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Abstract: Poisson’s ratio is the fundamental metric used to discuss the performance of any material
when strained elastically. However, the methods of the determination of Poisson’s ratio are not yet
discussed well. The first purpose of this paper is to introduce the five kinds of typical experimental
methods to measure Poisson’s ratio of glasses, ceramics, and crystals. The second purpose is to
discuss the experimental results on the variation of Poisson’s ratio by composition, temperature,
and pressure reviewed for various glasses, ceramics, and crystals, which are not yet reviewed. For
example, in oxide glasses, the number of bridging oxygen atoms per glass-forming cation provides
a straightforward estimation of network crosslinking using Poisson’s ratio. In the structural-phase
transition of crystals, Poisson’s ratio shows remarkable temperature-dependence in the vicinity of
a phase-transition temperature. The mechanism of these variations is discussed from physical and
chemical points of view. The first-principles calculation of Poisson’s ratio in the newly hypothesized
compounds is also described, and its pressure-induced ductile–brittle transition is discussed.

Keywords: Poisson’s ratio; glass; ceramic; crystal; pulse-echo method; ultrasonic resonance; Brillouin
scattering; atomic force microscopy; first-principles calculation

1. Introduction

Poisson’s ratio, ν, is defined by

ν = − xt

xl
(1)

where xt = (∆d/d) is the lateral contraction ratio of a sample with a transverse size d and
xl = (∆l/l) is the relative longitudinal extension of a sample with a length l. In an isotropic
material with three dimensions, such as glasses and ceramics, the number of independent
elastic moduli is two and it holds that

Y = 2G(1 + ν), ν =
Y− 2G

2G
, (2)

where Y and G are Young’s and shear moduli, respectively. For three-dimensional isotropic
materials, it holds that−1.0≤ ν≤ 0.5. For compact and weekly compressive materials, such
as liquids, stress primarily results in a shape change, and ν is close to 0.5. Poisson’s ratio of
soft materials, such as rubber, is close to 0.5, while that of porous materials, such as cork,
is near 0. For most polymers, ceramics, and metals, 0.25 ≤ ν ≤ 0.35, and for gases, ν = 0.
Materials with different Poisson ratios show very differently mechanical behaviors [1].

For structural glasses, the correlation between Poisson’s ratio and fragility (m) was re-
ported [2]. The correlation among Poisson’s ratio, fragility, and atomic packing density (Cg)
was discussed, and an overall increase in ν with an increase in m and Cg was suggested [3].

Auxetic materials with a negative Poisson’s ratio draw increasing attention [4,5].
The auxetic properties were reported in various materials, such as cubic crystals [6] and
polymers [7]. Recent first-principles calculations predicted that the Si2XY monolayers are
auxetic materials with a negative Poisson’s ratio along both x and y axes [8].
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2. Experimental Methods to Measure Poisson’s Ratio

Up to the present, several kinds of experimental methods have been used to determine
Poisson’s ratio of various glasses, ceramics, crystals, and metals through the measurements
of strain, ultrasonic waves, and thermally excited acoustic phonons. In this chapter, five
kinds of typical experimental methods, namely (1) the ultrasonic pulse-echo method,
(2) resonant ultrasonic spectroscopy, (3) piezo-resonance method, (4) Brillouin scattering
spectroscopy, and (5) atomic force microscopy are introduced.

2.1. Ultrasonic Pulse-Echo Method

The pulse-echo method has been used for nondestructive testing, which is analogous
to the sonar system in ships for sounding ocean depths. It is also useful to determine
the sound velocity of a sample. The schematic illustration of the ultrasonic pulse-echo
method is shown in Figure 1. The ultrasonic/piezoelectric transducer is attached to the
top of the sample. The RF pulse is converted to ultrasonic waves into the sample by a
piezoelectric transducer and the reflected ultrasonic waves (echo) at the bottom of a sample
are converted again to electric output signals by the same piezoelectric transducer. The
sound velocity of a sample, V, is determined based on the ultrasonic travel time, τ, and
the travel length, L, using the equation V = 2L/τ. In the pulse-echo overlap method, the
ultrasonic travel time is accurately determined based on the McSkimin criterion to find the
condition of correct overlapping between ultrasonic echoes [9–11].
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Figure 1. Ultrasonic pulse-echo overlap method [11]. The sound velocity of a sample is determined
based on the travel time of an ultrasonic pulse and the travel length of a sample. The operating
frequency is usually 1~10 MHz.

2.2. Resonant Ultrasonic Spectroscopy

Resonant ultrasonic spectroscopy (RUS) is a resonance technique that consists of
placing a sphere or a cube of a sample on a piezoelectric shear-mode transducer and
exciting the vibration of mechanical eigen modes of a sample. From the measured resonance
spectrum in the frequency domain and the measured diameter or size, the sound velocity
and elastic moduli of a sample are determined. The mode spectrum is assigned based on
the comparison of the experimental modes with the calculated values for an ideal isotropic
sphere. Eigenvalue modes of an isotropic elastic sphere were calculated analytically by Sato
and Usami [12–14]. In a sphere, Tnm denotes the torsional modes, which are pure shear
modes; Snm denotes the spheroidal modes, which are mixed shear and dilatational modes.
The subscripts n and m indicate the number of oscillation nodes in the radial direction of the
sphere and the order of spherical Bessel functions nm, respectively. For isotropic materials,
elastic moduli, such as Young’s modulus, the shear modulus, and Poisson’s ratio, are
determined based on the mode frequencies of Tnm and Snm modes [15]. For a single crystal,
all elastic stiffness constants are determined using the cube resonance method [16]. The
rectangular parallelepiped resonance was also measured to determine the elastic properties
of a small crystal, as shown in Figure 2. In the martensitic transformation of a shape-
memory alloy, the elastic anomaly occurs in an austenitic-to-martensite transformation [17].
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The free vibration frequencies of a Cu-Al-Ni crystal of a shape-memory alloy are measured
as a function of the exciting frequency to determine all elastic stiffness constants [18]. In
the superconductor, the elastic constants show the difference between the superconducting
and the normal states [19]. The mechanical resonance frequency and amplitude of spherical
superconducting Ba(Pb1−xBix)O3 ceramics was also measured from 4 K to 300 K with the
external magnetic field (0~5 T) to discuss the change in the conduction electron mean path
at Tc = 12 K [20]. It is possible for the conventional RUS to determine all independent
elastic constants of a crystal by comparing observed and calculated free-vibration resonance
frequencies. However, to avoid invalid local minima in the inverse process, good initial
guesses of the elastic constants must be available. Very recently, a deep-learning assisted
scheme was proposed to solve this problem, which utilizes an input elasticity image
composed of three layers determined from resonance frequency data [21].
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Figure 2. Experimental setup to measure the resonance frequencies of a rectangular parallelepiped
sample [18]. Two shear mode transducers are used as an exciting source and detection, where PZT
transducers are piezoelectric ceramics. Poisson’s ratio is determined based on the measurement of
tortional and spheroidal resonance-mode frequencies.

2.3. Piezoelectric Resonance Method

Poisson’s ratio of piezoelectric materials has been measured using the resonance-
antiresonance method. In a piezoelectric material, electric displacement D is proportional
to a mechanical stress X. The sign of D changes to the opposite one if the direction of
mechanical stress X is reversed. Piezoelectric materials also show a converse piezoelectric
effect that strain e is induced by an electric field E. Again, the sign of strain e is switched to
the opposite one if the direction of an electric field is reversed. Through the application of
alternative electric fields to a piezoelectric material, the mechanical vibration is excited by
its piezoelectricity [22,23].

In the apparatus shown in Figure 3, alternating voltage is applied along the x3-axis,
and polarization is induced along the x3-axis. Through the piezoelectric effect related to the
piezoelectric constant d13, the strain is induced along the x1-axis. The frequency-dependent
response from a sample is analyzed by an impedance analyzer. Piezoelectric resonance and
antiresonance are observed at the frequencies f r and f a based on the condition of Y = ∞
and 0, respectively, where Y is admittance. The resonance frequency is given by

fr =
1

2L
√

ρs11
, (3)

where L, ρ, and s11 are the length along the x1-axis, density, and elastic compliance constant
of a sample to be studied, respectively. The electromechanical coupling coefficient K is
given by.

fa − fr

fr
=

4
π2

K2

1− K2 (4)
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Figure 3. Apparatus for measuring the piezoelectric resonance of a piezoelectric plate with length L,
width W, and thickness d.

When the electric field, E, is along the x3-axis and the induced strain is along the
x1-axis (lateral mode), it holds in a cubic crystal that.

K ≡

√
d13

ε33s11
, (5)

where d13, ε33, and s11 are piezoelectric, dielectric, and elastic compliance constants. The
piezoelectric resonance–antiresonance method is an important method to determine the
electromechanical coupling constants of piezoelectric ceramics.

In the radial vibration of a disk of piezoelectric ceramics, the electromechanical cou-
pling factor KP is given by.

KP =

√
2

1− ν
· d31√

εT
33sE

11

(6)

Poisson’s ratio is approximately determined as

νE =
5.332 fr − 1.867 fr1

0.6054 fr1 − 0.9010 fr
, for 0.27 < νE < 0.42, (7)

where f r1 is the first overtone frequency [24]. PZT is a well-known piezoelectric material,
while it is very difficult to grow single crystals. Therefore, PZT ceramics have been used
for the piezoelectric application. The temperature-dependence of Poisson’s ratio of PZT
ceramics was reported [25].

2.4. Brillouin Scattering Spectroscopy

Brillouin scattering spectroscopy is a non-contact and non-destructive method to mea-
sure the velocity of acoustic phonons and elastic constants of a material using monochro-
matic visible light. Brillouin scattering is the inelastic scattering of light by thermally
excited acoustic phonons of a sample, as shown in Figure 4. The single-frequency laser
beam is incident to a sample to be observed, and the scattered light from a sample is
collected into Fabry-Perot interferometers with high-frequency resolution and is detected
by a photon-counting system or a CCD detector [26].
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The velocity of acoustic phonons, V, of a sample, is determined based on the frequency
shift νB from an incident beam frequency in the Brillouin scattering spectrum.

V =
λivB

2 n sin θ
2

, (8)

where, λi, θ, and n are the wavelength of an incident light, the scattering angle, and the
refractive index of a sample, respectively. Using the longitudinal acoustic (LA) velocity
and transverse acoustic (TA) velocity, all elastic moduli of a material can be calculated. The
sound attenuation, α, is determined by.

α =
πΓ
V

, (9)

where Γ is the FWHM of the Brillouin peak.
PLZT is a well-known transparent piezoelectric material, while it is very difficult to

grow single crystals. Therefore, PLZT ceramics have been used for the piezoelectric appli-
cation. The Brillouin scattering spectrum of piezoelectric PLZT ceramics using scanning
tandem multi-pass Fabry–Perot interferometers is shown in Figure 5, in which LA and TA
peaks were observed [27]. The frequency shift, νB = νi − νs > 0, is the Stokes component
and the shift, νB = νi − νs < 0, is the anti-Stokes component, where νi and νs are the
frequencies of the incident and scattered light, respectively.
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For the rapid acquisition of a Brillouin scattering spectrum, the angular dispersive
Fabry–Perot interferometer with a solid etalon has been developed [26].

For the measurement of the pressure-dependence of Poisson’s ratio, diamond anvils
are convenient to observe Brillouin scattering spectra under very high pressure, as shown
in Figure 6 [26,28]. By pressing the spacing between two diamond anvils, very high
pressure, of up to 100 GPa, can be applied to a sample to be studied in a gasket hole. For
a solid sample, a pressure-transmitting medium is used. The pressure in a gasket hole is
measured based on the pressure shift of the R1 line fluorescence of a ruby chip [29]. The
ruby fluorescence pressure scale is the standard method to measure pressure within a
sample chamber of a diamond anvil cell apparatus.
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sures [26]. The pressure of a sample is measured based on the pressure shift of the R1 line fluorescence
of a ruby scale. Poisson’s ratio is determined based on the measurement of LA and TA velocities.

2.5. Atomic Force Microscopy

The atomic force microscope (AFM) is a combined system of the scanning tunneling
microscope and the stylus profilometer. An image of AFM is obtained based on the
measurement of the force on a sharp tip related to the proximity to the surface of a sample.
In air, a lateral resolution of 30 A and a vertical resolution less than 1 A were obtained [30].
Hamazaki et al. used AFM to study the surface morphology of the ferroelastic domains
BaTiO3. An undulation of the surface was observed around the boundary of ferroic
90◦ domains and was reasonably explained based on the ferroelastic strain [31]. Hurley
and Turner reported the contact-resonance atomic force microscopy (AFM) methods to
quantitatively measure Poisson’s ratio and the shear modulus at the same time as Young’s
modulus [32]. Yamazaki et al. reported the principle of the AFM to estimate the elasticity of
the cell from force curves obtained via the AFM measurement [33]. Arnold et al. reported
micro-indentation methods to measure the elastic modulus of murine articular cartilage
using AFM [34]. Force curves were analyzed based on fitting using the following equation
with the Hertzian model.

Y =
3
(
1− ν2)

4R1/2δ3/2 F. (10)

Here, F, R, and δ are the indentation force, probe radius, and indentation depth,
respectively. They determined Young’s modulus with the assumption of ν = 0.5 and did
not determine Poisson’s ratio independently. Further improvement is necessary for the
accurate determination of Poisson’s ratio based on the use of AFM.
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3. Poisson’s Ratio of Glasses

Using the observed values of LA velocity, VL, and TA velocity, VT, the following elastic
moduli were calculated using the density, ρ, of a sample.

Shear modulus : G = ρV2
T , (11)

Longitudinal modulus : L = ρV2
L , (12)

Bulk modulus : B = L− 4
3

G, (13)

Compressibility: κ = 1/B. (14)

Young′s modulus : Y =
G(3L− 4G)

L− G
, (15)

Poisson′s ratio : ν =
1
2

V2
L − 2V2

T

V2
L −V2

T
(16)

3.1. Composition-Dependence of Poisson’s Ratio

In structural glasses, Poisson’s ratio is closely related to connectivity and the atomic
packing density [1]. Poisson’s ratio increases as the connectivity decreases and the atomic
packing density increases. In the case of oxide glasses, the number of bridging oxygen
atoms, nB, per glass-forming cation, such as Si, B, and P, is closely related to network
crosslinking, where subscript BØ denotes bridging oxygens. For As2O3, B2O3, and P2O5
glasses, nB = 3 and ν ≈ 0.3, whereas for SiO2 and GeO2 glasses, nB = 4 and ν ≈ 0.2 [1]. Pois-
son’s ratio of alkali and alkali-earth borate glasses determined using the ultrasonic pulse-
echo method is shown as a function of alkali and alkali-earth content in Figure 7 [35,36].
In undoped borate glass, ν = 0.28 is close to the case of nB = 3 and ν ≈ 0.3. There are
two origins for the effect of alkali and alkali-earth modifications. (1) The presence of
BØ4

− units increases nB, and ν decreases. However, the BOØ2
− units decrease nB, and

ν increases, where O denotes nonbridging oxygens. (2) The BØ4
− units in pentaborate

groups do not contribute to the connectivity of the surrounding structural units, and ν
does not change. For lithium and sodium borate glasses, in the (a) first alkali content
range, 0 < x < 0.08, ν decreases based on the formation of BØ4

− units. In the (b) second
range, 0.08 < x < 0.19, pentaborate groups are formed and ν increases. In the (c) third range,
0.19 < x < 0.30, the presence of BØ4

− units increases and ν decreases again. In the (d) fourth
range of sodium borate glass, 0.30 < x < 0.40, pentaborate and tri-borate groups are formed.
The slight increase in BOØ2

− units causes the increase in ν. For potassium, rubidium,
and cesium borate glasses, the formation of BOØ2

− units increases, while the formation
of BØ4

− units decreases in the order from potassium to cesium borate glasses, and ν is
larger than that of lithium and sodium borate glasses. The alkali-earth dependence of ν
in barium borate glasses is mild, while it has a similarity with that of potassium borate
glasses [36]. The variation in structural units may be smaller than that of alkali borate
glasses. In cesium borate glass, Figure 7 shows the remarkable increase or Poisson’s ratio
as the lithium content x increases and the correlation between Poisson’s ratio and fragility
was observed [36]. Poisson’s ratio exceeds 0.32 for x > 0.34. Here, ν = 0.32 is the threshold
of the brittle-to-ductile transition in borate glasses [37].
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An overall increase in ν, increasing fragility m and Cg, was suggested [3]. A remarkable
increase in fragility was reported in lithium borate glasses from m = 32 at x = 0 to m = 60
at x = 0.25 based on the increase in the lithium content x [36]. However, Poisson’s ratio of
lithium borate glass decreases as the lithium content decreases, and further discussion is
necessary for the correlation between Poisson’s ratio and fragility.

3.2. Pressure-Dependence of Poisson’s Ratio

Poisson’s ratio is very sensitive to pressure because pressure directly changes the
interatomic distance. The pressure-dependence of Poisson’s ratio of a typical strong SiO2
glass was studied based on Brillouin scattering with a diamond anvil cell up to 57.5 GPa,
as shown in Figure 8 [38]. The initial value of ν = 0.19 at 0.54 GPa decreases down to 0.15 at
first and then increases to about 0.30–0.35. It is nearly pressure-independent above 23 GPa.
At a low pressure, SiO2 glass is less ductile, while at a high pressure above 23 GPa, it shows
typical ductility, which is like metals. These results suggest various metastable glassy states
with a change in Si coordination under high pressure.
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The pressure-dependence of Poisson’s ratio of typical natural fragile glass, Baltic amber,
was studied [26]. Amber is a few tens of millions of years old, and it also shows ductility.
The pressure-dependence of LA and TA peaks was measured based on Brillouin scattering
using a diamond anvil cell. The LA frequency shift, which is proportional to LA velocity,
remarkably increases as the pressure increases. The pressure-dependences of Poisson’s
ratio and the bulk modulus are shown in Figure 9a. It is found that the bulk modulus
monotonically increases as the pressure increases. However, the pressure-dependence of
Poisson’s ratio is very small, and their values of Poisson’s ratio are about 0.35–0.37 between
1 and 12 GPa. The pressure-dependence of Poisson’s ratio of glycerol is also shown in
Figure 9b [39]. Glycerol undergoes a liquid–glass transition at about 5 GPa, and above this
pressure, the TA mode was observed in a glassy state using Brillouin scattering. Poisson’s
ratio was determined between 5 and 14 GPa from the TA and LA sound velocities. It is
found that Poisson’s ratio of glycerol in a glass state is close to that of amber, and the
pressure-dependence is also very small. In general, the pressure-dependence of Poisson’s
ratio of organic glasses is much smaller than that of inorganic oxide glasses.
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4. Poisson’s Ratio of Piezoelectric Ceramics

When a crystal structure has no center of symmetry, the application of an electric
field induces a strain, and the application of stress induces an electric polarization. This
reversible phenomenon is called the piezoelectric effect. In free energy, piezoelectricity is
given by the bilinear coupling between the strain and electric polarization. The piezoelectric
effect is defined by the strain, eij, electric flux density, Di, stress, Xij, and electric field, Ei,
based the following equation:

eij = sijklXkl + dijhEh, Di = εijEj + dijkXjk (17)

where dijk, sijkl, and εij are the piezoelectric, elastic compliance, and dielectric constants,
respectively. Since the piezoelectricity is related to the third polar tensor, it disappears in a
centrosymmetric crystal. Poisson’s ratio of piezoelectric materials can be measured using
the piezo-resonance method described in Section 2.3 because the mechanical resonance is
directly excited by a piezoelectric sample without the contact of a piezoelectric transducer.

Ferroelectric and piezoelectric materials are very important functional materials with
sensing and actuating capabilities related to many applications. In this section, experimental
results of Poisson’s ratio of well-known ferroelectric and piezoelectric PZT and PLZT
ceramics are described.
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4.1. Lead Zirconate Titanate Ceramics

A solid solution of xPbZrO3-(1−x)PbTiO3, PZT100x/100(1−x), is formed based on the
partial replacement of Ti in ferroelectric PbTiO3 by Zr, where x is a molar ratio. PZT has a
perovskite structure with the random occupancy of Ti and Zr at the B-site. Upon cooling
from a high temperature, 1 wt% Nb-doped PZT75/25 (x = 0.75) and PZT95/5 (x = 0.95)
ceramics undergo a structural phase transition from a paraelectric cubic to ferroelectric
rhombohedral phase at TC = 543 and 476 K, respectively [40]. For further cooling, PZT75/25
and PZT95/5 undergo a ferroelectric rhombohedral high-temperature phase, FR(HT), to a
ferroelectric rhombohedral low-temperature phase, FR(LT), at about Ttr = 335 and 332 K,
respectively. The FR(LT)–FR(HT) phase transition in PZT95/5 is related to two transitions,
i.e., the transition from the ordered R-type to disordered R-type tilts and the one from the
ordered R-type to ordered M-type tilts. However, the transition in PZT75/25 is only related
to the former transition of R-type to M-type tilts.

The piezoelectric and elastic properties of PZT75/25 and PZT95/5 ceramics were
studied using the piezo-resonance method [24]. Poisson’s ratio ν can be derived using
Equation (7) from the resonance frequency, fr, anti-resonance frequency, fa, and the first
overtone frequency, fs1. The temperature-dependences of Poisson’s ratio and electrome-
chanical coupling factor of the radial mode Kp of PZT75/25 and PZT95/5 ceramics are
shown in Figures 10a and 10b, respectively [40]. Poisson’s ratio and the coupling factor of
PZT95/5 exhibit first-order phase transition behaviors with an abrupt change at Ttr. How-
ever, those of PZT75/25 exhibit a diffusive FR(LT)–FR(HT) phase transition with gradually
continuous changes near Ttr. These results suggest that the FR(LT)–FR(HT) phase transition
of PZT75/25 is probably related to the transition between ordered R-type and disordered
R-type tilts and does not include M-type tilts. Very recently, the glass-like behavior of PZT
was reported in the ferroelectric rhombohedral phases and paraelectric cubic phases. This
fact suggests the strong phonon damping in these phases of PZT [41]. Further studies
are necessary to clarify the origin of such structural phase transitions, especially in the
Zr-rich compositions.
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transition temperature from FR(LT) to FR(HT).

4.2. Lead Lantanum Zirconate Titanate Ceramics

Lanthanum-modified lead zirconate titanate (Pb1−xLax)(ZryTi1−y)O3 (PLZTx/y/1−y)
solid solutions with perovskite structures are transparent piezoelectric ceramics, which
have various potential applications, such as electro-optical devices [42]. The compositions
of the most extensively studied are x/65/35 with La contents from 5 to 14 at. % exhibiting
a typical relaxor ferroelectric behavior. Its random fields are stronger than those of PZT.
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Since PLZT ceramics are transparent, elastic properties were studied based on Brillouin
scattering in the large temperature range from 4 to 800 K [27]. The Brillouin scattering
spectrum is shown in Figure 5. TA and LA peaks were observed, and the temperature-
dependence of VT and VL was determined. The temperature-dependence of Poisson’s ratio
of PLZT10/65/35 determined based on VT and VL is shown in Figure 11.
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Figure 11. Temperature-dependence of Poisson’s ratio of piezoelectric PLZT10/65/35 ceramics with
a perovskite structure [27]. It undergoes a normal-to-relaxor ferroelectric phase transition.

PLZT10/65/35 undergoes a normal-to-relaxor ferroelectric phase transition upon cool-
ing from a high temperature. The Burns temperature, TB, dielectric maximum temperature,
Tm, and freezing temperature, Tf, are 627 K, 328 K, and 230 K, respectively. Upon cooling
from a high temperature, dynamic polar nano regions (PNRs) appear at TB, which is a few
hundred degrees higher than the ferroelectric Curie temperature, TC. At above TB, ν = 0.27,
and upon cooling, it increases up to 0.295 at Tm, which is close to TC. The increase ν can be
attributed to the growth and the dynamic-to-static transition of PNRs. The diffusive change
of Poisson’s ratio may be attributed to the dynamic–static transitions of PNRs. For further
cooling, it becomes nearly temperature-independent, because the PNRs were frozen, and ν
is about 0.30. For all the temperatures, ν is larger than 0.27.

5. First-Principles Calculation of Poisson’s Ratio of Crystals

The elastic, electronic, and optical properties of the newly hypothesized perovskite
compound ACuO3 (A = Ca, Sr) were investigated under hydrostatic pressure using the
first-principles method using CASTEP code [43] in the framework of density functional
theory (DFT) [44]. The electronic interactions between ions and the electron are described
based on the application of the exchange-correlational energy function in which the gen-
eralized gradient approximation (GGA) method developed by Perdew–Burke–Ernzerhor
(PBE) is used [45]. Based on the plane-wave cut-off and k-point mesh, the convergence
of the present calculations was examined carefully. The ground state structure was calcu-
lated using the Brodyden–Fletcher–Goldfarb–Shanno (BFGS) method [46]. A smooth and
computation-friendly pseudopotential was produced based on ultrasoft Vanderbilt-type
pseudopotentials, and it saves computation time significantly without affecting the accu-
racy appreciably. The independent elastic constants and elastic moduli were calculated
using the stress–strain method using the CASTEP code [47].

For a cubic system, the elastic moduli, Y, B, G, and Poisson’s ratio, ν, were determined
using the calculated elastic stiffness constants, Cij. By averaging the upper and lower
bounds of Voigt’s and Reuss’s techniques, B and G have been calculated based on the
Voigt–Reuss–Hill approximation [48] using the following equations:

BV = BR =
1
2
(C11 + 2C12). (18)
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GV =
1
5
(C11 − C12 + 3C44). (19)

GR =
5(C11 − C12)C44

C44 + 3(C11 − C12)
. (20)

B =
1
2
(BV + BR). (21)

G =
1
2
(GV + GR). (22)

where the subscript R denotes the Reuss approximation, the subscript V denotes the Voigt ap-
proximation, and B and G have been calculated following the Voigt–Reuss–Hill approximation.

In addition, Y and ν are calculated based on the following equations [47].

Y =
9BG

3B + G
. (23)

v =
3B− 2G

2(3B + G)
. (24)

Poisson’s ratio is the essential mechanical indicator. Since brittle materials can bear
much stress, they are tough. However, they cannot stretch much and may break down
suddenly. The stress–strain relationship of ductile materials is linear, and their elastic
regions are larger. The critical value ν to determine the ductile/brittle nature of solids is
0.26 [49]. Figure 12 shows the pressure-dependences of the Young, bulk, and shear moduli
of an SrCuO3 crystal.
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Figure 12. Pressure-dependences of Young, bulk, and shear moduli of an SrCuO3 crystal.

Figure 13 shows the pressure dependence of Poisson’s ratio, ν, of CaCuO3, SrCuO3,
and CsNbO3 crystals. For CaCuO3 and SrCuO3 crystals, values ν at different pressures are
larger than 0.26. This fact indicates that the compounds CaCuO3 and SrCuO3 are ductile.
The degree of ductility of two crystals shows nearly a monotonic behavior with applied
pressure. The sort of interatomic forces involved in a crystal is also determined by the value
of ν. When the value ν is between 0.25 and 0.50, the central force interaction is dominant
and non-central. Since the values of ν in CaCuO3 and SrCuO3 are between 0.25 and 0.50
for all pressures, the interatomic forces can be central in both materials. In a comparison of
the indicator, it is confirmed that CaCuO3 is more ductile than SrCuO3.
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Figure 13. Pressure-dependence of Poisson’s ratio of CaCuO3, SrCuO3, and CsNbO3 crystals deter-
mined based on the first-principles calculation [47,50].

The cubic phase of a CsNbO3 crystal with a perovskite structure was also hypothe-
sized to investigate the elastic, electronic, photocatalytic, and optical properties related to
applications in industries using the first-principles method [50]. Frantsevich et al. reported,
at first, the separation of ductility from brittleness of materials on the basis of Poisson’s
ratio [51]. Frantsevich’s rule suggested that ν = 0.26 is the divided line between the brittle
and ductile materials. If ν > 0.26, then the material is ductile and plastic deformation occurs.
If ν < 0.26, the material is brittle and no plastic deformation occurs. The values of ν above
20 GPa indicated a ductile nature. Meanwhile, the values below 20 GPa show a brittle
nature, as shown in Figure 13.

6. Conclusions

Poisson’s ratio is a very important elastic modulus used to discuss various properties
of glasses, ceramics, and crystals. It is related to the connectivity, mean coordination
number, valence electron density, and fragility of glass-forming materials. At first, the five
kinds of experimental methods to determine Poisson’s ratio are introduced, namely the
ultrasonic pulse-echo method, resonant ultrasonic spectroscopy, piezoelectric resonance
method, Brillouin scattering spectroscopy, and atomic force microscopy. For the evaluation
of elastic constants of hypothesized compounds, the first-principles calculation is described.
Poisson’s ratio is sensitive to the composition, temperature, and pressure. The experimental
results based on the dependences of Poisson’s ratio on the temperature, pressure, and
composition are reviewed for various glasses, ceramics, and crystals. The mechanism of
these variations is discussed from physical and chemical points of view. In oxide glasses,
the number of bridging oxygen atoms per glass-forming cation is directly related to network
crosslinking through Poisson’s ratio. The correlation between Poisson’s ratio and fragility
is discussed. Piezoelectric ceramics show the anomaly in the vicinity of a structural phase-
transition temperature. Based on the first-principles calculation, ductile–brittle transition
is discussed.
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