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Abstract: Ultrasonic-assisted precipitation was employed to sustainably isolate Fe in the hydrochloric
acid lixivium of low-grade laterite for the synthesis of battery-grade iron phosphate. The recovery
efficiency of Ni and Co exceeded 99%, while the removal efficiency of the Fe impurity reached
a maximum of 95%. Precipitation parameters for the selective isolation of Fe (MgO precipitant,
pH 1, 70–80 ◦C) were optimized and used in ultrasonic precipitation experiments. The use of
ultrasonic waves in the precipitation process enhanced micromixing by reducing the size of primary
grains and mitigating particle agglomeration, thereby significantly improving the purity of the
isolated compound and providing high-quality iron phosphate (FePO4·2H2O). The LiFePO4/C
composite prepared from as-precipitated FePO4 exhibited excellent electrochemical performance,
with a discharge capacity of 149.7 mAh/g at 0.1 C and 136.3 mAh/g at 0.5 C after 100 cycles, retaining
almost 100% cycling efficiency. This novel and facile method for iron removal from laterite acid
lixivium not only efficiently removes excess iron impurities leached due to the poor selectivity of
hydrochloric acid, but also enables the high-value utilization of these iron impurities. It enhances
economic benefits while simultaneously alleviating environmental pressure.

Keywords: laterite; hydrochloric acid lixivium; ultrasonic; FePO4; LiFePO4

1. Introduction

Electric vehicles offer significant advantages over petrol- and diesel-powered vehicles
in addressing the issues of energy shortage and environmental pollution [1]. According
to the Global EV Outlook 2023, published by the International Energy Agency, the global
electric vehicle market is exhibiting exponential growth; the sales volume of electric vehicles
exceeded 10 million units in 2022 [2]. Accordingly, the development of battery technologies,
including anode and cathode materials, to power these vehicles is of the utmost importance.
Among the various cathode materials, LiFePO4-based cathode materials are among the
most promising, especially in China, owing to their low cost, high structural and thermal
stabilities, and low environmental impact [3,4]. The market volume of LiFePO4 batteries
was forecast to increase after BYD Company launched the “blade battery”, based on the
cell-to-pack technology, in 2020, further increasing the demand for such batteries [2,5,6].
The LiFePO4 precursor is one of the most important factors determining the performance
of LiFePO4 batteries [7]. FePO4 is widely used as a LiFePO4 precursor owing to its low cost,
higher oxidative stability, and superior low-temperature performance compared to other
precursors such as iron(II) oxalate, iron(II) acetate, and Fe(OOCCH3)2 [8,9].

FePO4 is typically synthesized from analytically or chemically pure salts [10,11]. We
previously reported an environmentally sustainable process for the comprehensive treat-
ment of low-grade laterite based on hydrochloric acid atmospheric leaching, which yielded
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LiNi0.8Co0.1Mn0.1O2 cathode materials as the main products (Figure 1) [12–15]. The pro-
cessing conditions of our method are milder than those required by high-pressure leaching
with sulfuric acid, and the acid medium and MgCl2 can be recycled [16,17]; however,
the hydrochloric acid atmospheric leaching method exhibits poor selectivity, leading to a
substantial ingress of iron ions into the lixivium [18]. The traditional neutralization method
for iron removal not only results in significant loss of valuable elements, but also generates
a considerable amount of iron slag, thereby wasting resources and causing environmental
pollution [19–21]. Consequently, the removal of impurity iron in the form of high-purity
iron phosphate would facilitate the high-value utilization of waste. Moreover, this syn-
thesis approach offers the advantage of a shorter process compared to synthesis using
pure substances; however, the composition of the acidic lixivium of laterite is complex [22].
The conventional co-precipitation method is prone to introduce impurities into the cath-
ode material owing to the high local pH, thereby adversely affecting its electrochemical
performance [23].
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The important role of mechanical force in the transfer of energy to chemical bonds
for driving chemical reactions during manufacturing processes was only recently recog-
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nized [24,25]. In 2020, Grzybowski et al. reported that the growth rate of crystals can be
significantly accelerated using shear stress generated by fluid dynamics through local stir-
ring (physical effects) rather than by the surface energy effects involved in classical Ostwald
ripening (chemical effects) [26]. Furthermore, ultrasound-intensified synthesis effectively
enhances the intensity of turbulence and thereby improves micromixing in a reactor to
achieve stronger turbulent shear stresses [27]. Sonication can therefore improve the purity
and homogeneity of crystals and also mitigate agglomeration [28–30]. Moreover, such
ultrasonic intensification can be applied in industrial-scale manufacturing processes and
material syntheses owing to the rapidity, cost-effectiveness, and environmental friendliness
of the process [31].

This study aimed to investigate the impact of ultrasonic enhancement on the removal
of iron impurities from atmospheric pressure hydrochloric acid lixivium of laterite using
the phosphate method and the synthesis of iron phosphate. Optimal reaction conditions
were determined. Under ultrasonic conditions, micro-nano iron phosphate particles were
synthesized. Compared to iron phosphate synthesized under conventional conditions,
the iron phosphate produced under ultrasonic conditions exhibited higher purity and
improved electrochemical properties. This research achieved high-value utilization of iron
impurities in low-grade laterite.

2. Materials and Methods
2.1. Chemicals

All reagents used in this study, including H3PO4, NaOH, NH3·H2O, MgO, LiCO3,
and glucose were of analytical reagent grade. Deionized water was used in all processes.
All chemicals were purchased from Shanghai Macklin Biochemical Company (Shanghai,
China) and were used directly, without further purification.

The lixivium of low-grade laterite was prepared according to an established proce-
dure [12], which is illustrated in Figure 1. The laterite sample was acquired from Indonesia.
The elemental composition of the laterite lixivium is listed in Table 1.

Table 1. Elemental composition of the laterite lixivium and theoretical initial pH for metal
phosphate precipitation.

Ni Co Fe Mn Mg Al Cr Ca

Concentration (g/L) 0.739 0.077 34.667 0.623 0.617 1.757 0.733 0.357
Phosphate pKsp 31.32 34.69 21.89 31.21 23.90 18.24 21.52 28.70
Initial precipitation pH 2.40 2.00 0.07 2.42 3.58 1.61 0.74 2.86

2.2. Isolation of Fe from the Hydrochloric Acid Lixivium of Laterite

The precipitation of Fe was performed in a 1 L three-necked flask. H3PO4 (85 wt%)
was added to the hydrochloric acid lixivium of laterite (Fe:PO4) in a molar ratio of 1:1
at a specific temperature (50, 60, 70, 80, or 90 ◦C). The resulting solution was stirred at
350 rpm using a magnetic stirrer. Neutralizers (NaOH, NH3·H2O, and MgO) were added
dropwise/portion-wise to the solution to achieve the target pH (0.5, 1, 1.5, 2, or 2.5). The
mixture was stirred for 10 min, and the resultant precipitate was filtered, washed twice
with an aqueous hydrochloric acid solution (pH = 2), and dried in an oven at 80 ◦C for
10 h. In ultrasonic experiments, the lixivium was agitated in an ultrasonic bath (KQ-
400DE, Kunshan Ultrasonic Instrument Ltd., Shanghai, China) at an ultrasonic frequency of
40 kHz. In the redissolution experiment, the product was dissolved in dilute hydrochloric
acid, and 10% NH3·H2O was added dropwise at 90 ◦C until the pH reached 2. The product
was then washed twice with deionized water and dried in an oven at 80 ◦C for 10 h. The
retention and removal efficiencies of the specified element in the lixivium were calculated
using Equations (1) and (2):

η1 =
c2 × V2

c1 × V1
× 100% (1)
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η2 = 1 − c2 × V2

c1 × V1
× 100% (2)

where η1 and η2 are the retention and removal efficiencies of the specified element (%),
respectively; c2 is the concentration of the specified element in the filtrate (g/L); V2 is the
volume of the filtrate (L); c1 is the concentration of the specified element in the lixivium
used for precipitation (g/L); and V1 is the volume of the lixivium (L).

2.3. Preparation of the LiFePO4/C Composite

The LiFePO4/C composite was synthesized from the as-precipitated FePO4, commer-
cial Li2CO3, and glucose via a carbothermic reduction reaction. Precursors were mixed in
ethanol and ball-milled for 4 h at a rotation speed of 300 rpm. The solvent was evaporated
and the obtained solid was dried in a vacuum oven at 80 ◦C for 2 h before the precursor
mixture was transferred to a tube furnace and calcined at 700 ◦C for 4 h under a N2 atmo-
sphere (heating rate: 5 ◦C/min). Thereafter, the calcined mixture was naturally cooled to
room temperature to yield LiFePO4/C as a black powder.

2.4. Analysis and Characterization
2.4.1. Material Characterization

The pH of the aqueous solution was measured using a Five Easy Plus pH meter
(Mettler Toledo, Greifensee, Switzerland) equipped with an Expert Pro-ISM pH electrode
(Mettler Toledo, Greifensee, Switzerland). Standard buffer solutions from Mettler Toledo
were used for standardization.

The content of the ions in the filtrate and the elemental composition of the FePO4
sample were analyzed using ICP-OES (Optima 8300DV, PerkinElmer, Waltham, MA, USA)
with a plasma power of 1150 W while the peristaltic pump was rotated at 100 rpm.

The particle size and morphology of the synthesized cathode material, LiFePO4/C,
were analyzed via scanning electron microscopy (SEM; JSM-7610F, JEOL, Tokyo, Japan)
and TEM (JEM-2100F, JEOL, Tokyo, Japan). The particle size and distribution of the FePO4
sample were determined using a nanoparticle size analyzer (Malvern Zetasizer Nano ZS90,
Malvern Inc., Malvern, UK). The crystalline phases of the materials were analyzed via
powder XRD (Rint-2000, Rigaku, Tokyo, Japan) using Cu Kα radiation (40 kV and 40 mA).
TG analysis was conducted using the thermogravimetric-differential thermal technique
(TGA/DSC3+, Mettler Toledo, Greifensee, Switzerland) at a heating rate of 10 ◦C/min in a
N2 atmosphere.

2.4.2. Electrochemical Analysis

Electrochemical properties of the as-prepared LiFePO4/C composite were evaluated
using CR2032 coin-type cells. The positive electrode was fabricated by mixing the prepared
LiFePO4/C powder with carbon black (10% w/w) and polyvinylidene fluoride (10% w/w)
in N-methyl pyrrolidinone, and ball-milled to obtain a slurry. The blended slurry was
then coated onto an aluminum current collector using an automatic coating dryer, and
the electrode was dried in a vacuum drying chamber at 120 ◦C for 12 h. The test cell
consisted of the positive electrode and a lithium foil counter electrode separated by a
porous polypropylene film, while the electrolyte consisted of 1 M LiPF6 in a 1:1:1 mixture
of dimethyl carbonate, ethyl methyl carbonate, and ethylene carbonate. The cell was
assembled in a dry glovebox under an argon atmosphere. Electrochemical tests were
carried out using a land test system (CT2001A, LAND, Wuhan, China) between 2.5 and
4.1 V at room temperature.

3. Results and Discussion
3.1. Effects of the Experimental Conditions on the Precipitation of Fe
3.1.1. Effect of the Neutralizer

Figure 2 illustrates the retention efficiencies of Ni, Co, Mn, Al, and Cr, and the re-
moval efficiency of Fe using various neutralizers (pH 1, 70 ◦C). NaOH and NH3·H2O are
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commonly used as precipitants for the synthesis of iron phosphate from chemically or
analytically pure iron salts [9,32–34]. We therefore employed NaOH and NH3·H2O for
the precipitation of iron phosphate from the laterite lixivium; however, in the case of the
complex acid lixivium of laterite, the use of NaOH and NH3·H2O caused a substantial
loss of valuable elements, including Ni and Co (Figure 2). The higher the concentration of
NaOH was, the greater the loss of valuable elements. Moreover, the precipitated FePO4
contained excessive impurities owing to high local alkalinity arising from the dropwise
addition of NaOH and NH3·H2O. MgO is a by-product of the hydrochloric acid process
for laterite (Figure 1). Using a MgO neutralizer, the retention efficiencies of Ni, Co, Mn,
Al, and Cr reached 100, 100, 97.1, 93.7, and 97%, respectively. Remarkably, the Fe removal
efficiency also reached a high level (≥95%) comparable to that achieved using NaOH and
NH3·H2O neutralizers. Therefore, the optimal choice for the neutralizing agent is MgO.
This also achieves the recycling of MgO.
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3.1.2. Effect of the Initial pH

As the pH was increased from pH 0 to pH 1, the retention efficiencies of Ni, Co, Mn,
Al, and Cr gradually decreased, whereas the removal efficiency of Fe increased rapidly. A
further increase in pH, from pH 1 to pH 2, caused the retention efficiencies of Ni, Co, Mn,
and especially Al and Cr, to decrease rapidly, whereas the removal efficiency of Fe slowly
increased. To ensure low loss rates of Ni and Co, as well as a high removal rate of Fe, pH 1
was shown to be the optimal initial pH for the formation of iron phosphate. As shown in
Figure 3, at pH 1, a small amount of Al was incorporated into the precipitate. According to
a previous study, Al doping improves the conductivity of LiFePO4, which improves both
the rate performance and cycle performance of the electrode [23,35].

3.1.3. Effect of the Solution Temperature

The effect of the solution temperature on the retention and removal efficiencies of
various metals in the laterite lixivium via the phosphate precipitation method was also
investigated. Between 50 and 90 ◦C, the retention efficiencies of Ni, Co, Mn, and Cr were
not significantly affected by the solution temperature (Figure 4). The removal efficiency of
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Fe increased with temperature; however, the retention efficiencies of Al decreased gradually.
This occurred because higher temperatures are more favorable for the crystallization of
FePO4 and AlPO4. Overall, a solution temperature range of 70–80 ◦C was determined to be
optimal for the selective removal of Fe.
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In summary, in the absence of ultrasonic irradiation, the optimal conditions for iron
phosphate removal from the hydrochloric acid lixivium of laterite were determined to be
MgO as the neutralizer, a pH of 1, and temperature = 70 ◦C.

3.2. Ultrasonic-Assisted Precipitation: Effect of Ultrasonic Treatment

The effect of ultrasonic irradiation on particle morphology was studied under opti-
mal conditions. SEM and TEM images of the precipitated iron phosphate revealed that
the primary particles of the iron phosphate precipitated using the conventional method
(without ultrasonic waves) were larger and agglomerated (Figure 5a). Ultrasonic waves
significantly reduced the primary particle size and inhibited agglomeration, leading to mi-
cro/nanoparticles of iron phosphate with high dispersibility (Figure 5b,c). The microscale
spheroidal secondary grains of iron phosphate measured approximately ~260 nm and
consisted of nanospheres with a diameter of ~50 nm. These structures formed because the
physicochemical effect of the ultrasound enhanced the maturation of the precipitate and
optimized the particle size distribution of the crystals [36]. The observed size distribution
of the nanoparticles (Figure 5d) was consistent with SEM and TEM results.
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The chemical compositions of iron phosphate samples obtained using conventional
and ultrasonic-assisted precipitation was quantitatively determined via ICP-OES (Table 2).
The ultrasonic-assisted precipitation method significantly reduced the content of impurities,
particularly Al and Cr, because the ultrasonic waves enhanced local turbulence, preventing
localized increases in pH caused by the neutral agent, thereby inhibiting the precipitation
of impurities [28]. The Fe/P molar ratio is an important index of the quality of iron
phosphate; thus the Fe/P molar ratios of the products prepared using conventional and
ultrasonic-assisted precipitation are provided in Table 2.

Table 2. Compositions (wt%) and Fe/P molar ratios of iron phosphate samples precipitated via
conventional and ultrasonic routes.

Sample Fe P Ni Co Mn Al Cr Fe/P Molar
Ratio

Conventional precipitation 30.45 13.85 0 0.001 0.012 0.164 0.068 1.22
Ultrasonic-assisted precipitation 28.49 13.77 0 0 0.0003 0.044 0.016 1.15

The phase purity of particles obtained using the two methods was analyzed using XRD
(Figure 6). Before calcination (curve a), the diffractogram of the product showed no strong
peaks, indicating that FePO4 synthesized via wet chemistry was amorphous; therefore, the
effect of different processing conditions on the phase purity of the precipitated product
was investigated after calcining it at 650 ◦C for 4 h. Using the conventional method with a
NH3·H2O precipitant (curve b), diffraction peaks were observed at approximately 20.12◦,
21.3◦, 22.8◦, and 29.46◦, indicating the formation of AlPO4 (JCPDS card No. 00-050-0302).
With MgO as the precipitant (curve c, conventional method), the XRD pattern showed
the presence of a mixture of FePO4 and AlPO4. However, when ultrasonic waves were
applied for agitation using an MgO precipitant (curve d), the intensity and sharpness of
the XRD peaks increased significantly, suggesting that the calcined product had a higher
crystallinity; the observed peaks could be indexed to the anhydrous hexagonal structure of
FePO4 (JCPDS card No. 29-0715, a = 5.035 Å, b = 5.035 Å, c = 11.245 Å). No impurity-related
diffraction peaks were observed in the XRD pattern, confirming the high purity of the
precipitated FePO4.

The TG/DSC curve of the iron phosphate precipitated via the ultrasonic method using
MgO (Figure 7) reveals an apparent weight loss of ~18.7% between ambient temperature
and 500 ◦C, corresponding to the loss of crystal water. This is similar to the theoretical
weight loss expected for FePO4·2H2O (19.27%, 2.00 H2O), indicating that the general
formula of the precipitated product is FePO4·2H2O. The corresponding DSC curve exhibits
a clear endothermic peak at ~140 ◦C. The TG curve shows no significant mass loss after
500 ◦C, indicating that both the crystal water and adsorbed water were completely removed.
In addition, the DSC curve shows two exothermic peaks, at 585 and 740 ◦C, which were
attributed to the phase transition from amorphous to crystalline FePO4 [37,38].

Figure 8 compares the electrochemical performance of LiFePO4/C composites pre-
pared from iron phosphate samples precipitated via conventional and ultrasonic methods,
following redissolution and refinement. The discharge curves of both samples at 0.1 C
exhibit a long and flat voltage plateau at ~3.4 V (Figure 8a), reflecting the two-phase redox
reaction between FePO4 and LiFePO4, and the polarization in both samples was small.
The discharge capacities of the electrode prepared from the iron phosphate precipitated
via the ultrasonic route were 149.7, 139.8, 140.6, and 136.3 mAh/g at 0.1, 0.2, 0.5, and
1 C, respectively (Figure 8b), which were higher than those of the electrode prepared
from the iron phosphate precipitated using the conventional route (141.1, 127.5, 114.7, and
103.3 mAh/g at 0.1, 0.2, 0.5, and 1 C, respectively). Furthermore, at 0.5 C, the capacity re-
tention of electrodes fabricated using iron phosphate samples obtained using conventional
and ultrasonic routes were uniformly 100% (Figure 8c).
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4. Conclusions

We presented an environmentally sustainable and facile route for the selective removal
of Fe from the hydrochloric acid lixivium of low-grade laterite via ultrasonic-assisted
precipitation, which produces battery-grade iron phosphate in a single step. The following
conclusions were drawn from this study:

1. The use of MgO as a neutralizing agent limits the loss of main elements, such as
Ni and Co, caused by high local pH. MgO can also be recycled without introduc-
ing other impurities. Both the pH and temperature of the solution significantly
affect the recovery rate of main elements and the removal rate of Fe from the lix-
ivium of laterite. The optimum pH and temperature for Fe precipitation are 1 and
70–80 ◦C, respectively.

2. The application of ultrasonic waves during precipitation reduces the size of primary
grains and inhibits particle agglomeration. In addition, the level of impurities in
the Fe precipitate decreased, thereby increasing the phase purity of the isolated
iron phosphate. This may be attributed to enhanced micromixing arising from the
increased local turbulence caused by ultrasonication. The chemical formula of the
precipitated iron phosphate is FePO4·H2O.

3. Battery-grade FePO4 was isolated from lixivium, and ultrasonic treatment improved
the electrochemical performance of LiFePO4 prepared from as-precipitated FePO4.
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