grouting, with a
grouting annular pipe placed along the inner wall of the reinforcement cage [14]. However,
the traditional annular tube-type grouting has problems, such as sizeable grouting spac-
ing, uneven slurry distribution, and the inability to undertake directional grouting [15],
which limit the application of post-grouting on the side of super-long piles. Based on
this, Dai et al. [15] developed a pile-side distributed post-grouting device, which has the
advantages of a flexible grouting section, uniform slurry distribution and controllable
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grouting pressure, and the same grouting pipe can be pressed with different slurries than
the traditional pile-side grouting and has good applicability to the side post-grouting of
super-long bored piles.

Due to the defects of in situ field tests, such as being time-consuming, costly and
providing subsurface conditions, the test conditions are limited. The indoor model tests
make up for the shortcomings of field tests well and offer a more convenient approach
to systematically study the bearing mechanism of post-grouting piles. Their advantages
include short time consumption, low cost, controllable test conditions and better reflection
of the real traits. Based on the similarity theory, Zhou et al. [16] carried out a centrifugal
model test of post-grouting pile group in the loess area. By changing the pile spacing and
the number of piles, the bearing capacity of the pile group before and after grouting was
analyzed, and we proposed a calculation method for the bearing capacity of post-grouting
pile groups suitable for the loess areas. Zhao et al. [17] analyzed the effect of different
volumes of the pile end. Baca M. et al. [18–20] carried out the indoor model test of the
bearing capacity of pipe piles in sandy soil, and they introduced a new bi-directional static
load testing method for pipe piles. In this test, the capacity of the pile base and shaft can be
measured separately without the necessity of building a retaining structure. The differences
between different test methods are compared and analyzed, and then the finite element
numerical models of pipe piles with different sizes are established. The applicability of the
method is verified by comparing it with the field test results. Wan et al. [21] used aluminum
tubes as model piles to compare the vertical bearing mechanism of ungrouted piles, ring-
point grouted piles and directional grouted piles in calcareous sand, and the results showed
that grouting on the pile side could solidify the soil around the pile and improve the
pile side frictional resistance, and the vertical bearing performance of directional grouted
piles was better than that of ring-point grouted piles. Zhang et al. [22] used a self-made
model pile to simulate the cast-in-place bored pile and studied the influence of different
grouting methods and different grouting parameters on the bearing capacity of the model
pile in clay. The results show that the bearing capacity of the combined grouting pile is the
best, pile-side grouting can greatly reduce the settlement of the pile top and the grouting
pressure has little effect on the bearing capacity. Wu et al. [23] investigated the bearing
mechanism of post-grouting concrete model piles in silty soils by considering the unloading
effect of the soil during pile formation, and they found that post-grouting at the pile end
can effectively improve the adverse effects caused by soil unloading, and the height of
slurry upward return increases with the increase in the unloading degree. The results show
that the pile-side jet grouting improves the horizontal bearing capacity of the pile most,
followed by the pile-side distributed grouting, and the ring point grouting is the smallest.

At present, most of the post-grouting materials for bored piles are mainly cement slurry.
However, traditional cement slurry has several disadvantages, including slow setting and
hardening, significant drying shrinkage, weak bonding performance and high production
energy consumption [24]. These drawbacks limit the application of cement slurry in post-
grouting. The Yellow River Super Bridge passes through the Yellow River Wetland Reserve.
The geological conditions are complex, and the environmental protection requirements are
high. Traditional cement slurry cannot meet the high-quality development requirements of
the Yellow River Basin. Therefore, there is a need to identify a new grouting material to
replace the traditional cement slurry. As a new type of green material, geopolymers have
excellent mechanical properties, durability and environmental friendliness. Compared
with normal Portland cement, the mechanical properties of geopolymers not only meet the
specification requirements but also have high early strength, low permeability, good acid
and alkali resistance, excellent bonding properties and good fluidity [25,26]. In addition,
the constituents of geopolymers, such as fly ash and blast furnace slag, are derived from
industrial waste. The synthesis of geopolymers not only facilitates efficient waste utilization
but also contributes to an 80% reduction in carbon emissions compared to conventional
cement production [27–29]. This presents substantial economic value and environmental
advantages for the sustainable development of the Yellow River Basin.
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Geopolymers have found extensive applications in the field of construction engineer-
ing. For instance, Silva et al. [30] conducted a study in a chloride ion environment, revealing
that geopolymer grouting materials effectively shield reinforcement from corrosion and ex-
hibit robust resistance to acid and alkali corrosion. Zhang et al. [31] proved that geopolymer
concrete has better interfacial bonding properties through interfacial strength tests on plain
concrete and geopolymer concrete bonded to reinforcement. Rios et al. [32] delved into
the mechanical properties and microstructural characteristics of fly ash-based geopolymer-
cured chalk, and the results showed that fly ash-based geopolymer can effectively improve
the unconfined compressive strength and structural denseness of chalk, and the shear
damage form of fly ash-based geopolymer-cured chalk soil was found to be similar to that
of cement-cured chalk soil. Xiong et al. [33] pioneered the development of a geopolymer
grouting material for reinforcing surrounding rock in basements and roadways. The results
show that the geopolymer grouting slurry can penetrate the surrounding rock cracks and
fully cement with the surrounding rock, which can effectively reduce the deformation of
the surrounding rock and improve the bearing capacity of the surrounding rock. Guo
et al. [34] devised a cost-effective geopolymer grouting slurry for repairing key formation
cracks in aquifers. The repaired formation has higher strength and impermeability, and
the repair effect is much higher than that of ordinary cement grouting slurry. In summary,
geopolymers enjoy widespread use in engineering applications, serving as grouting materi-
als, cementitious materials and repair materials [35,36]. However, there are few reports on
the application of geopolymers as grouting materials in the field of the post-grouting of
pile foundations.

In conclusion, considering the limitations in the existing research on the vertical
bearing capacity of geopolymer post-grouting piles, this paper conducted a model test to
evaluate the vertical bearing capacity of distributed post-grouting super-long bored piles
along the pile side. The vertical bearing characteristics of super-long bored piles in silty
fine sand were examined under varying grouting materials and amounts. A comparative
analysis of the diffusion patterns among different groups in the sand was conducted
based on the excavation results of post-grouting model piles. This investigation serves
as a valuable reference for advancing the theory and practical application of geopolymer
post-grouting piles.

2. Model Tests
2.1. Model Test Tank

The utilization of model testing proves to be an effective approach for investigating
the bearing capacity of post-grouting piles [37]. In this study, a purpose-designed concrete
test tank, illustrated in Figure 2, was crafted. The wall thickness of the test tank is 30 cm,
and the size of the inner wall is 2 m × 2.5 m × 2.5 m (length × width × depth). Drainage
holes are strategically positioned at the bottom of the side wall of the test tank to facilitate
proper drainage. The potential influence of boundary effects between the model pile and
the inner wall of the test groove cannot be overlooked in the arrangement of the model
pile. Referring to pertinent literature [38], the design of the model box and the model pile
adheres to the necessary test requirements. As per the experimental setup, two model piles
are incorporated into each test. The distance between the two model piles is 1 m. The
minimum distance between the model pile and the inner wall of the test tank measures
72 cm, constituting 13.3-times the model’s size and satisfying the stipulated boundary
requirements. The layout of the model pile is shown in Figure 1.
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2.2. Model Pile Preparation

In order to simulate the super-long and large-diameter cast-in-place piles of the Yellow
River Large Bridge, piles with a length of 80 m and a diameter of 2.7 m are taken as the
research object. This test is based on the similarity principle and the geometric similarity
constant C = Ls/Lm = 50. Ls and Lm are the sizes of the field engineering and model
piles, respectively. Consequently, a galvanized hollow steel pipe with a pile length of
1800 mm, an outer diameter of 54 mm, an inner diameter of 50 mm and a buried depth of
1600 mm was selected as the model pile. The measured elastic modulus of the model pile is
E = 205 GPa, with no consideration for the influence of pile surface roughness at this stage.
To prevent soil ingress in the model pile, the pile end is sealed with the same material
gasket. A schematic diagram of the model pile is presented in Figure 3. Commencing
200 mm from the top of the pile, a pair of resistance strain gauges, model BE120-5AA
(11)-P300, is symmetrically arranged along the pile body at intervals of 200 mm downward.
In total, nine pairs of strain gauges are strategically placed. Starting from 300 mm from the
top of the pile, a pair of grouting holes with a diameter of 8 mm is symmetrically arranged
every 400 mm downward, resulting in a total of four grouting sections.
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To better protect the strain gauge from damage, a layer of elastic waterproof glue
is applied to the strain gauge after completion of the pasting process, followed by an
outermost coating of epoxy resin (Figure 4). Finally, the strain gauge wire is secured on
the pile side using glue, and a layer of insulating waterproof tape is wrapped around the
pile side.
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2.3. Model Soil and Pile Formation Methods
2.3.1. Soil

The soil utilized in this test is sourced from the vicinity of the large Yellow River Super
Bridge project. Geotechnical tests were conducted in accordance with the industry standard
of the People‘s Republic of China (JTG 3430-2020) [39]. The soil parameters obtained from
indoor geotechnical tests are presented in Table 1. The particle size distribution curve of
the test soil is depicted in Figure 5. It is evident that the percentage composition of sand,
silt and clay in the test soil is 88.9%, 10.1% and 0.1%, respectively. The mass of particles
with a size greater than 0.075 mm constitutes more than 50% of the total mass, categorizing
the test soil as silty fine sand.

Table 1. Basic physical and mechanical parameters of model soil.

Soil Name Density
(g/cm3) Water Content (%) Cohesion (kPa) Internal Friction

Angle (◦) Void Ratio Constrained
Modulus (MPa)

Fine silt
sand 1.9 24.8 8.8 31.2 0.81 21.2
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Figure 5. Soil particle gradation curve.

2.3.2. Formation of Pile

This test employs the pre-buried method for pile formation. Initially, fine silt sand
is added to the test tank in layers and compacted using a plate-vibrating rammer every
200 mm (Figure 6). When the filling height reaches 400 mm, the lead pendant is utilized
to pinpoint the position of the model piles. The slurry holes on the model piles are sealed
with adhesive tapes to prevent soil from obstructing them. Subsequently, soil tamping is
continued in layers until reaching the designated burial depth of 1600 mm. In the process
of burying the pile, we constantly determined the density of each layer of soil (Figure 7) to
maintain the soil body density at 1.9 g/cm3.
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2.4. Test Programs and Devices
2.4.1. Grouting Program

This experiment utilized P.O42.5 ordinary Portland cement and CN-I type geopolymer
grouting slurry (Figure 8). CN-I type geopolymer grouting slurry was prepared using
a specific proportion of metakaolin, fly ash, slag powder and other minerals, activator
(powder), early strength agent and expansion agent. It has the characteristics of renewable
raw materials, green environmental protection, good fluidity, controllable setting time,
high early strength, late strength without shrinkage, micro expansion and good durability.
In accordance with the Chinese standard (JTG 3420-2020) [40], the basic mechanical per-
formance parameters are tested, as shown in Table 2, and the compressive strength test
is shown in Figure 9. In engineering applications, the flow degree index is an essential
factor in judging a grouting material’s injectability. The inverted cone method was used to
test the flowability of the two materials (Figure 10), and through several comparisons of
the pre-test, it was found that the best grouting effect was achieved when the flowability
was 15 s. Therefore, the flowability of the two grouting materials was unified to 15 s. To
compare the effects of different grouting quantities on the bearing capacity of model piles,
the comprehensive results of the pre-test were utilized. It was determined that the grouting
volume was 6 kg, 8 kg and 10 kg in three gradients. The test program is shown in Table 3.
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Table 2. Basic parameters of CN-I geopolymer grouting material.

Water-Cement
Ratio

Setting Time (Min) Flow Time
(s)

Bleeding
Rate (%)

Expansion
Ratio (%)

Water
Resistance (%)

Constrained Modulus (MPa)

Initial Final 1 d 7 d 28 d

0.6 ≥90 ≦ 140 15 ≦ 0.4 0.01 ≥95 ≥20 ≥40 ≥50
Materials 2024, 17, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 9. Compressive strength testing. 

 
Figure 10. Fluidity test. 

Table 2. Basic parameters of CN-I geopolymer grouting material. 

Water-Ce-
ment Ratio 

Setting Time (Min) 
Flow Time 

(s) 
Bleeding 
Rate (%) 

Expansion 
Ratio (%) 

Water Re-
sistance 

(%) 

Constrained Modulus (MPa) 

Initial Final 1 d 7 d 28 d 

0.6 ≥90 ≦140 15 ≦0.4 0.01 ≥95 ≥20 ≥40 ≥50 

Table 3. Table of grouting schemes for each model pile. 

Number Grouting Methods Grouting Materials Grout Amount 
P0 Non-grouting - - 
P1 Pile side Cement 8 kg 
P2 Pile side Geopolymer 6 kg 
P3 Pile side Geopolymer 8 kg 
P4 Pile side Geopolymer 10 kg 

Geopolymer is anticipated to emerge as a prominent substitute for cement in the 21st 
century, given its comparable mechanical properties and distinctive advantages. The CN-
1-type geopolymer slurry employed in this study exhibits several advantages over ordi-
nary cement: 
1. It has better injectability. Under a uniform flow degree (15 s), the water secretion rate 

of geopolymer slurry is less than 0.4%, while the water secretion rate of ordinary ce-
ment is more than 2%. The higher water secretion causes the cement slurry in the soil 
body to reduce the flow performance, the slurry diffusion range is reduced and in 
the process of grouting, there is a phenomenon of running slurry in the cement slurry 

Figure 9. Compressive strength testing.

Materials 2024, 17, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 9. Compressive strength testing. 

 
Figure 10. Fluidity test. 

Table 2. Basic parameters of CN-I geopolymer grouting material. 

Water-Ce-
ment Ratio 

Setting Time (Min) 
Flow Time 

(s) 
Bleeding 
Rate (%) 

Expansion 
Ratio (%) 

Water Re-
sistance 

(%) 

Constrained Modulus (MPa) 

Initial Final 1 d 7 d 28 d 

0.6 ≥90 ≦140 15 ≦0.4 0.01 ≥95 ≥20 ≥40 ≥50 

Table 3. Table of grouting schemes for each model pile. 

Number Grouting Methods Grouting Materials Grout Amount 
P0 Non-grouting - - 
P1 Pile side Cement 8 kg 
P2 Pile side Geopolymer 6 kg 
P3 Pile side Geopolymer 8 kg 
P4 Pile side Geopolymer 10 kg 

Geopolymer is anticipated to emerge as a prominent substitute for cement in the 21st 
century, given its comparable mechanical properties and distinctive advantages. The CN-
1-type geopolymer slurry employed in this study exhibits several advantages over ordi-
nary cement: 
1. It has better injectability. Under a uniform flow degree (15 s), the water secretion rate 

of geopolymer slurry is less than 0.4%, while the water secretion rate of ordinary ce-
ment is more than 2%. The higher water secretion causes the cement slurry in the soil 
body to reduce the flow performance, the slurry diffusion range is reduced and in 
the process of grouting, there is a phenomenon of running slurry in the cement slurry 

Figure 10. Fluidity test.



Materials 2024, 17, 398 9 of 21

Table 3. Table of grouting schemes for each model pile.

Number Grouting Methods Grouting Materials Grout Amount

P0 Non-grouting - -
P1 Pile side Cement 8 kg
P2 Pile side Geopolymer 6 kg
P3 Pile side Geopolymer 8 kg
P4 Pile side Geopolymer 10 kg

Geopolymer is anticipated to emerge as a prominent substitute for cement in the
21st century, given its comparable mechanical properties and distinctive advantages. The
CN-1-type geopolymer slurry employed in this study exhibits several advantages over
ordinary cement:

1. It has better injectability. Under a uniform flow degree (15 s), the water secretion
rate of geopolymer slurry is less than 0.4%, while the water secretion rate of ordinary
cement is more than 2%. The higher water secretion causes the cement slurry in the
soil body to reduce the flow performance, the slurry diffusion range is reduced and
in the process of grouting, there is a phenomenon of running slurry in the cement
slurry in the shallower grouting position, which results in reductions in the final
grouting volume.

2. The diffusion form and range of the CN-1-type geopolymer in the grouting position is
different from that of ordinary cement. In this grouting process, the diffusion form of
geopolymer slurry is mainly compact diffusion, with a small amount of penetration
diffusion, and there is a string slurry phenomenon between each solid body, while
the diffusion form of cement slurry is mainly cleavage diffusion with a small amount
of penetration diffusion. The different diffusion forms lead to a larger reinforcement
area of the geopolymer-grouted pile and a more uniform diffusion of the slurry, thus
enhancing the bearing capacity of the model pile.

3. The CN-1-type geopolymer, due to the biased high territory, slag, fly ash and other
silica–aluminum-rich source materials, results in the formation of hydration prod-
ucts with a large number of silicon, aluminum, oxygen and alkali metal elements,
composing a three-dimensional mesh structure. This structure contributes to the
higher strength of the geopolymer solidification body, leading to elevated strength
at the interface between the solidification body and the soil. This, in turn, enhances
the pile-side friction resistance, ultimately improving the bearing capacity of the
model piles.

2.4.2. Test Device and Grouting Process

Super-long piles exhibit typical friction pile characteristics, making pile-side post-
grouting a standard method for enhancing their performance [41]. However, due to
the traditional ring pipe-type pile-side post-grouting technology’s inherent characteristics,
which limits the number of sections grouted to the pile side, the slurry needs to be uniformly
distributed along the pile side, resulting in wasted slurry. The number of grouting tubes is
large, which is prone to clogging the grouting tubes, and, therefore, it needs to be more
applicable to the post-grouting of the pile side of the super-long piles. In this test, a
homemade pile-side distributed grouting device is used, as shown in Figures 11 and 12,
and it primarily consists of a grouting apparatus, a grouting machine and a water pump.
When grouting, the grouting device is first put into the model pile so that its grouting
section corresponds to the grouting outlet of the model pile. Then, the rubber airbag on
the grouting device is filled with water to make it expand to form a confined space, and
then grouting is started. When grouting is completed for the bottom section, the water
is drained to make the airbag contract, and then the airbag is upwardly lifted to the next
grouting section until grouting is completed.
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Figure 12. Physical drawing of grouting device.

The grouting process is shown in Figure 13. Grouting commenced three days after the
completion of pile formation, and after each grouting section reached the designed grouting
volume, the grouting valve was closed. Holding pressure for 2 minutes, the distributed
grouting device was manually lifted to the next section until completion. The grouting pres-
sure variation range of P2, P3 and P4 geopolymer-grouted piles was 0.15 MPa~0.25 MPa,
and the grouting pressure variation in P1 cement-grouted piles was 0.2 MPa~0.35 MPa.
The cement-grouted piles rose faster than the geopolymer-grouted piles in the grouting
process, reaching 0.35 MPa, and in the process of grouting, the grouting pressure of cement-
grouted piles increased more rapidly than that of geopolymer-grouted piles. In the process
of grouting, the bottom grouting of model piles reaches the designed grouting volume, and
due to the shallow depth of the top grouting section, there is a phenomenon of bubbling
slurry when grouting in the top section of the model piles, which leads to reductions in the
grouting volume of the top grouting section.
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2.5. Vertical Bearing Capacity Test Programs and Devices
2.5.1. Test Programs

For ungrouted piles, loading was carried out three days after the completion of pile
formation. For pile-side distributed grouted piles, vertical loading tests were conducted
three days after the completion of grouting. The bearing capacity of each pile was predicted
before loading and loaded using the slow maintenance loading method according to the
Chinese code (JGJ 106-2014) [42]. The predicted ultimate bearing capacity of P0, P1, P2, P3
and P4 piles was 6000 N, 9800 N, 10,500 N, 13,000 N and 14,000 N, respectively. The load
grading loading values were 600 N, 980 N, 1050 N, 1300 N and 1400 N, with the first loading
level being twice the graded loading value. When the displacement generated under a
certain load level is too large or cannot maintain load stability through the supplementary
load, it is considered to have reached the ultimate bearing capacity, and the loading
is terminated.

2.5.2. Loading Device

This loading employs the self-designed model pile vertical loading system
(Figures 14 and 15). The vertical loading system primarily consists of an I-shaped re-
action beam, DMWY-100 displacement sensor, displacement meter auxiliary board, load
sensor, manual hydraulic jack, data acquisition instrument, computer and other equipment.
During loading, the pile top should be polished to ensure the horizontal plane of the
pile top.
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3. Results and Analysis
3.1. Pile Top Load–Pile Top Settlement Curve

The pile-top load-top settlement curve is a crucial foundation for characterizing the
bearing characteristics of model piles, and the ultimate bearing capacity and damage form
of each pile can be determined based on the pile-top load-top settlement curve [43]. The
top load-top settlement curve of each pile is shown in Figure 16.
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As observed in Figure 16, the load settlement curves for each pile exhibit a “steep
decline type,” where the pile’s top sharply descends under the last load. The settlement
amount surpasses five-times the upper load, and the pile cannot be stabilized, even after
constant supplementary loads, until penetration damage occurs. The ultimate load carrying
capacity can be determined for P0, P1, P2, P3 and P4, resulting in values of 5400 N, 8820 N,
9450 N, 11,700 N and 12,600 N, respectively. The ultimate bearing capacity of P0, P1, P2, P3
and P4 can be judged to be 5400 N, 8820 N, 9450 N, 11,700 N and 12,600 N, respectively. The
enhancement in the ultimate bearing capacity of P1, P2, P3 and P4 grouted piles compared
to ungrouted piles is 163%, 175%, 217% and 233%, respectively. Under the same grouting
amount, the ultimate bearing capacity of geopolymer-grouted pile P3 is increased by 133%
compared with the cement-grouted pile P1, and the settlement of the pile top is greatly
reduced under the same loading level, indicating superior performance of the geopolymer
grouting material compared to traditional cement grouting. Its superior suitability for
post-grouting on the pile side is evident. Comparing different grouting amounts, the
ultimate load capacity of the piles increases with the rising grouting volume, the ultimate
load capacity of P3 increased by 124% relative to P2 and that of P4 increased by 108%
relative to P3, which indicated that the ability to increase the ultimate load capacity by
increasing the amount of grouting is limited. A maximum threshold value exists, beyond
which the ultimate load capacity enhancement becomes smaller. In addition, the settlement
of ungrouted piles under the first three levels of loading is small, and the settlement from
the fourth level of loading is constantly increasing; the settlement of grouted piles is smaller
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than that of ungrouted piles under the first five levels of loading, and the trend of the
curves is slower. Under the maximal load, the settlements of the tops of the piles of P1, P2,
P3 and P4 are 84%, 61.2%, 68.9% and 67.7% that of the P0 piles, respectively, and the top
settlements of the piles of the grouted piles on the pile side are far smaller than that of the
ungrouted piles under the same level of loading. The top settlement of pile-side grouted
piles is significantly smaller than that of ungrouted piles, indicating that the distributed
grouting on the pile side can not only enhance the ultimate bearing capacity of the piles
but also substantially decrease the top settlement of the piles.

3.2. Pile Axial Force Distribution Curve with Depth

The axial force transfer characteristics of the pile body are an essential reflection of the
bearing characteristics of the single pile. It can not only reflect the exertion of the pile-side
friction resistance but also characterize the bearing characteristics of the pile. The axial
force of the pile body of the model pile is obtained by the conversion of the data measured
by the strain gauge arranged on the side of the pile body. The strain gauge is measured as
the strain data, and the average strain value of the section can be obtained by Formula (1):

εi =
εi1 + εi2

2
(1)

In the formula, εi is the average strain of section i and corresponds to the strain values
of the strain gauge symmetrically set on the pile body of the section, respectively.

After the average strain value is obtained, the axial force of the section can be obtained
from Formula (2):

Ni = εi × E × A (2)

In the formula, Ni is the axial force of the pile body in the i section; εi is the average
strain of section i; E is the elastic modulus of the model pile; A is the cross-sectional area of
the model pile. The axial force distribution of each pile with the depth under various loads
is shown in Figure 17.

As observed in Figure 17, under all loading levels, the axial force within the pile
body of each pile diminishes with increasing depth. This suggests that the upper lateral
resistance surpasses the lower play, and with escalating loading, the slope of the axial
force curve gradually diminishes. The slope of the axial force curve reflects alterations in
lateral friction resistance, and a smaller slope indicates a more pronounced difference in
axial force between two sections. Consequently, the greater the lateral friction resistance,
the more prominently it is manifested from top to bottom with increasing load. For the
ungrouted pile, the axial force curve is relatively smooth, with linear distribution above
0.4 m burial depth, and the slope of the curve decreases in the range of 0.6~1.0 m burial
depth, reflecting that the difference in axial force becomes larger in this range, and the
lateral friction resistance plays a more considerable role. The axial force of the grouted pile
decays faster than that of the ungrouted pile, and in the range of 0.4~0.6 m, 0.8~1.0 m and
1.2~1.4 m, the axial force curve has a sudden change, the slope becomes smaller and with
the increase in the grouting depth, the sudden change is more prominent. This is due to
the formation of the consolidation body at the pile-side grouting position, and the lower
consolidation body is larger than the upper one; the consolidation body has a squeezing
effect on the soil around the pile, which makes the effective stress and shear strength of the
soil around the pile increase. It strengthens the friction force on the pile side. At the top
grouting position, the slope change is not apparent; this is because the top grouting due to
the shallow depth led to a more bubbling slurry, did not form a larger solid body and, due
to the lower part of the slurry upward return so that the upper part of the model pile to
form a layer of the uniform solid body shell, the friction force plays a more uniform role. In
addition, the grouted pile has less axial force transfer to the lower part than the ungrouted
pile at the early loading stage, which also indicates that the grouting on the pile side will
change the stress path of the soil around the pile, making the pile-side resistance to be
exerted in advance, which will affect the load transfer characteristics of the pile foundation.
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Figure 17. Relationship between axial force distribution of each pile body along depth under various
levels of loading. (a) Pile axial force–depth distribution curves of ungrouted piles under various
levels of loading. (b) Pile axial force–depth distribution curve of cement grouted 8 kg pile at pile side
under various levels of loading. (c) Pile axial force–depth distribution curves of pile-side geopolymer
grouted 6 kg piles under various levels of loading. (d) Pile axial force–depth distribution curves of
8 kg piles with ground polymer grouting on the pile side under various levels of loading. (e) Pile
axial force–depth distribution curves of 10 kg piles with ground polymer grouting on the pile side
under various levels of loading.

3.3. Distribution Curve of Lateral Frictional Resistance of Pile Body along Depth

Based on the obtained axial force data, the average pile lateral friction resistance
between sections can be converted according to Equation (3):

qi =
Ni+1 − Ni

πDLi
(3)
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where qi is the average lateral friction resistance of section i; Ni+1 is the axial force of the
pile body in section i + 1; Ni is the axial force of the pile body in section i; D is the pile
diameter; and Li is the length of the pile body in the section. The obtained side friction
resistance distribution curve along the depth is shown in Figure 18.

Materials 2024, 17, x FOR PEER REVIEW 15 of 21 
 

 

  
(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure 18. Distribution curve of average side friction resistance along depth for each pile under var-
ious levels of loading. (a) Average side friction resistance–depth distribution curve of ungrouted 
piles under various levels of loading. (b) Average side friction resistance–depth distribution curve 
of 8 kg cement grouted piles under various levels of loading. (c) Average side friction resistance–
depth distribution curve of 6 kg geopolymer-grouted piles under various levels of loading. (d) Av-
erage side friction resistance–depth distribution curve of 8 kg geopolymer-grouted piles under var-
ious levels of loading. (e) Average side friction resistance–depth distribution curve of 10 kg geopol-
ymer-grouted piles under various levels of loading. 

From Figure 18, it can be seen that lateral friction resistance is a process of gradual 
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Figure 18. Distribution curve of average side friction resistance along depth for each pile under
various levels of loading. (a) Average side friction resistance–depth distribution curve of ungrouted
piles under various levels of loading. (b) Average side friction resistance–depth distribution curve of
8 kg cement grouted piles under various levels of loading. (c) Average side friction resistance–depth
distribution curve of 6 kg geopolymer-grouted piles under various levels of loading. (d) Average side
friction resistance–depth distribution curve of 8 kg geopolymer-grouted piles under various levels of
loading. (e) Average side friction resistance–depth distribution curve of 10 kg geopolymer-grouted
piles under various levels of loading.

From Figure 18, it can be seen that lateral friction resistance is a process of gradual
exertion from top to bottom. In the loading process, the magnitude of the increase in the
lateral friction resistance of the pile body is different at different depths. When the load
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acting on the top of the pile is small, the lateral friction resistance of the top part of the
pile body is exerted before that of the bottom. The lower part of the pile body has a minor
lateral friction resistance; with the gradual increase in the load on the top of the pile to the
ultimate load, the growth rate of the lateral friction resistance of the pile body of the top
part of the pile body slows down, and its size tends to stabilize. In contrast, the lateral
friction resistance of the pile body of the middle and bottom parts of the pile body continues
to increase with the fast growth rate. For ungrouted piles, the lateral friction resistance
of the pile body increases with the depth of burial as the load increases. For grouted
piles, the distribution law of lateral friction resistance is mostly consistent, and the lateral
friction resistance has a sudden change and significant increase at the consolidation body,
corresponding to the abrupt change in axial force at the consolidation body. In addition,
with the load increase, the lateral friction resistance at the top consolidation body is better
than that at the bottom. When the ultimate load is reached, the lateral friction resistance
at the bottom consolidation body becomes more prominent than that at the top. This is
due to the more significant burial depth of the lower part, and the squeezing effect of the
consolidation body on the soil around the pile is more significant than that of the upper part.
The effective horizontal stress of the soil around the pile is increased, which results in a
significant increase in the lateral friction resistance. Moreover, the sudden change in lateral
friction resistance at the top consolidation body is not evident, which is since the upper
slurry returns more along the pile body, forming a layer of a homogeneous consolidation
body shell on the upper part of the pile body, which makes the upper friction resistance
play a more homogeneous role.

The distribution of pile-side friction resistance along the depth for each pile under
ultimate load is illustrated in Figure 19. From the figure, it can be seen that under the
action of ultimate load, the average values of pile lateral molar resistance of model piles
P0, P1, P2, P3 and P4 are 13.96 kPa, 27.93 kPa, 30.49 kPa, 39.58 kPa and 44.59 kPa, and
the lateral molar resistance of grouted piles P1, P2, P3 and P4 is dramatically improved
compared to that of ungrouted pile P0. The respective enhancement ranges are 200%, 218%,
284% and 319%. This indicates that pile-side grouting effectively improves the physical
and mechanical properties of the soil surrounding the pile, enhancing the strength and
stiffness of the soil on the pile side. Under the same grouting volume, the ultimate lateral
friction resistance of the geopolymer-grouted pile is improved by 142% compared to that
of the cement-grouted pile. The settlement of the pile top is smaller under the same load,
which indicates that the performance of geopolymer slurry is better than that of traditional
cement slurry. The effect of improving the mechanical properties of pile lateral soil is more
prominent, and there is a more substantial synergistic effect with the pile lateral soil. When
comparing different grouting amounts, the ultimate average lateral resistance increases
with the grouting amount, but the rate of increase diminishes, suggesting a limited capacity
to enhance ultimate lateral resistance by increasing the grouting amount.
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4. Diffusion of Slurry around Model Pile

After loading, the model pile is excavated, and the slurry distribution on the pile side
is observed. The excavation results are depicted in Figures 20 and 21. In the figure, PS-G1,
PS-G2, PS-G3 and PS-C represent 6 kg grouting of geopolymer, 8 kg grouting of geopolymer,
10 kg of geopolymer and 8 kg of cement, respectively. The illustrations reveal that in the
geopolymer grouting pile, the geopolymer slurry is distributed as an ellipsoid pile at the
grouting position. The slurry mainly exhibits compaction and diffusion, accompanied by a
small amount of infiltration and diffusion. At the grouting position, the slurry undergoes
upward and downward infiltration. The lower consolidation body is the largest, the upper
consolidation body is the smallest and the slurry is threaded between the consolidation
bodies, resulting in a more uniform distribution of slurry around the pile.
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The bonding area between the consolidation body and the pile body is large, aug-
menting the synergistic interaction between the pile and the surrounding soil. Among
them, the consolidation body formed by the PS-G1 pile has a radial diffusion range of
10.4~20.1 cm, and a slurry shell of 0.5~1 cm thickness is formed between the consolidation
bodies. The consolidation body formed by the PS-G2 pile has a radial diffusion range of
12~25 cm, and a slurry shell of 0.8~1.3 cm thick is formed between the consolidation bodies.
The consolidation body formed by the PS-G3 pile diffuses in a radial range of 12.5~31 cm,
and a slurry shell of 0.9~1.5 cm thickness is formed between the solidified bodies. For the
cement grouting pile, the slurry is mainly split and diffused in the lower grouting section,
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forming a flaky splitting consolidation body with a length of about 35~44 cm, a width of
about 10.5~13 cm and a thickness of about 2 cm. In the upper grouting section, it is mainly
squeezed and diffused, forming an ellipsoidal consolidation body, and the consolidation
body occurs between the slurry, forming a layer of slurry shell with a thickness of about
0.8 cm in the pile body. It is noteworthy that following the completion of loading, the
model pile undergoes excavation, revealing that the consolidation body of the geopolymer
grouting pile is relatively intact and securely bonded to the pile body. In contrast, the
fragmented consolidation body of the cement grouting pile results from its limited bonding
area with the pile body; the bonding surface of the consolidation body is destroyed during
loading. This is also one of the reasons why the ultimate bearing capacity of the geopoly-
mer grouting pile is higher than that of the cement grouting pile. Part of the geopolymer
consolidation body is shown in Figure 22.
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5. Conclusions

This paper presents a model test on the vertical bearing capacity of super-long piles
with distributed post-grouting on the pile side. It compares the vertical bearing characteris-
tics of super-long piles in silt fine sand under various grouting materials and amounts. The
excavation results of the post-grouting model pile are analyzed to compare the diffusion
forms of different grouts in sandy soil, leading to the following conclusions:

1. The ultimate bearing capacity of the ungrouted pile P0 is 5400 N. For the pile-side
distributed post-grouting piles (P1, P2, P3 and P4), the ultimate bearing capacities are
8820 N, 9450 N, 11,700 N and 12,600 N, respectively, demonstrating improvements
of 163%, 175%, 217% and 233% compared to the ungrouted piles. Under extreme
load conditions, the top settlements of P1, P2, P3 and P4 piles were 84%, 61.2%,
68.9% and 67.7% of that observed in P0 piles. Importantly, the top settlements of
pile-side grouted piles were significantly smaller than those of ungrouted piles at
the same load level, highlighting that distributed post-grouting on the pile side not
only enhanced the ultimate load carrying capacity of the piles but also substantially
reduced top settlements.

2. Under equivalent grouting amounts, the ultimate bearing capacity of geopolymer-
grouted piles is increased by 133% compared to that of normal Portland cement-
grouted piles. This observation suggests that, during the same grouting process,
geopolymer-grouted piles exhibit superior bearing performance compared to piles
grouted with normal Portland cement. This finding validates the applicability of
geopolymer grouting materials in post-grouting applications for pile foundations in
sandy soil. It serves as a valuable reference for the engineering implementation of
post-grouting in pile foundations using geopolymer.

3. When comparing various grouting amounts, an increase in the grouting quantity
correlates with an enhanced ultimate bearing capacity of the pile. Specifically, the
ultimate bearing capacity of P3 increases by 124% relative to P2, and that of P4
increases by 108% relative to P3. This observation suggests that the capacity to enhance
the ultimate bearing capacity by escalating the grouting volume is constrained; there
exists a maximum threshold. Beyond this threshold, the incremental growth in the
ultimate bearing capacity diminishes in magnitude.
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4. Under the influence of the ultimate load, the average values of pile-side friction
resistance for P1, P2, P3 and P4 are 27.93 kPa, 30.49 kPa, 39.58 kPa and 44.59 kPa,
respectively. The enhancement in pile-side friction resistance, when compared to the
ungrouted pile P0, is 200%, 218%, 284% and 319%, indicating that distributed post-
grouting on the pile side predominantly enhances the ultimate load carrying capacity
by improving the pile-side friction resistance. Moreover, under the same grouting
quantity, geopolymer-grouted piles exhibit superior performance in enhancing pile-
side friction resistance compared to normal Portland cement-grouted piles. This
suggests that distributed post-grouting on the pile side primarily elevates the ultimate
bearing capacity by augmenting pile-side friction resistance, and, under equivalent
grouting amounts, geopolymer-grouted piles outperform normal Portland cement-
grouted piles in enhancing side friction resistance.

5. The geopolymer grouting pile forms an ellipsoidal consolidation body at the pile-
side grouting, primarily characterized by compaction diffusion and accompanied
by a minor amount of seepage diffusion. The normal Portland cement grouting pile
generates a sheet consolidation body at the grouting position in the lower part of the
pile body, mainly exhibiting split diffusion. An ellipsoid consolidation body is formed
at the grouting position in the upper part of the pile body. The post-grouting piles
of both materials exhibit grouting between each grouting section, forming a layer of
slurry shell within the pile body. The slurry is evenly distributed along the pile body,
thereby increasing the contact area between the pile body and the consolidation body
and enhancing pile–soil interaction. The distributed grouting process on the pile side
demonstrates excellent applicability to the post-grouting of super-long pile sides.

6. Shortages and Prospects

Considering that this model test is conducted on fine sand soil and cannot fully
replicate the actual pile-forming method and soil stress state, the results of this test come
with certain limitations. However, the primary objective of this test is to compare the
bearing capacity of CN-1 geopolymer and ordinary Portland cement model piles under the
same test conditions, along with the influence of different grouting amounts on the bearing
capacity. As a result, this test can offer valuable insights for the engineering application
of the geopolymer. To enhance the validation of practical engineering application, the
engineering performance of the CN-1 geopolymer can be further assessed through field
tests and numerical analysis.
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