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Abstract: Magnesium slag is a type of industrial solid waste produced during the production of
magnesium metal. In order to gain a deeper understanding of the structure of magnesium slag, the
composition and microstructure of magnesium slag were investigated by using characterization meth-
ods such as X-ray fluorescence, particle size analysis, X-ray diffraction, Fourier transform infrared
spectroscopy and scanning electron microscopy. In addition, the state of Si occurrence in magnesium
slag was analyzed using a solid-state nuclear magnetic resonance technique in comparison with
granulated blast furnace slag. An inductively coupled plasma-optical emission spectrometer and
scanning electron microscope with energy dispersive X-ray spectroscopy were used to characterize
their cementitious behavior. The results show that the chemical composition of magnesium slag
mainly includes 54.71% CaO, 28.66% SiO2 and 11.82% MgO, and the content of Al2O3 is much lower
than that of granulated blast furnace slag. Compared to granulated blast furnace slag, magnesium
slag has a larger relative bridging oxygen number and higher [SiO4] polymerization degree. The
cementitious activity of magnesium slag is lower compared to that of granulated blast furnace slag,
but it can replace part of the cement to obtain higher compressive strength. Maximum compressive
strength can be obtained when the amount of magnesium slag replacing cement is 20%, where the
28-day compressive strength can be up to 45.48 MPa. This work provides a relatively comprehensive
analysis of the structural characteristics and cementitious behavior of magnesium slag, which is
conducive to the promotion of magnesium slag utilization.

Keywords: magnesium slag; granulated blast furnace slag; structural characterization; nuclear
magnetic resonance; cementitious activity

1. Introduction

Magnesium slag is an industrial solid waste generated during the production of
magnesium metal. In China, the smelting of magnesium metal via the Pijiang method
is the main commercial process for magnesium production [1,2]. More than 6 tons of
magnesium slag is produced when smelting 1 ton of magnesium metal on average, and it
is accompanied by nearly 30 tons of CO2 and various types of flue gas emissions [3], which
seriously pollute the environment of the area where it is located [4]. At present, there is
no complete treatment technology for magnesium slag to enable its industrial utilization,
which leads to massive accumulation of magnesium slag in the open air [5]. This not only

Materials 2024, 17, 360. https://doi.org/10.3390/ma17020360 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma17020360
https://doi.org/10.3390/ma17020360
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0009-0004-3644-5973
https://orcid.org/0000-0002-9888-7396
https://orcid.org/0000-0002-1375-5627
https://doi.org/10.3390/ma17020360
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma17020360?type=check_update&version=1


Materials 2024, 17, 360 2 of 14

takes up considerable land resources and damages the ecological environment, but also
poses a threat to human health [6–9]. Like other industrial solid wastes, if magnesium slag
can be effectively utilized, this will bring great ecological and economic benefits [10–14],
promoting the early realization of China’s goal of “carbon peak and carbon neutrality”
according to the Paris Agreement.

Magnesium slag mainly contains CaO, SiO2 and MgO. Due to its high MgO content,
expansion behavior occurs during the hydration process [15–17], and for that reason,
magnesium slag is not yet used on a large scale in the construction industry. Ji et al. [18]
discussed the potential of magnesium slag as a mineral admixture and found that when
30% of magnesium slag was used as a replacement for Portland cement, this was beneficial
to improve the late strength of concrete and reduce drying shrinkage. Xie et al. [19] used
magnesium slag as an admixture for low-carbon cement, and the prepared samples met the
GB 175-2007 [20] “General Portland Cement” standard, which could reduce the production
cost by more than 10%. The synthesis of porous materials from magnesium slag can
have a good adsorption effect on Pb2+ while the materials also have high compressive
strength [21]. CO2 solidified fiber cement boards prepared with magnesium slag as a
binder had high flexural strength, carbonation rate and water absorption [22]. Using
the “leaching-carbonization” method, magnesium slag can be turned into two value-
added products: vaterite with a purity of more than 95% and supplementary cementitious
materials [23]. Magnesium slag has limited activity in its normal state, making it difficult
to be applied directly. Therefore, scholars use diverse approaches to stimulate its activity
and improve applicability. Lei et al. [24] proposed CO2 activated aerated concrete with a
high admixture of magnesium slag, which is capable of achieving rapid carbonation to
improve compressive strength, reduce environmental pollution caused by the accumulation
of magnesium slag and also facilitate the large-scale utilization of CO2. When cured in
water at 60 ◦C [25], a magnesium slag product treated with CO2 activation has good volume
stability and does not display excessive expansion. The effect of volumetric instability can
be eliminated after carbonation for 2 h. At the same time, carbonation treatment can quickly
obtain higher compressive strength, reaching 90 MPa at 24 h [26]. The incorporation of
magnesium slag can improve the soil environment by granularizing the soil and providing
higher cementitious activity [27–29], and also has a remediation effect on Cd- and As-
contaminated paddy soils [30]. Jia et al. [31] investigated the desulfurization characteristics
of magnesium slag and achieved a calcium conversion of 30.3% for samples treated with
continuous hydration under optimum process parameters. In addition, magnesium slag
can be used as a raw material for the preparation of phosphate adsorbents [32], with a
maximum adsorption capacity of up to 50.14 mg/g. The Fe2O3 content in magnesium slag
has a large effect on the phosphorus removal rate, which can also be enhanced after acid
treatment [33]. Whilst the desulfurization performance of the original magnesium slag is
poor, a calcium conversion rate of up to 73.7% can be reached after mixing with additives
or modification [34]. Magnesium slag, like other solid wastes, can also be used for mine
filling [5,35,36] or road base material [37–42]. Numerous studies have conducted extensive
research into other industrial solid wastes, such as granulated blast furnace slag [43–45],
steel slag [46], red mud [47] and so on [48–50], which provide guidance for the utilization
of the corresponding tailings and slag. However, there are fewer corresponding studies on
the structure and cementitious properties of magnesium slag, which is one of the reasons
for its current low utilization. Accordingly, there is an urgent need to study the structural
characteristics of magnesium slag and propose avenues to utilize it in an efficient and
resourceful way.

This work aimed to study the structural characteristics and cementitious activity of
magnesium slag in comparison with those of granulated blast furnace slag using X-ray
diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and 29Si solid-state
nuclear magnetic resonance (NMR). The cementitious activity of magnesium slag and gran-
ulated blast furnace slag under alkaline conditions were assessed through the dissolution
of Si, Al and Mg elements in alkaline solutions. Hydration behavior of magnesium slag
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and granulated blast furnace slag was investigated using scanning electron microscopy
and energy dispersive X-ray spectrometry (SEM-EDS), and the possibility of their replace-
ment for cement was also discussed. The results of this study may contribute to a deeper
understanding of the relationship between the microstructure and cementitious activity
of magnesium slag, which will provide basic knowledge for further comprehensive uti-
lization of magnesium slag. Additionally, this work compares the cementitious activity of
magnesium slag with that of granulated blast furnace slag for the first time, which is of
great reference value to the field of magnesium slag utilization.

2. Experimental Program

Details of the raw materials and related test parameters used in this work are
shown below.

2.1. Raw Materials

The magnesium slag used in the experiment was provided by Dongfeng Magnesium
Metal Co., Ltd. of Yulin City, Shaanxi Province, China. The 42.5 Portland cement and
granulated blast furnace slag were supplied by Henan Yuanheng Environmental Protection
Engineering Co., Ltd, Henan, China. The NaOH was sourced from Yili Fine Chemicals Co.,
Ltd., Beijing, China. The chemical compositions of magnesium slag (MS) and granulated
blast furnace slag (GBFS) as determined via X-ray fluorescence spectrometry (XRF) are
shown in Table 1.

Table 1. Chemical composition of raw materials.

Chemical Composition (wt%) CaO SiO2 Al2O3 MgO Fe2O3 SO3 TiO2 Others

MS 54.71 28.66 0.85 11.82 2.87 0.07 0.06 0.96
GBFS 42.76 27.85 15.61 7.78 0.36 2.64 1.20 2.16

Cement 71.52 15.08 3.59 1.81 3.44 3.03 0.43 1.10

2.2. Characterization Methods
2.2.1. Particle Size

The bulk magnesium slag was first crushed by a jaw crusher and then added into a
ball mill and ground at 600 rpm for 2 h to obtain magnesium slag powder. The particle size
of magnesium slag powder and granulated blast furnace slag powder was tested using a
laser particle size analyzer (Bettersize2000, Dandong Baxter Instrument Co., Ltd., Dandong,
China), where sodium hexametaphosphate was used as a dispersant.

2.2.2. X-ray Diffraction

The mineralogical components of magnesium slag were analyzed via X-ray powder
diffraction (XRD) (Bruker D8 Advance Instrument, Bruker Corporation, Karlsruhe, Ger-
many) using Cu Kα radiation (λ = 1.54056 Å) at 40 kV and 40 mA. The scanning range was
5◦~90◦ and the scanning speed was 5◦/min.

2.2.3. Nuclear Magnetic Resonance

In order to obtain more accurate solid-state NMR test results, small amounts of
magnetic material were removed from the magnesium slag and granulated blast furnace
slag, and then they were tested using an NMR spectrometer(AVANCE III 600M, Bruker
Corporation, Karlsruhe, Germany).

2.2.4. Compressive Strength

Initially, 100 g of slag powder was added to a paste mixer, stirred, vibrated and finally
poured into molds. After demolding, 20 × 20 × 20 mm paste specimens were obtained,
and the compressive strength of specimens at different curing ages was tested using a
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microcomputer-controlled electro-hydraulic servo universal testing machine (WAW-2000E,
Jinan Kohui Testing Equipment Co., Ltd., Jinan, China).

2.2.5. Inductively Coupled Plasma-Optical Emission Spectrometer

The active element contents (Si, Al, Mg) of magnesium slag and granulated blast
furnace slag dissolved in an alkaline environment, were determined using an inductively
coupled plasma instrument (ICAP-7000, Thermo Fisher, Waltham, MA, USA). The specific
operations were as follows: 1 g of slag powder was added to 50 mL of 1 mol/L NaOH
solution, sealed and left to stand for 72 h at room temperature, after which the upper layer
of clear liquid was taken following centrifugation for ICP testing.

2.2.6. Scanning Electron Microscope

The above centrifuged liquid was poured out, and anhydrous ethanol was added to
terminate the hydration of the solids for 48 h, after which the solids were put into a vacuum
drying oven to dry sufficiently for 24 h. The microscopic morphology of the samples was
observed and analyzed using an SU 8020 field emission scanning electron microscope (SU
8020, Hitachi Ltd., Tokyo, Japan).

3. Results
3.1. Mineralogical Composition of Magnesium Slag

Figure 1 demonstrates the XRD pattern of magnesium slag. The results show that
the main phases of magnesium slag are quartz (SiO2), larnite (β-Ca2SiO4), calcio-olivine
(γ-Ca2SiO4), calcium silicate (Ca3SiO5) and periclase (MgO). Table 2 shows the results of the
quantitative XRD analysis of magnesium slag. It was found that magnesium slag contains
58.4 wt% larnite (β-Ca2SiO4), 27.1 wt% quartz (SiO2) and small amounts of Ca3SiO5, MgO
and γ-Ca2SiO4. Compared with γ-Ca2SiO4, β-Ca2SiO4 has higher cementitious activity,
and the high content of β-Ca2SiO4 in magnesium slag provides great potential for its
application in cementitious materials.
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Figure 1. XRD pattern of magnesium slag. Figure 1. XRD pattern of magnesium slag.

Table 2. Quantitative XRD analysis of magnesium slag.

Mineralogical
Composition (wt%) SiO2 β-Ca2SiO4 γ-Ca2SiO4 Ca3SiO5 MgO

MS 27.1 58.4 2.6 7.1 4.8
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Figure 2 shows the FTIR results of magnesium slag. The main vibrational bands of
magnesium slag are at 519 cm−1, 846 cm−1, 895 cm−1, 995 cm−1, 1426 cm−1 and 1633 cm−1.
Among them, the Mg-O vibrational band is at 519 cm−1, and the stretching vibrational
band of Si-O in SiO2 is at 995 cm−1. The bands at 846 cm−1, 895 cm−1 and 1426 cm−1

are the vibrational bands of silica–aluminum matter, and the absorption band located at
1633 cm−1 is related to the bending vibration of the H-O-H group of bound water.
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Figure 2. Infrared spectra of magnesium slag.

3.2. [SiO4] Polymerization Degree of Magnesium Slag and Granulated Blast Furnace Slag

In order to clarify the relationship between the cementitious activity and structure
of magnesium slag, solid-state 29Si NMR analysis was performed to further study the
[SiO4] polymerization degree of magnesium slag in comparison with granulated blast
furnace slag [51]. Figure 3 shows the NMR spectra of magnesium slag and granulated blast
furnace slag. As can be seen from Figure 3, there are two main resonance peaks in the
magnesium slag. According to the relationship between their chemical shifts and structures,
the resonance peak at about −70 ppm belongs to SiQ0, and the resonance peak at about
−115 ppm belongs to SiQ4. The resonance peak of granulated blast furnace slag only at
about −73 ppm belongs to SiQ0. This suggests that SiO4 tetrahedra in magnesium slag
exist as nesosilicates and framework silicate [52], which is consistent with the quantitative
analysis results of XRD.

Figure 4 shows the split peak fitting results of the two main peaks in the 29Si NMR
spectrum of magnesium slag. Five independent resonance peaks were obtained by splitting
the two main peaks of magnesium slag using PeakFit software (v4.04), and their areas were
calculated separately. The resonance peaks at −66.89 ppm, −70.46 ppm and −73.40 ppm
belong to SiQ0, and the resonance peaks at −112.25 ppm and −115.77 belong to SiQ4. The
results are shown in Table 3. According to the relative bridging oxygen number (RBO)
calculation formula [52],

RBO = 1
4 ·

∑ n·Qn

∑ Qn = 1
4

(
1 × Q1

∑ Qn + 2 × Q2

∑ Qn + 3 × Q3

∑ Qn + 4 × Q4

∑ Qn

)
RBO(MS) = 1

4 ·
0·Q0+4·Q4

Q0+Q4

it can be calculated that the RBO number of magnesium slag is 0.52. Generally speaking,
the greater the relative bridging oxygen number, the higher the [SiO4] polymerization
degree and the lower the cementitious activity of the slag. Granulated blast furnace slag
is mainly composed of a SiQ0 unit with an RBO number of 0. Its [SiO4] polymerization
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degree is lower than that of magnesium slag, so the cementitious activity of granulated
blast furnace slag is higher than that of magnesium slag.
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Table 3. RBO calculation of magnesium slag.

Structure Units Q0 Q0 Q0 Q4 Q4

Chemical shift (ppm) −66.89 −70.46 −73.40 −112.25 −115.77
Relative area 30.42 58.74 45.64 45.14 100

Relative content (%) 10.87 20.98 16.30 16.13 35.72

3.3. Alkali-Activated Behavior of Magnesium Slag and Granulated Blast Furnace Slag

The ability of slag powder to release reactive ions SiO4−
4 and AlO−

2 in alkaline solution
can reflect its cementitious activity [53]. In order to investigate the amount of active
ions produced by magnesium slag in alkaline solution, magnesium slag powder and
granulated blast furnace slag were activated with NaOH solution to assess any difference
in cementitious activity.
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The dissolution results shown in Figure 5 demonstrate both magnesium slag and
granulated blast furnace slag, in which no magnesium element with cementitious activity
is dissolved. Magnesium slag can dissolve a certain amount of Si and Al, while granulated
blast furnace slag dissolves more. Combined with Table 1, we can surmise that the SiO2
content in magnesium slag is slightly higher than that in granulated blast furnace slag.
However, the dissolved amount of Si in granulated blast furnace slag is about six times
that of magnesium slag. As the content of Al2O3 in granulated blast furnace slag is about
twenty times higher than that in magnesium slag, the dissolved amount of Al in granulated
blast furnace slag is much higher than that of magnesium slag, reaching nearly 30 times
more. Figure 6 shows the particle size distribution of magnesium slag and granulated blast
furnace slag. It can be found that the particle size of magnesium slag powder is smaller
than that of granulated blast furnace slag. In general, a smaller particle size makes it easier
for a pozzolanic reaction to occur completely. However, the results of alkali dissolution
are the opposite of this. These results indicate that magnesium slag powder has a certain
cementitious activity, but this is much lower than that of granulated blast furnace slag.
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changed from the original flake to an agglomerate, and C-A-S-H gel formed on the sur-
face. The slags before and after alkali dissolution were analyzed using EDS, and the re-
sults are shown in Figure 8 and Table 4. The amount of each element in the granulated 
blast furnace slag and magnesium slag decreased significantly after alkali dissolution, 
except for O, which indicates that these other elements, after alkali dissolution, are in-
volved in the formation of C-A-S-H gel. It is noted that the consumption of each element 
of granulated blast furnace slag is much higher than that of magnesium slag, which may 
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3.4. Microstructure of Magnesium Slag and Granulated Blast Furnace Slag

Figure 7 shows SEM images of granulated blast furnace slag and magnesium slag
samples and the corresponding samples after alkali dissolution. It can be observed that
both the granulated blast furnace slag and magnesium slag were in the form of flakes with
a relatively smooth surface. After alkali dissolution, the morphology of slags changed from
the original flake to an agglomerate, and C-A-S-H gel formed on the surface. The slags
before and after alkali dissolution were analyzed using EDS, and the results are shown
in Figure 8 and Table 4. The amount of each element in the granulated blast furnace slag
and magnesium slag decreased significantly after alkali dissolution, except for O, which
indicates that these other elements, after alkali dissolution, are involved in the formation of
C-A-S-H gel. It is noted that the consumption of each element of granulated blast furnace
slag is much higher than that of magnesium slag, which may indicate that granulated blast
furnace slag has higher cementitious activity than magnesium slag. This is consistent with
the above ICP analysis results.
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Table 4. SEM-EDS analysis results.

Sample O
(Atomic%)

Mg
(Atomic%)

Al
(Atomic%)

Si
(Atomic%)

Ca
(Atomic%)

a 57.60 4.69 7.26 13.90 16.55
b 77.85 2.17 2.90 9.51 7.57
c 71.64 3.91 0.44 8.39 15.63
d 76.48 1.87 0.22 8.04 13.39

3.5. Magnesium Slag and Granulated Blast Furnace Slag as Replacements for Cement

In order to further confirm cementitious activity, magnesium slag and granulated
blast furnace slag were used to replace a part of Portland cement in a paste experiment
to compare the feasibility of their uses as a mineral admixture. Figure 9 shows samples
of 20 × 20 × 20 mm paste prepared with reference to the literature [54] and standard [55],
which were used for compressive strength testing after curing for the corresponding
ages. Figures 10 and 11 show the compressive strength of blended cement after partial
replacement with magnesium slag and granulated blast furnace slag, respectively. It is
beneficial to increase the compressive strength when a small amount of magnesium slag is
used to replace the cement. However, the compressive strength of the samples drops below
that of pure cement when more than 20% of cement is replaced by magnesium slag. The
main reason is that magnesium slag has limited activity in this condition without alkali
activation. When the amount of magnesium slag in the system is less than 20%, Ca(OH)2
produced during the hydration process of cement can play a significant role in activating
the magnesium slag, so that the magnesium slag can better participate in the hydration
process [56]. As a result, magnesium slag can be used to replace part of the cement within
a 20% dosage whilst the compressive strength can also be improved. However, when the
amount of magnesium slag continues to increase, the amount of Ca(OH)2 produced through
cement hydration decreases, resulting in a decrease in alkali concentration in the hydrated
system, and thus the activity of magnesium slag is not well-activated. Therefore, the



Materials 2024, 17, 360 10 of 14

compressive strength declines with increasing amounts of magnesium slag exceeding 20%
addition. As shown in Figure 10, a similar phenomenon is observed when using granulated
blast furnace slag to replace part of the cement. When the amount of replacement exceeds
20%, the 28-day compressive strength of the granulated blast furnace slag–cement samples
gradually decreases with an increase in granulated blast furnace slag dosage. However,
the compressive strength is still higher than that of the pure cement when a 50% dosage of
granulated blast furnace slag is used for the replacement of cement, strongly indicating
that granulated blast furnace slag is a valuable mineral admixture in cement and concrete.
Moreover, due to the higher alkali activity of granulated blast furnace slag than that of the
magnesium slag, it is found that the compressive strength of the granulated blast furnace
slag–cement system is higher than that of the magnesium slag–cement group at the same
replacement amount. These results suggest that although the cementitious activity of
magnesium slag is lower than that of granulated blast furnace slag, magnesium slag can
still be used as a mineral admixture for replacing a 20% amount of cement in blended
cementitious materials.
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Various methods exist to assess the cementitious activity of solid waste, such as con-
ductivity tests, compressive strength tests, lime absorption methods and alkali dissolution
methods [57–60]. Scholars have used these methods to scientifically evaluate the cementi-
tious activity of granulated blast furnace slag [43], steel slag [46], red mud [47] and other
tailings [61], but the link between the results has not been well-identified. This work
investigated the structural properties and cementitious behavior of magnesium slag and
granulated blast furnace slag by using NMR, compressive strength tests and alkali disso-
lution methods. A difference in activity between magnesium slag and granulated blast
furnace slag was demonstrated in the results. These provide a reference for magnesium
slag utilization as well as assessment of the cementitious activity of other tailings.

4. Conclusions

This work principally investigated the structural characteristics of magnesium slag
and studied its cementitious properties in comparison with granulated blast furnace slag.
The main conclusions drawn are as follows:

(1) The chemical composition of magnesium slag is mainly CaO, SiO2, Al2O3, MgO and
Fe2O3. Its main components are similar to those of granulated blast furnace slag,
but it contains more MgO and less Al2O3 than granulated blast furnace slag. The
main mineral compositions of magnesium slag are 27.1% quartz, 58.4% larnite, 7.1%
calcium silicate, 4.8% periclase and 2.6% calcio-olivine.

(2) The Si in magnesium slag is mainly in the form of Q0 and Q4 units, which have a large
relative bridging oxygen number and high [SiO4] polymerization degree, resulting
in relatively poor cementitious activity. The Si in granulated blast furnace slag is
mainly in the form of Q0 units, and the relative bridging oxygen number is close to
0. Compared with magnesium slag, the degree of [SiO4] polymerization is lower
and the cementitious activity is higher for granulated blast furnace slag. After alkali
excitation, the cementitious activity of magnesium slag can be reflected, and through
this approach, we found that its cementitious activity is significantly lower than that
of granulated blast furnace slag.

(3) Both magnesium slag and granulated blast furnace slag can be used as mineral
admixtures to replace part of cement. Higher compressive strength can be obtained
after replacing cement with a small amount of magnesium slag, and the optimum
replacement amount is 20%. With further increase of the replacement amount, the
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compressive strength decreases, and when it exceeds 30%, the compressive strength
of magnesium slag–cement samples is lower than that of pure cement.

(4) Magnesium slag has the potential to be utilized as a mineral admixture for cement, but
attention should be paid to the amount of magnesium slag added, activity excitation
and the expansion of magnesium hydrate products during its application in cement
and concrete production. Elimination of the expansion effect caused by f-MgO in
magnesium slag is an important topic for our future work.
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