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Abstract: Calcium silicate-based cement is a promising material for filling root canals. However, it
has several drawbacks to its clinical application, including difficult operation and low curing strength.
In this study, we successfully prepared an ultrafine tricalcium silicate powder and investigated
the effects of this ultrafine powder on the performance of the premixed tricalcium silicate cement,
including the curing process, setting time, hydration products, microstructure, injectivity, fluidity,
and compressive strength. The results demonstrate that the addition of ultrafine tricalcium silicate
powder alters the hydration product content and product morphology of the premixed cement. By
increasing the content of the ultrafine powder, the injectable property of the cement can be increased
to more than 95%, the fluidity can be increased from 18 mm to 35 mm, and the curing time can be
shortened from 13 h to 11 h. Notably, the addition of the ultrafine powder greatly enhances the
compressive strength of the hardened cement, which increases from 20.6 MPa to 51.0 MPa. These
results indicate that altering the particle size distribution of the powder is an effective method for
enhancing the physicochemical and mechanical properties of tricalcium silicate cement as a root canal
filling material.

Keywords: calcium silicate cement; premixed cement; root canal sealing; particle size; compressive
strength

1. Introduction

Pulpitis and periapical inflammation are common oral diseases, often caused by a
microbial infection of the dental pulp and periapical tissues [1]. A root canal treatment
is an effective method for treating pulp diseases and periapical inflammation. Its goal is
to eliminate the bacterial infection and seal off the space to prevent bacterial growth [2].
Due to the complex structure of the root canal, tissue fluid leakage caused by poor sealing
can easily lead to a secondary bacterial infection. This is a common cause of failure of root
canal treatments [3].Therefore, the selection of root canal filling materials with excellent
sealing properties is crucial to the success of the treatment. Water-based calcium silicate
sealers, due to their excellent sealing performance, favorable antibacterial properties, and
long-term dimensional stability [4,5], have revolutionized the standards and approaches
to root canal filling and have shown great potential [6]. Among them, mineral trioxide
aggregate (MTA) is a typical example that has shown good clinical results [7].

MTA primarily consists of tricalcium silicate (Ca3SiO5, C3S) and dicalcium silicate
(Ca2SiO4, C2S) as its main powder components [8]. After being mixed with a water-based
solution, MTA undergoes hydration and hardening, which provides it with sufficient
compressive strength and good sealing properties to resist fluids [9,10]. Tricalcium silicate
and dicalcium silicate react with water to form hydrated calcium silicate (C-S-H) and
calcium hydroxide (CH). The formation of calcium hydroxide creates an environment with
a high pH value, which has anti-inflammatory and antibacterial effects [11,12]. Traditional
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MTA requires dentists to evenly mix the powder and water solution, and then fill the root
canal with the resulting paste. However, this process not only prolongs the operation time
but also increases the risk of surgical failure due to uneven mixing [13,14]. Researchers have
developed a premixed injectable cement based on MTA to overcome these difficulties [15].
This material replaces the water solution with a non-aqueous liquid, enabling it to be stored
as a paste in a syringe without solidifying. When applied, the paste is injected into the root
canal, and its non-aqueous phase undergoes a liquid exchange with the aqueous phase of
the physiological fluids. This process results in the cement hydration and setting [16].

Although premixed cement solves the issue of manual mixing, it still has some draw-
backs similar to those of conventional MTA. Additionally, due to differences in hydration
principles, it also faces challenges such as extended setting time, limited washout resistance,
and low compressive strength [17]. Researchers have primarily focused on enhancing the
physicochemical and biological properties of calcium silicate-based cement through the
addition of other components. Calcium chloride [18,19], magnesium phosphate [20,21],
calcium carbonate [22,23], and monocalcium phosphate monohydrate [24] have all been
shown to facilitate the hydration process of calcium silicate-based cement, and these results
have indicated a significant reduction in setting time. In addition, shortening the setting
time is generally conducive to improving the erosion resistance of the cement slurry, but
most of these have a negative impact on the compressive strength of the solidified cement.
Some polymer additives, such as carboxymethyl chitosan [25], gelatin [26], and sodium
alginate [27,28], can effectively improve the erosion resistance of calcium silicate-based
cement; these additives have good viscoelastic and hydration properties, and can reduce
liquid penetration. However, although these polymers improve the erosion resistance of
C3S cement, the setting time of C3S cement is inevitably prolonged due to the retarding
effect of the biopolymers on the hydration process [25,28]. Although the addition of one
component phase can only improve a single performance aspect, the addition of multiple
components makes the research process complicated, and the results are not ideal. Thus, it
is proper to use the material system with simple formulation in order to study the effect of
one factor.

The particle size of the calcium silicate powder has a significant impact on the physical
and chemical properties of the calcium silicate materials [29,30]. The particle size distribu-
tion of the powder can be changed with ball milling [29]. This study aims to study the effect
of ultrafine tricalcium silicate powder on the physicochemical and mechanical properties
of premixed tricalcium silicate cement by adjusting the distribution ratio of powders with
different particle sizes. Ethylene glycol was selected as the premixed liquid phase and
the liquid–solid ratio was set at 0.5 g/mL [31]. The changes in the injectable property,
fluidity, setting time, and compressive strength of the premixed cement were mainly stud-
ied, and the phase composition and microstructure characteristics of the solidified cement
were analyzed.

2. Materials and Methods
2.1. Preparation of C3S Powder

C3S powder was prepared using a coprecipitation method reported in the litera-
ture [32]. CaC2O4 was purchased from Shanghai Maclin Biochemical Technology Co., Ltd.
(Shanghai, China), and Si(OC2H5)4 (TEOS), C2H5OH, and nitric acid were purchased from
GuoYao Chemical Reagent Co., Ltd. (Shanghai, China). The chemical reagents used in the
experiment were all analytically pure. The schematic illustration of the synthetic process of
C3S powders is shown in Figure 1. Using CaC2O4 and TEOS as the raw materials and nitric
acid as the catalyst, the initial stoichiometric ratio of CaO/SiO2 was set to 3. First, 0.1 mol of
TEOS was added to a mixture of 40 mL deionized water and 29.3 mL of anhydrous ethanol.
Then, it was continuously stirred at room temperature for 10 min to mix evenly, and the
pH of the solution was adjusted to 1–2 with nitric acid. After heating the mixed solution to
60 ◦C, 0.3 mol of CaC2O4 as a calcium precursor was slowly added to the solution, stirred
at 60 ◦C for about 2 h with a magnetic stirrer, and then dried in a 60 ◦C drying oven. The
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precursor powder was then calcined at 1400 ◦C for 6 h. Subsequently, the obtained powder
was sifted through 325 mesh. The particle size of the C3S powder was reduced through
wet ball milling (with isopropyl alcohol as the liquid phase), resulting in the production of
an ultrafine powder (ultrafine powder refers to powder smaller than 10 µm).
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Figure 1. Synthesis process of C3S powder.

2.2. Characterization of Tricalcium Silicate Powder

The phase composition of the C3S powder was analyzed using X-ray diffraction
(XRD, D/max 2550 PC, PIGAKV, Tokyo, Japan). The target material used was Cu with a
voltage of 40 KV and a current of 40 mA. The particle size distribution of the unmilled
C3S powder was evaluated using a laser particle size analyzer (Mastersizersizer3000,
Malvern Panalytical Ltd., Malver, UK) (ethanol was used as the dispersant and the pow-
der was dispersed using an ultrasonic treatment). BM-C3S (tricalcium silicate after ball
milling) powder was evaluated using a nanoparticle Zeta potential analyzer (Zetasizer
Nano ZS, Malvern Panalytical Ltd., Malver, UK) (ethanol was used as the dispersant and
the powder was dispersed using an ultrasonic treatment). The micromorphology of the C3S
powder was analyzed using field emission scanning electron microscopy (FESEM, Tescan
Mira4, Brno, Czech Republic). The sample was electrically conductive after being sprayed
with platinum.

2.3. Preparation of Premixed Tricalcium Silicate Root Canal Sealer

Premixed cement slurry was prepared by mixing C3S powder with ethylene glycol
(GuoYao Chemical Reagent Co., Ltd., Shanghai, China). The mass ratio of ultrafine powder
to total powder is shown in Table 1. The ratio of liquid phase to powder (L/P) was set
at 0.5 g/mL, which caused the premixed cement samples to have good operability. The
blended sample of premixed cement was injected into a silicone mold and placed in a
humid environment of 37 ◦C and 95% humidity for curing. Samples of premixed cement
after 1 and 7 days of curing were collected and ground into powder. Crystalline phases
of powders were determined using an X-ray powder diffractometer (D/max 2550 PC,
PIGAKV) with a Ni filter and CuKα radiation (λ = 0.154 nm), which was generated at 40 kV
and 40 mA. Samples were scanned at a range of 10◦–80◦, and all data were collected in a
continuous scan mode at a scanning rate of 5◦/min. FT-IR spectroscopic measurements
were conducted using a Fourier transform infrared spectrometer (Bruker Vertex 70, Billerica,
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MA, USA) covering the mid-IR range (frequency: 4000–400 cm−1). For the measurements,
the samples were diluted with KBr with a sample/KBr weight ratio of around 1/100,
and compressed to tablets, which were measured relative to the KBr as a reference. Field
emission scanning electron microscopy (FESEM, Tescan Mira4, Brno, Czech Republic) was
used to study the fracture surface microstructure of solidified cement samples. The samples
were sprayed with platinum before testing.

Table 1. Weight ratio of ultrafine powder to total powder.

Group nC3S (wt.%) C3S (wt.%)

0% nC3S 0 100
25% nC3S 25 75
50% nC3S 50 50
75% nC3S 75 25

100% nC3S 100 0

2.4. Evaluation of Injectability and Flowability

As for injectability testing, the newly prepared premixed slurry was poured into a dispos-
able sterile syringe with an inner diameter of 0.3 mm. The premixed paste was then manually
injected through the tip. Then, the injectability of the cement slurry was calculated as the
percentage of the injected mass of the premixed slurry to the total mass of the original slurry.
Each group was tested three times and the average was calculated (n = 3).

The flowability evaluation of the premixed slurry was determined according to ISO
6876:2012 [33]. In order to test the flowability of the premixed slurry, glass plates with a
mass of 20 g (length—40 mm, width—40 mm, and height—5 mm) were prepared. The
0.05 mL premixed slurry was injected into the center of one glass plate through a syringe,
then covered with another glass plate, and then loaded with 100 g weights. After 10 min,
we removed the weights and measured the maximum and minimum diameters of the
compression discs of the premixed slurry. If the difference between the maximum and
minimum diameters was within 1 mm, the average of the two diameters was recorded. If
the difference was not within 1 mm, the test was repeated. Three samples were prepared
for each group and the mean value (n = 3) was calculated.

2.5. Setting Time

The setting time was evaluated according to ISO 6876:2012 [33]. The premixed slurry
was poured into a stainless steel cylindrical mold with a diameter of 10 mm and a height
of 1 mm. The samples were kept in an environment of 37 ± 1 ◦C and at least 95% relative
humidity. A 100 ± 0.5 g Gilmore needle with a flat tip of 2.0 ± 0.1 mm in diameter was
placed vertically on the surface of the sample. From the time the injection was completed
until the needle tip left no trace on the sample surface, the setting time was calculated. We
took 8 samples from each group (n = 8) and calculated the average value.

2.6. Compressive Strength

For the compressive strength test, the premixed paste was placed into a cylindrical
silicone mold with a diameter of 6 ± 0.2 mm and a height of 12 ± 0.5 mm. The sample
was held at 37 ◦C and at least 95% relative humidity for 7 days. After demolding, the
sample was soaked in acetone to stop hydration. After the sample was dried, the end of
each sample was ground into a flat face. After that, the compressive strength of the samples
was determined using a universal testing machine (Instron 3369, Norwood, MA, USA) at a
crosshead velocity of 0.5 mm/min. Four samples from each group (n = 4) were tested and
the average value was calculated.

2.7. Washout Resistance

The freshly prepared premixed slurry was transferred to a 1 mL syringe and then ex-
truded into a glass petri dish containing 10 mL deionized water. The washout resistance of
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the premixed slurry was evaluated by observing the disintegration degree of the premixed
slurry at different time points.

2.8. Alkalizing Activity

The sample was pressed into the mold (diameter—10 mm, height—2.0 mm; n = 3 groups),
and then placed in an environment of 37 ◦C and at least 95% relative humidity for twice the
setting time [34]. The sample was then removed, immersed in 10 mL of deionized water
(pH 6.5) in a polypropylene airtight container, and stored at 37 ◦C. The soaking water was
changed at different time (5 h and 1, 3, 7, 14, and 28 days) and the pH value was measured
with magnetic agitation at room temperature.

2.9. Statistical Analysis

Quantitative data are expressed as mean ± standard deviation (SD). All data were
analyzed using SPSS 26.0 software, and the experimental results were analyzed using one-
way analysis of variance (ANOVA), LSD (Least Significant Difference), and SSR (Duncan
multiple range test) postmortem test. p < 0.05 was considered statistically significant.

3. Results and Discussion
3.1. Properties of Tricalcium Silicate Powder before and after Ball Milling

Figure 2 shows the XRD of the tricalcium silicate powder before and after ball
milling. The phase composition of the tricalcium silicate powder remained consistent
before and after ball milling. The XRD peaks with 2θ values of 29.29◦, 32.12◦, 34.27◦,
41.2◦, and 51.75◦ are consistent with the characteristic peaks of standard tricalcium sili-
cate (PDF No. 49-0442) [35]. Figure 3 shows the particle size distribution of the tricalcium
silicate powder before and after ball milling. The D [3, 2], D [4, 3], and Dv (50) of the
powder before ball milling were 7.18 µm, 12.9 µm, 10.6 µm, respectively, and the specific
surface area was 835.5 m2/kg. The particle size distribution of the powder before ball
milling was fitted using a Gaussian function, and the average particle size of the powder
was 13.27 ± 0.34 µm. The particle size decreased significantly after ball milling, with an
average particle size of 496.8 nm and a peak particle size of 586.3 nm. The average particle
size of the powder was 623.67 ± 10.34 nm, determined using a Gaussian function.
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Figure 4 shows the SEM images of the tricalcium silicate powder before and after ball
milling. Figure 4a,c show that the powder before ball milling was irregularly granular,
and the average particle size of the surface powder was about 10 µm, which is roughly
consistent with the test results of the particle size distribution (Figure 3). Figure 4b,d show
that the powder was still irregular and aggregated after ball milling, and the average
particle size of the powder was about 500 nm.

C3S is widely believed to have the potential to become an ideal root canal filling
material. However, the hydration and self-hardening rates of pure tricalcium silicate
powder are very slow. The setting time and mechanical properties of injectable pastes
are two critical factors for root canal treatment. The setting time is influenced by factors
such as powder particle size, powder composition, solution conditions, and the L/P ratio.
The smaller the particle size of the calcium silicate powder, the higher the surface area,
and the faster the hydration rate [36]. Commonly used methods for preparing tricalcium
silicate powder typically involve high temperatures and repeated calcination processes,
which often lead to particle sizes above the micron level [37]. High-energy ball milling is
an effective method for preparing nanoscale ceramic powders. The objective of this study
is to obtain an ultrafine tricalcium silicate powder through wet ball milling. The results
demonstrate that wet ball milling significantly reduces the particle size of the tricalcium
silicate powder, making it only 1/10 the size of the initial powder, without altering its
composition or morphology.

3.2. Hydration Phase Components of Premixed Cement Slurry

By analyzing the phase composition of the premixed cement slurry after different
hydration time, the process of cement hydration after adding different amounts of ultrafine
powder was studied. The XRD of the premixed cement paste after hydration for 1 day is
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shown in Figure 5a. The diffraction peaks of the cement were mainly composed of calcium
hydroxide (PDF No.76-9571), tricalcium silicate hydrate (PDF No.33-0306), and unreacted
tricalcium silicate powder (PDF No.49-0442) [38]. Figure 5b shows the XRD pattern after
7 days of hydration. The increase in storage time did not change the phase composition of
the premixed paste after hydration. In the samples of the 0% nC3S and 50% nC3S, there
were still the high diffraction peaks of tricalcium silicate. For the 0% nC3S, 50% nC3S, and
100% nC3S samples, with the increase in the ultrafine powder content, the diffraction peak
intensity of the unreacted tricalcium silicate powder decreased gradually.
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The FTIR spectra of the premixed cement slurry samples after 1 day and 7 days
of hydration are shown in Figure 6a,b, respectively. In the high-frequency range above
3000 cm−1, all the samples exhibit a sharp peak at 3644 cm−1, which corresponds to the
stretching vibration of the free hydroxyl groups, indicating the presence of CH (calcium
hydroxide) [39]. The intensity of this sharp peak is significantly higher in the 7-day
hydrated sample compared to the 1-day hydrated sample, indicating an increased degree
of hydration. Additionally, there is a broad band between 3200 cm−1 and 3600 cm−1, which
is associated with the stretching vibration of O-H bonds related to the water molecules
adsorbed in the C-S-H (calcium silicate hydrate) gel [38]. The absorption peak in this
region is lower and less pronounced in the 1-day hydrated sample compared to the 7-day
hydrated sample. All the hydrated samples exhibit similar spectra in the 1700 cm−1 to
1400 cm−1 region, with a peak at 1643 cm−1 corresponding to the bending vibration of
the water molecules’ single bonds [40]. In the previous literature, the peak at 1425 cm−1

and the split peak at 1486 cm−1 were attributed to carbonates, suggesting the adsorption
of atmospheric CO2 by the CH formed during hydration, and resulting in the formation
of monodentate carbonate ions on the sample surface [38,39]. However, in a recent study
on confined space and its effects on C-S-H structure growth, it was found that this peak
decreases over time. This led to the idea that the split peaks at 1425 cm−1 and 1486 cm−1

are related to the Ca-O bonds in the C-S-H [41]. In the region below 1200 cm−1, the bands
at 991 cm−1 and 870 cm−1 correspond to the stretching vibration of the Si-O bonds in the
C-S-H. Additionally, the bands at 653 cm−1 and 456 cm−1 correspond to the stretching
and bending vibrations of the Si-O-Si bonds in SiO4, respectively [39,41,42]. These bands
gradually intensify, confirming the formation of silicate bonds. The bands at 911 cm−1

and 516 cm−1 are attributed to the characteristic peaks of unhydrated C3S and gradually
diminish with the increase in nC3S content [43].
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Figure 6. FTIR spectra (a,b) of premixed cement hydrated at 37 ◦C for 1 day (a) and 7 day (b).

The SEM images of the fracture surface of the 0% nC3S, 25% nC3S, 50% nC3S, 75%
nC3S, and 100% nC3S after curing for 7 days are shown in Figure 7. Under a scanning
electron microscope with 2000 times magnification, it can be observed from Figure 7a–e
that with an increase in the content of ultrafine C3S powder, the fracture surface of the
cement becomes more flat and gradually dense. Large pore defects can be observed on the
surfaces of a and b. Obvious fracture defects exist on the surface of c, no large defects exist
on the surface of d and the pores are relatively small and dispersed, and the pores on the
surface of e are even smaller. Under a 10,000-fold SEM (Figure 7f–j), it can be observed that
there are mainly two phases after hydration. One is a lamellar CH phase exposed in the
pores, and the other is a needle-like C-S-H gel [11,44]. With an increase in the hydration
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time, acicular C-S-H gels are continuously formed on the surface of the C3S powder, and
are finally interleaved to form clusters or networks covering the surface of the CH and
C3S [35,44].
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25%, 50%, 75%, and 100% nanometer C3S cement (10,000×).

The hydration process of C3S typically consists of five stages: induction, acceleration,
deceleration, stabilization, and the final setting [45]. When tricalcium silicate comes into
contact with water, ions rapidly dissolve from the surface. C3S undergoes hydrolysis to
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form Ca2+, OH−, and H2SiO4
2−. When the solution becomes supersaturated with calcium

and silicate ions, the hydration rate reaches its maximum, and the hydration process
enters the induction stage. After this stage, the cement achieves a certain level of strength.
According to a simulation study on the evolution of capillary pores in cement, based on
the distribution of cement particle sizes, the pore distribution for particles ranging from
3 to 40 µm shifts to 0–2 µm after 1 month of hydration. Similarly, for particles ranging
from 10 to 40 µm, the pore distribution during the same period shifts to 0–5 µm [46]. This
is because, under the same liquid to powder ratio, ultrafine C3S particles hydrate more
rapidly and extensively, leading to the production of a larger amount of C-S-H gel. As the
C-S-H gel grows, it fills the micropore network, resulting in a denser internal structure and
a denser cement structure overall. Similar conclusions were found in this study through the
investigation of the composition and microstructure of cement at various hydrationtime.
With an increasing content of ultrafine powder, the cement contains more C-S-H gel phase,
and the pores gradually become uniformly distributed and smaller.

3.3. The Injectability, Flow Property, Setting Time, and Compressive Strength of Premixed Cement

The injectability of the premixed cement slurry is shown in Figure 8a. The injectability
of the 0% nC3S is about 50%, and that of the 25% nC3S is close to 80%. The injectability of
the 50% nC3S, 75% nC3S, and 100% nC3S are in the range of 94% to 98%, which is higher
than that of the premixed calcium silicate cement without adding ultrafine powder [16,38].
With an increase in the ultrafine C3S powder content, the injectability of the premixed
slurry is greatly improved. Good injectivity means that the premixed paste has a very high
utilization rate and is also conducive to the delivery of the cement slurry to different types of
cavities, which will greatly promote its application as a dental cement. During the extrusion
process, the 0% nC3S slurry experienced significant solid–liquid separation, resulting in
a poor injectable performance. The 50% nC3S, 75% nC3S, and 100% nC3S slurries did not
appear to experience this solid–liquid separation phenomenon, and produced a complete
continuous slurry with good formability. Non-premixed cement usually requires a dentist
to mix the powder and liquid phase on site and then place the paste into the surgical site,
which can easily lead to uneven mixing and poor sealing. Compared to non-premixed
cement, the premixed preparation avoids these operations and has better handling and
injection properties.
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The fluidity of the premixed slurry is determined using the diameter of the pressed
cement slurry [33]. The larger the diameter of the slurry, the better the fluidity of the slurry.
As shown in Figure 8b, the diameters of the 25% nC3S, 50% nC3S, 75% nC3S, and 100%
nC3S are greater than 20 mm, meeting the requirements of ISO 6876:2012 [33]. The diameter
of the 0% nC3S is less than 20 mm, and the fluidity of the cement is poor. The results show
that under the same L/P ratio, with an increase in the ultrafine C3S powder content, the
flow performance of the premixed cement is significantly improved. Among them, the
100% nC3S has a diameter of nearly 35 mm.

The setting time of the premixed cement slurry is shown in Figure 8c. With an increase
in the content of ultrafine C3S powder, the setting time of the premixed slurry is gradually
shortened. The setting time of the 0% nC3S is 13.2 h, and the setting time of the 100% nC3S
is reduced to 11.4 h. Although the addition of ultrafine C3S powder can shorten the setting
time, the setting time of all the premixed cement slurries is longer than 10 h, which is much
longer than the setting time of the water-based liquid- mixed cement slurry (2–3 h) [47].
This is because of the difference in the setting mechanism between the premixed and water-
based blended cements [38,48]. Water-based cement begins to hydrate during the mixing
of the powder and liquid phase, while the hydration of premixed cement is triggered after
the exchange of a non-aqueous but water-miscible liquid with water molecules. As a result,
the premixed cement takes more time to harden, allowing it to support the weight of the
Gilmore-type indenter.

The compressive strength of the premixed cement slurry after 7 days of hydration is
shown in Figure 8d. The results show that as the content of ultrafine C3S powder increases
from 0 to 100 wt%, the compressive strength of the hardened cement increases from
20.6 MPa to 51 MPa. When the ultrafine C3S powder is added to the 75%, the compressive
strength of the cement increases to more than 40 MPa. This is significantly higher than
the compressive strength of the Bioaggregate (22 MPa, 7 days) material at 7 days, and
similar to the compressive strength of the Endosequence root repair material (40–50 MPa,
7 days) at 7 days [49]. However, it is slightly lower than that of the two commercial, GMTA
(55.25 ± 10.33 MPa, 7 days) and WMTA (62.04 ± 5.95 MPa, 7 days), materials [37]. It
can be observed from the SEM images in Figure 7 that the addition of ultrafine powder
forms a denser microstructure, thereby enhancing the compressive strength of the cement.
Under the same L/P ratio, the cement with a higher concentration of ultrafine particles
has a greater number of contact surfaces and reacts more rapidly than the cement with a
higher concentration of coarse particles. Fine particles have smaller hydraulic radii, which
increases the likelihood of pores being isolated or closed. This leads to the formation of a
small interconnected pore structure, ultimately resulting in a higher compressive strength.
In addition, an increase in the degree of C3S hydration results in the formation of more C-S-
H, which may also be another factor contributing to the increase in compressive strength.
This is mainly because the C-S-H gel is able to fill the micropore network, thereby reducing
the number of large pores.

3.4. Washout Resistance of Premixed Cement

The erosion resistance test for the premixed cement is shown in Figure 9. The premixed
slurries with 25% nC3S, 50% nC3S, 75% nC3S, and 100% nC3S can maintain a continuous
form after injection into deionized water. With an increase in the ultrafine powder content,
the amount of particles in contact diffusion between the slurry and the deionized water
increases gradually [38]. This may be because the addition of the ultrafine powder improves
the fluidity of the slurry, resulting in the poor cohesion of the slurry and more disintegration
upon contact. After soaking for 30 min, it can be seen that the 100% nC3S cement gradually
broke down, and had the highest degree of particle disintegration. This is because in the
process of liquid phase exchange between the premixed slurry and the deionized water,
fine particles are more easily diffused into the petri dish during the liquid phase.
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3.5. Alkalizing Activity

The measurement results for alkalization activity are shown in Table 2. In the mea-
surement process, all the materials alkalize the soaking medium, and the experimental
results for the 1 day, 3 days, and 5 days groups have no significant difference, and are in
the peak period. After 7 days, the pH value of all the samples decreases to some extent. In
addition, at 5 h and 7 days, the pH values of the 75% nC3S and 100% nC3S are relatively
low and significantly different from those of the 0% nC3S.This indicates that the increase in
the ultrafine powder content has a certain effect on the pH value of the material in the early
stage and after a long time of soaking, which may be due to the dense structure that slows
down the release of OH−.

Table 2. Alkalization activity (mean ± SD; N = 3). The pH of the soaking water was determined after
the curing sealant was soaked (+100% final curing time). Values with different superscript letters (a,
b, c, d, e, f) are significantly different (p < 0.05).

5 h 1 day 3 days 5 days 7 days

0% nC3S 10.689 ± 0.257 a 10.879 ± 0.205 a 10.763 ± 0.231 a 10.730 ± 0.189 a 10.255 ± 0.144 bcd

25% nC3S 10.602 ± 0.210 abc 10.743 ± 0.177 a 10.804 ± 0.207 a 10.634 ± 0.238 ab 10.128 ± 0.086 de

50% nC3S 10.617 ± 0.278 abc 10.940 ± 0.237 a 10.616 ± 0.297 abc 10.709 ± 0.134 a 10.176 ± 0.129 d

75% nC3S 10.238 ± 0.190 cd 10.736 ± 0.225 a 10.737 ± 0.220 a 10.574 ± 0.234 abc 9.772 ± 0.208 ef

100% nC3S 10.033 ± 0.201 de 10.727 ± 0.242 a 10.784 ± 0.157 a 10.656 ± 0.243 a 9.479 ± 0.180 f

The influence of the particle size distribution of the cement powder on the physico-
chemical properties of a premixed cement system was studied. However, pure tricalcium
silicate cement has not achieved satisfactory results in terms of setting time. Furthermore,
studies that focus on the individual components cannot fully explain the curing mechanism
of complex cement compositions. In the future, the incorporation of accelerators, X-ray
contrast agents, and other additives will be considered to enhance the setting time and
application properties of tricalcium silicate cement. Its biological properties will be studied
in the future too.

4. Conclusions

The effects of the ultrafine C3S powder content on the hydration phase composition
and physicochemical properties of premixed cement were studied at a 0.5 g/mL liquid
to powder ratio, with ethylene glycol as the premixed liquid phase. The addition of the
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ultrafine C3S powder accelerated the hydration rate, increased the content of the hydration
phase, and created a denser microstructure in the hardened cement. The higher the mass
ratio of the ultrafine powder was, the better the fluidity and injectability of the premixed
cement slurry, and the shorter the setting time. The compressive strength of the cement
increased to 45 MPa when the ultrafine powder was added at a weight percentage of 75%.
By using ultrafine powder, the compressive strength of hardened cement was increased
from 20.6 MPa to 51 MPa. In conclusion, adjusting the particle size distribution of the
powder can effectively enhance the physicochemical properties of the premixed cement.
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