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Abstract: The article presents a hybrid method for calculating the chemical composition of steel with
the required hardness after cooling from the austenitizing temperature. Artificial neural networks
(ANNs) and genetic algorithms (GAs) were used to develop the model. Based on 550 diagrams of
continuous cooling transformation (CCT) of structural steels available in the literature, a dataset of
experimental data was created. Artificial neural networks were used to develop a hardness model de-
scribing the relationship between the chemical composition of the steel, the austenitizing temperature,
and the hardness of the steel after cooling. A genetic algorithm was used to identify the chemical
composition of the steel with the required hardness. The value of the objective function was calculated
using the neural network model. The developed method for identifying the chemical composition
was implemented in a computer application. Examples of calculations of mass concentrations of steel
elements with the required hardness after cooling from the austenitizing temperature are presented.
The model proposed in this study can be a valuable tool to support chemical composition design by
reducing the number of experiments and minimizing research costs.

Keywords: steel; artificial neural networks; genetic algorithm; optimization; materials by design;
heat treatment; hardness

1. Introduction

Steel is one of the most important materials used in all sectors of the economy due
to its good mechanical, physical, and functional properties. The selection of steel for
structural components and machinery requires an analysis of the working conditions to
ensure the required properties of these elements. In the case of structural and engineering
steels, the required properties are achieved through the proper selection of the chemical
composition of the steel and the appropriate choice of heat treatment, thermomechanical,
or thermochemical processing conditions. Properly selected chemical composition should
ensure the required steel properties and production costs. Knowledge of the qualitative
and quantitative influence of alloying elements on steel structure and properties is essential
for the rational selection of mass concentrations of these elements. The influence of an
element should be considered in conjunction with other elements present in the steel, as
they can significantly change the interaction with the structure and properties of the steel.
The results of research on this subject have been published in numerous publications [1–6].

Continuous cooling transformation (CCT) diagrams provide significant information
on the possibility of obtaining the required microstructure and hardness of the steel as
a function of the cooling process from the austenitizing temperature. Dilatometric and
metallographic methods are mainly used to develop these diagrams. CCT diagrams
are often presented in a temperature–cooling-time format. They contain information
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on the start and end temperatures of the various phase transformations. Typically, the
cooling rates of the samples and the hardness measured after cooling at these rates are
plotted on the diagrams. The diagrams often also include the volume fractions of ferrite,
pearlite, bainite, and martensite, which are also associated with specific cooling rates.
CCT diagrams are used to determine the conditions for quenching, normalizing, and full
annealing [7,8]. The parameters for phase transformation models are often calculated based
on CCT diagrams. A CCT diagram is important for modeling and planning heat treatment
and thermomechanical treatment of steel with known chemical composition and specific
austenitizing conditions [9,10].

In recent years, the methods and tools for modeling and simulation of technological
processes for manufacturing, processing, and shaping steel structures and properties
have developed dynamically. Computer-aided modeling is used in scientific research
and the industry. It is a relatively inexpensive and effective method to optimize, among
others, the chemical composition and process conditions to achieve the required material
properties [11–14]. The increasing availability of material databases and advances in
machine learning methods are creating new opportunities for material design [15–18].

The growing interest in the application of artificial intelligence and computational
intelligence in various fields of science and technology can also be observed in the field
of materials engineering. Artificial neural networks are often used as a modeling method.
Artificial neural networks are a useful tool for practical tasks. The use of artificial neural
networks is especially justified when there are difficulties in creating mathematical models.
Artificial neural networks make it possible to establish relationships between variables
without defining a mathematical description of the analyzed problem. In the case of super-
vised learning, artificial neural networks learn to solve the problem based on examples [19].
The significant application potential of artificial neural networks in materials engineering
has been presented by many authors [20–24].

A clearly visible trend in modeling, also in materials engineering, is the use of hybrid
methods. Combining different methods in one model makes it possible to consider a
broader problem space and achieve a synergistic effect by utilizing the advantages of each
method. Artificial neural networks are often combined with other modeling methods, in-
cluding mathematical modeling, computational intelligence, and artificial intelligence [25].
Combining artificial neural networks and genetic algorithms has become a favorable option
to leverage the strengths of both methods. The combination of artificial neural networks and
genetic algorithms enables the optimization of tasks. Artificial neural networks are used
in this case to calculate the fitness values of individual chromosomes. The chromosomes
represent the encoded values of the decision variables and form a set of possible solutions.
Given the correct definition of the task conditions, the fitness value of the chromosomes
corresponds to the value of the optimized objective function. This allows the identification
of independent variables that meet the required criteria.

Examples of such solutions can be found, among others, in the works [26–32]. Reddy
et al. [26] applied artificial neural networks and a genetic algorithm to optimize the chemical
composition and heat treatment conditions of medium carbon steels with respect to the
required mechanical properties: yield strength, ultimate tensile strength, elongation, area
reduction, and impact strength. Dutta et al. [27] proposed a similar methodology to design
the chemical composition of dual-phase steels. Pattanayak et al. [28] used artificial neural
networks and a genetic algorithm to design the chemical composition and heat treatment
conditions of microalloyed steels for pipe manufacturing. Sitek [29] presented a method
to support the design of the chemical composition of high-speed steels with the required
hardness and fracture toughness. Feng and Yang [30] proposed a method to optimize the
thermomechanical processing conditions of austenitic stainless steel type 304 to increase
resistance to intergranular corrosion. Razavi et al. [31] described a method for optimizing
the heat treatment conditions of corrosion-resistant steels with an emphasis on maximizing
hardness. Sinha et al. [32] focused their research on Ni-Ti shape memory alloys with the aim
of improving shape recovery behavior while maintaining high mechanical properties. The
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authors of these publications emphasize that their proposed method reduces the number
of experiments required to design new steel grades with the required properties.

The result of the initial work related to the modeling of the chemical composition
of steel for the required hardness after cooling from the austenitizing temperature is
presented in [33]. An artificial neural network was developed to calculate the hardness of
steel based on its chemical composition and austenitizing temperature. In the next step,
6500 randomly generated chemical compositions of steel were evaluated for hardness at
ten average cooling rates. Subsequently, the steel composition that best met the required
criterion was selected.

The purpose of this article is to describe a method to calculate the chemical composition
of steel for quenching and tempering with the required hardness after the product has
been cooled from the austenitizing temperature. Artificial neural networks and a genetic
algorithm were used in this method. The presented method consists of two stages. The
first stage involves developing a hardness model. Artificial neural networks were used to
develop the hardness model. Hardness is calculated based on the chemical composition
of the steel and the austenitizing temperature. The hardness model developed using this
method was presented in the work [34]. This article presents new modeling results. In the
second stage, a genetic algorithm was used to identify the chemical composition of the
steel with the required hardness. An application in which the model was implemented is
described. Calculation examples are presented.

2. Hardness Model

The increasing popularity of machine learning is also reflected in numerous articles
focusing on modeling the transformation of cooled austenite [35–39]. The authors presented
models for calculating phase-transformation temperatures, as shown in CCT diagrams.
However, the hardness of the steel is usually not considered in these models. A simpler
and less costly method of determining the hardness of continuously cooled steel from
the austenitizing temperature is the Jominy End-Quench test. Incorporating the results
of the Jominy End-Quench test into models used for heat treatment simulations requires
calculating the cooling rates at the analyzed points on the cooled object and assigning them
corresponding distances from the quenched end of the sample [40]. Methods for calculating
Jominy hardenability curves are presented, among others, in works [41–46]. However,
the Jominy test has certain limitations. For example, the critical cooling rate of high-
hardenability steel may be less than the minimal cooling rate of the Jominy specimen [47].

Modeling steel hardness using data from CCT diagrams allows us to link hardness
to the cooling curve and phase transformations. On the other hand, the available data are
limited, mostly in graphical form, and the values for time or cooling rate are challenging
to digitize.

Equations developed through multiple regression analysis are also used to calculate
steel hardness. A popular model used to calculate the hardness of continuously cooled
steel from the austenitizing temperature is the Maynier model [48,49]. The model takes
into account the influence of chemical composition, austenitizing temperature, and time.
The Maynier equations can be used to calculate the characteristic cooling rates at 700 ◦C at
which the following microstructural constituents are formed in the steel: 100%, 90% and
50% martensite, 90% and 50% bainite, and 90% and 100% ferrite and pearlite. The Maynier
model was developed using data obtained from about 300 CCT diagrams. Equations for
calculating the hardness of continuously cooled steel from the austenitizing temperature
can also be found in this work [50]. The formulas were developed using data collected from
approximately 500 CCT diagrams, employing multiple regression analysis and logistic
regression. Based on the same dataset, a hardness model was developed using artificial
neural networks, and the results were presented in the paper [34]. The same methodology
was used for modeling in this study. Information from 50 additional CCT diagrams
was added to the dataset, resulting in a new hardness model. In order to provide a
comprehensive discussion of the methodology used to calculate the chemical composition
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of steel with the required hardness, some details of the hardness calculation method, as
presented in [34], were reiterated.

2.1. Dataset for the Model

The development of a neural network model for steel hardness requires the preparation
of a representative dataset of empirical data. The dataset was based on 550 CCT dia-grams
published in the literature. The preparation of the dataset started with the determination of
the variables representing the model. The selection of the independent variables should
be supported by the knowledge of the modelled process. At the same time, the vectors
containing examples of parameter calculation and model testing must contain values for
all variables. Therefore, it was necessary to make simplifications regarding the number of
independent variables. Information on austenitizing time and austenite grain size is not
included in many CCT diagrams and was, therefore, not included in the model. During the
cooling of steel from the austenitizing temperature, phase transformations that determine
the microstructure and its hardness occur. The CCT diagrams contain information about
the phase transformations that occur in the steel during cooling at a known rate. The
information about the phase transformations was used in the hardness model.

It was established that the independent variables of the hardness model would be the
mass concentration of the elements: C, Mn, Si, Cr, Ni, Mo, V, Cu, austenitizing temperature
(TA), and cooling rate (CR). Additionally, four categorical independent variables describing
the presence of ferrite, pearlite, bainite, and martensite in the steel structure were considered.
The values of these variables were determined from the cooling curves presented in the
CCT diagrams. The dependent variable of the model was the hardness of the steel obtained
after cooling at a specified rate.

The values of the categorical variables that describe the steel structure were read from
the CCT diagrams. However, the use of the model requires knowledge of these variables.
Therefore, four classifiers were developed. The task of the classifiers was to answer the
question of whether the steel with a certain chemical composition contains ferrite, pearlite,
bainite, or martensite after cooling at a certain rate. The vectors of variable values for
training and testing the classification neural networks contained the mass concentrations
of elements, austenitizing temperature, cooling rate, and a categorical variable describing
the occurrence of a phase transformation, such as ferritic (F), pearlitic (P), bainitic (B), and
martensitic (M). The categorical variable could take one of two values: Yes or No.

To determine the applicability of the developed hardness model, an analysis of the
range of values of the independent variables was performed. The examples prepared for
the development and testing of the model covered the entire domain of approximated
functions. Additional conditions were established that limit the use of the model.

The distributions of the values of the independent variables were assessed using
descriptive statistics, scatter plots, and histograms for one and two variables. Descriptive
statistics included minimum and maximum values, mean, standard deviation, median,
skewness, and kurtosis. Attention was paid to outliers and collinearity of the independent
variables. To test the correlation between variables, Pearson’s correlation coefficient was
calculated for each pair of quantitative variables. For categorical variables, Spearman rank
correlation was used. The results are presented in Figure 1.

Analyzing the data from Figure 1, a moderate positive correlation can be observed
between the variable describing the occurrence of martensite in steel and the cooling
rate. A similar relationship holds for ferrite and pearlite. There is a moderate negative
correlation between the variables that describe the proportion of ferrite and pearlite and the
cooling rate. A similar relationship exists between the variables describing the occurrence
of ferrite and pearlite in steel and the variable describing the occurrence of martensite.
The negative value of the coefficient confirms that, in most cases, these components do
not occur simultaneously in the steel. There is a small negative correlation between the
concentration of chromium and manganese in steel. The highest value of the correlation
coefficient for steel hardness is observed for the categorical variables (F, P, M), cooling rate,
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and carbon concentration. This confirms the knowledge about the influence of the model
variables on the hardness of the steel cooled from the austenitizing temperature.
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Figure 1. Correlation plot of all variables in the dataset.

For the cooling rate, a transformation was applied that involved the calculation of the
fourth root. This provided a uniform distribution of variable values over the entire range.

The values of the input variables and the output variables were scaled in the range of
0 to 1 using the min–max function.

The hardness model can be applied within the range of mass concentrations of the
elements listed in Table 1. Based on the statistical analysis of the data, additional conditions
limiting the use of the model were defined. The additional constraints are presented in
Table 2.

Table 1. Minimum, maximum, mean, and standard deviation values of the input variables.

Variables Minimum Maximum Mean Std. Dev

C (wt%) 0.10 0.68 0.32 0.14
Mn (wt%) 0.25 1.80 0.79 0.33
Si (wt%) 0.13 1.60 0.33 0.28
Cr (wt%) 0 2.30 0.72 0.56
Ni (wt%) 0 3.60 0.74 1.00
Mo (wt%) 0 1.00 0.16 0.20
V (wt%) 0 0.38 0.02 0.06

Cu (wt%) 0 0.30 0.04 0.08
TA (◦C) 770 1050 878 57

Table 2. Additional conditions limiting the scope of the model application.

Mn + Cr Mn + Cr + Ni Cr + Ni Mn + Ni

Maximum (wt%) 3.6 5.6 5.3 4.5

A verification set consisting of 25 CCT diagrams was created. The data from this
set were not used to calculate the model parameters. They were used only for numerical
verification of the developed relationships.

The dataset prepared for model development was divided into a training dataset,
a validation dataset, and a test dataset. The training dataset was used to determine the
weights of connections between neurons during training. The validation dataset was used
to evaluate the neural network during training. The test dataset was used to evaluate the
quality of the neural network after training. Several vectors of variables were obtained from
one CCT diagram, ranging from a few to several. Random division into training, validation,
and testing datasets resulted in examples derived from a CCT diagram being assigned to
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different sets. Using the data from the verification set, it was possible to compare the overall
hardness change curve for steel with a given chemical composition. The training, validation,
test, and verification datasets contained 1763, 550, 550, and 300 patterns, respectively.

2.2. Methods and Results

According to the assumptions adopted, the hardness neural model consisted of
five neural networks, including four classifiers. More information on neural classifiers
is presented in [51]. The process flow of this method is shown in Figure 2. One of the
independent variables of the model is the austenitizing temperature. It was assumed that
the austenitizing temperature would take the value of Ac3 + 50 ◦C. The value of the end
temperature of the Ac3 transformation during heating was calculated based on the chemical
composition using a neural network. The neural network model for calculating the Ac3
temperature is presented in [51].
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Artificial neural networks were designed and tested using the STATISTICA Neural
Networks 4.0 F software.

To assess the quality of neural networks in regression tasks, the following statistics
were used: mean absolute error, standard deviation of error, Pearson’s correlation coeffi-
cient, and standard deviation. The ratio of the standard deviation of the prediction error to
the standard deviation of the dependent variable allows a comparison of the error values
made by the neural network with the range of values of the dependent variable. A smaller
prediction error and a larger range of the dependent variable result in smaller values of
the standard deviation ratio, reaching zero for a perfect prediction. These statistics were
calculated for the training, validation, test, and verification datasets.

In the case of classifiers, the two classes (presence or absence of a transformation) were
represented in the dataset by a similar number of examples. Evaluation of the classifiers
involved the use of the accuracy coefficient and Receiver Operating Characteristic (ROC)
curve. The accuracy coefficient was calculated as the ratio of the number of correctly
classified cases to the total number of cases in the dataset. The ROC curve allows one to
evaluate the performance of a binary classifier for all possible thresholds that determine
the class boundary. For random classification, the area under the ROC curve (AUC) is 0.5,
while for a perfect classifier, it reaches a value of 1.

In the initial modeling phase, several types of feedforward neural networks were used:
linear networks, multilayer perceptrons (MLP), radial basis functions (RBF), generalized
regression neural networks (GRNNs) for regression tasks, and probabilistic neural networks
(PNNs) for classification tasks only. After preliminary calculations were performed and the
results obtained were analyzed, it was decided that only MLP networks with a single hidden
layer would be considered in the next stage of work. The focus was on determining the
optimal number of neurons in the hidden layer combined with training the neural network.

Artificial neural networks were trained using the following methods: backpropagation
(BP), quick propagation (QP), conjugate gradients (CG), Levenberg–Marquardt (LM), quasi-
Newton (QN), and delta-bar-delta (DD). During the neural networks training, the root
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mean square error (RMSE) value was analyzed. The change in RMSE value was observed
in successive training epochs for the training and validation datasets. The training of the
network was stopped in the epoch in which the error of the validation dataset started to
increase. In a typical artificial neural network training process, after a certain number of
training epochs, despite a decrease in the error value for the training set, the error for the
validation set starts to increase. In such cases, continuing the training leads to overfitting the
model to the training data. The detrimental effect of overfitting occurs relatively frequently
in neural networks. Overfitting is favored by an increase in the number of hidden layers,
an increase in the number of neurons in the hidden layer(s), and an excessive increase in
the number of training epochs.

After completion of the neural network, the aforementioned statistics used for evaluat-
ing the neural network were calculated. These calculations were performed for the training,
validation, test, and verification sets. A series of experiments were performed varying the
number of neurons in the hidden layer as well as the method and/or training parameters.

The selection of the neural network that best describes the relationship between inde-
pendent variables and steel hardness was based on the values of the statistics mentioned
above (regression tasks). Attention was paid to ensure that the values of the respective
statistics for the four sets were similar. In the case of neural networks with similar statistical
values, the network with fewer neurons in the hidden layer was chosen. The best fit was
obtained for the MLP network with a structure of 14-8-1. The neural network was trained
using the Levenberg–Marquardt method for 172 training epochs. The sum of squares was
used as the error function, and the activation functions in the input, hidden, and output
layers were linear, logistic, and linear, respectively. The statistical values used to evaluate
the neural network are summarized in Table 3.

Table 3. The statistical values used to evaluate the hardness model.

Dataset Mean Absolute
Error, HV

Standard
Deviation of the

Error, HV

Ratio
of Standard
Deviations

Pearson
Correlation
Coefficient

Training 30.9 44.3 0.27 0.96
Validating 33.6 46.4 0.28 0.96

Testing 33.7 50.1 0.30 0.95
Verifying 32.7 39.0 0.29 0.95

The parameters characterizing the neural networks developed to identify the structural
components present in steel after cooling are presented in Table 4. The metric values used
to evaluate the classifiers were collected in Table 5. The input variables of all classifiers
were mass concentrations of elements: C, Mn, Si, Cr, Ni, Mo, V, Cu, and TA and CR.

Table 4. Structure and training parameters of neural classifiers.

Transformation

Ferritic Pearlitic Bainitic Martensitic

ANN structure MLP 10-8-1 MLP 10-8-1 MLP 10-10-1 MLP 10-6-1
Training/No of epoch BP/50, CG/330 BP/50, CG/119 BP/50, CG/188 CG100

Table 5. Accuracy and AUC values used to evaluate neural classifiers.

Metric Dataset
Transformation

Ferritic Pearlitic Bainitic Martensitic

Accuracy
Training 0.92 0.92 0.86 0.89

Validating 0.91 0.92 0.86 0.86
Testing 0.89 0.91 0.84 0.86

AUC
Training 0.97 0.97 0.93 0.95

Validating 0.96 0.97 0.92 0.94
Testing 0.96 0.97 0.91 0.93
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The significance of the independent variables was evaluated by the ratio between the
estimated error of a neural network without the influence of the analyzed variable and
the error of the neural network considering the influence of all input variables. When
estimating the error of the neural network without the influence of the independent variable,
the mean value of this variable is assumed for all patterns. An independent variable was
considered significant if the calculated ratios for the training set and the validation set were
greater than 1. The error ratios calculated for the training and validation sets are shown in
Figure 3.
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The obtained results confirm that the categorical variable describing the martensite
content in the steel structure, the mass concentration of carbon, and the cooling rate has
the greatest influence on the accuracy of the prediction. This supports the consideration
of including categorical variables describing phase transformations during steel cooling
in the hardness model. Categorical variables significantly reduce prediction error and
compensate for the additional cost of introducing classifiers into the model. Note that
the operation of classifiers is subject to error. However, their inclusion in the model has
noticeably reduced the computational error.

The results presented demonstrate that the hardness model can be applied to cal-
culate the hardness of steel after the temperature is cooled from austenitizing. When
using the model, it is important to keep in mind the potential error that can occur during
the calculations.

3. Calculating the Chemical Composition of Steel
3.1. ANN–GA Hybrid Model

The calculation of the chemical composition of steel with the required properties can
be considered as the search for values of independent variables for which the objective
function approaches the expected value. The values of the independent variables must be
in the set of allowed solutions. The value of the objective function is calculated using a
neural network model. In such cases, the space of possible solutions must be limited by the
range of mass concentrations of the elements to which the neural network model can be
applied. The constraints on the solution space are presented in Tables 1 and 2.

Steel, with a known chemical composition, that is austenitized under the same condi-
tions exhibits a unique hardness change curve as a function of the cooling rate. However,
there are many steels for which the hardness curve takes on a similar shape. Therefore,
there may be multiple solutions to calculate the chemical composition of steel with a re-
quired hardness change curve. The optimization method used to find a solution must be
an efficient global method capable of obtaining multiple suboptimal solutions. Genetic
algorithms are stochastic algorithms capable of solving the suboptimal solutions that are
selected to optimize the parameters.
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The essence of genetic algorithms, similar to other evolutionary methods, lies in the
search for a solution within a limited space. This search is inspired by the mechanisms of
natural selection and evolution. In the space defined by the constraints of the optimization
problem, there exists a population of individuals encoded as potential solutions. In a
classical genetic algorithm, the individuals are represented by chromosomes encoded as
binary strings. The quality of these solutions is evaluated on the basis of the fitness function.
Individuals with higher fitness, which better meet the search criteria, have a greater chance
of survival and produce a new generation. Individuals exchange information through
crossover and mutation operators. Through operations inspired by natural evolution, they
create progressively better solutions in each iteration. The space of potential solutions
is explored in parallel. The genetic algorithm follows an evolutionary rule in which the
individuals with the highest fitness values have the highest probability of survival [52,53].

The objective of the optimization presented in this study was to identify the chemical
composition of the steel with the required hardness after the steel is cooled from the
austenitizing temperature. The required hardness is the hardness that should be achieved
at five specified cooling rates of the element from the austenitizing temperature. The
objective function was defined as a measure of the fitting error to the required hardness of
the steel. The objective function is described by Equation (1). The calculations sought to
minimize the value of the objective function. The required hardness was assumed to be
determined for a maximum of five cooling rates. Each required hardness was assigned a
weighting coefficient, which describes the significance of the hardness obtained at a specific
cooling rate and can take a value from 0 to 1. The fitting error was calculated as the absolute
difference between the calculated and required values. The scaling was carried out using
the Min–Max function in the range from 0 to 1. The minimum and maximum hardness
values were determined from the data used for the training of the neural networks.

fHV(x) =
k

∑
i=1

wHVi·
∣∣∣∣ (HVci − HVmin)− (HVri − HVmin)

HVmax − HVmin

∣∣∣∣ (1)

where:

i = 1, 2,. . . , k;
k = 1, 2,. . . , 5;
wHVi—weighting coefficient for the hardness at the i-th cooling rate;
HVci, HVri—the calculated or required hardness for the i-th cooling rate;
HVmin, HVmax, the minimum and maximum hardness determined based on empirical
data analysis;
x—vector of independent variables.

The use of genetic algorithms for the identification of the chemical composition of steel
and artificial neural networks to calculate the fitness function requires the development
of a computer program. The program was written in the C++ language. The calculation
algorithm performed by the computer program is presented in Figure 4.

The program implemented a classical genetic algorithm with binary chromosome
encoding. It was assumed that the length of the binary string for each variable is 10 bits
so that the value range of the variables can be divided into 1024 intervals. This value
can be reduced if necessary. The roulette wheel selection method, single-point crossover,
and mutation operators were applied. The fitness function was defined according to
Equation (1). Neural networks were used to calculate the value of the fitness function.
Artificial neural networks trained to calculate the hardness of steel were defined as functions
of the code. This approach allows easy modification of the program in case neural networks
with lower computational errors are developed. In the calculation of genetic algorithms,
premature convergence can be observed, which is caused by the dominance of the fittest
individuals. This phenomenon often occurs in proportional selection methods, such as
roulette wheel selection. After several generations, the population may consist only of
copies of the best chromosome. In the final phase of the algorithm, there is often a small
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difference between the average fitness value of the population and the fitness value of the
best individuals. This situation reduces the competition among individuals and can lead to
a genetic drift effect. To avoid premature convergence of the algorithm, power-law scaling
is utilized to scale the fitness value.
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Figure 4. Flowchart of the optimization scheme based on the hybrid ANN–GA algorithm.

After defining the required hardness as a function of the cooling rate, it is possible
to calculate the mass concentration of all elements or only selected elements. Algorithm
parameters that can be adjusted during the calculations include the number of generations,
the size of the population, the probability of crossover, and the probability of mutation.
An elitist strategy was applied in the reproduction procedure, which involves including
the best individuals unchanged in the next generation. The aim of the elitist strategy is
to preserve the best chromosomes in successive generations. The number of unchanged
individuals is one of the program options and can be set to 0. The program interface is
shown in Figure 5.
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3.2. Examples of Applications of the ANN–GA Model

This paper presents three examples of the application of the developed method for
calculating the chemical composition of steel with the required hardness after cooling from
the austenitizing temperature.

In the first example, the calculations were limited to the carbon concentration. In order
to verify the calculation results, the required hardness values were determined using the
CCT diagram of the 41Cr4 steel [54]. The range of concentrations for other elements was
limited to the chemical composition of the 41Cr4 steel and did not exceed 0.05%. Table 6
shows the hardness of 41Cr4 steel obtained from the CCT diagram, the required hardness,
the calculated hardness, and the sum of the hardness errors. The error for each of the



Materials 2024, 17, 97 11 of 16

five cooling rates was calculated as the absolute difference between the required hardness
value and the calculated hardness value. The table shows the sum of the absolute errors
for the five cooling rates. Table 7 presents the chemical composition of the 41Cr4 steel, the
calculated chemical composition, and the austenitizing temperature. Figure 6 shows the
hardness curves as a function of cooling time based on the values in Table 7. The calculations
were performed multiple times by changing the parameters of the genetic algorithm.
The results presented were obtained with the following parameters: 1000 generations,
population size of 200, crossover probability of 0.8, and mutation probability of 0.1.

Table 6. The required and calculated hardness of the steel after cooling at selected rates (Example 1).

Cooling Rate, ◦/s Sum of the
Errors, HV30 23 13 3 1

41Cr4 563 534 412 310 233 -
Target 560 530 415 300 230 -

Solution 550 530 451 291 232 57

Table 7. Chemical composition of steel calculated for the required hardness (Example 1).

Variables 41Cr4 Solution

C (wt%) 0.40 0.42
Mn (wt%) 0.60 0.58
Si (wt%) 0.33 0.33
Cr (wt%) 0.93 0.94
Ni (wt%) 0.05 0.01
Mo (wt%) 0.00 0.04
V (wt%) 0.00 0.04

Cu (wt%) 0.09 0.04
TA (◦C) 850 841
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Figure 6. Comparison of hardness curves: experimental, required, and calculated (solution from
Tables 6 and 7).

The calculated carbon mass concentration in this example is 0.42. This concentration is
0.02% higher than the carbon concentration in the reference steel 41Cr4. There are also slight
differences in the concentrations of other elements, such as manganese (0.02% difference).
The hardness error obtained is 57 HV. The largest difference occurs at the highest cooling
rate, with a difference of 10 HV. Similar calculations were performed for other steels from
the validation set, calculating the concentrations of various elements. The results confirm a
high level of agreement with the experimentally obtained results.

In the second example, the concentrations of two elements, Cr and Mn, were calculated.
In this case, a comparison with the experimental results is only possible after melting and
testing. The reference steel chosen in this example is 37Cr4 [55]. The range of concentrations
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for other elements was limited to the chemical composition of the 37Cr4 steel and did not
exceed 0.05%. Table 8 shows the hardness of 37Cr4 steel obtained from the CCT diagram,
the required hardness, the calculated hardness (various solutions), and the sum of the
hardness errors. Different solutions were obtained after each successive run of the program
parameters, with optional changes to the genetic algorithm. Five solutions are presented.
Figure 7 shows the hardness curves as a function of cooling time based on the values
in Table 8. Table 9 presents the chemical composition of the 37Cr4 steel, the calculated
chemical compositions, and the austenitizing temperature.

Table 8. The required and calculated hardness of the steel after cooling at selected rates (Example 2).

Cooling Rate, ◦/s Sum of the
Errors, HV50 40 13 7 1

37Cr4 558 550 408 335 216 -
Target 560 550 410 330 220 -

Solution 1 556 542 429 331 222 34
Solution 2 557 543 428 332 226 36
Solution 3 560 546 431 335 230 40
Solution 4 554 540 426 333 232 47
Solution 5 560 546 436 341 243 64
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Table 9. Chemical compositions of steel calculated for the required hardness (Example 2).

Variables 37Cr4 Solution 1 Solution 2 Solution 3 Solution 4 Solution 5

C (wt%) 0.38 0.40 0.40 0.40 0.40 0.40
Mn (wt%) 0.74 0.50 0.69 0.87 0.93 1.30
Si (wt%) 0.26 0.29 0.25 0.25 0.25 0.25
Cr (wt%) 0.90 0.94 0.87 0.72 0.61 0.39
Ni (wt%) 0.26 0.26 0.29 0.28 0.29 0.26
Mo (wt%) 0.04 0.03 0.01 0.00 0.01 0.03
V (wt%) 0.00 0.05 0.03 0.05 0.04 0.05

Cu (wt%) 0.07 0.04 0.05 0.05 0.05 0.04
TA (◦C) 880 843 835 832 831 832

The calculated results are close to the expected values. There is a relationship between
the mass concentrations of Mn and Cr. An increase in the concentration of one element
leads to a decrease in the concentration of the other. The sum of the element concentrations
varies between 1.44 and 1.69. The sum of hardness error ranges from 30 to 62 HV.

In the third example, the concentrations of all elements were calculated. The required
hardness was defined using the CCT diagram of 25CrMo4 steel [55]. Table 10 shows
the hardness of 25CrMo4 steel obtained from the CCT diagram, the required hardness,
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the calculated hardness (various solutions), and sum of the hardness errors. Similar
to the second example, the program was run multiple times with optional changes to
the parameters of the genetic algorithm. Five solutions are presented. Figure 8 shows
the hardness curves as a function of the cooling time based on the values in Table 10.
Table 11 presents the chemical composition of the 25CrMo4 steel, the calculated chemical
compositions, and the austenitizing temperature.

Table 10. The required and calculated hardness of the steel after cooling at selected rates (Example 3).

Cooling Rate, ◦/s Sum of the
Errors, HV50 12 4 1.3 0.5

25CrMo4 498 392 294 266 200 -
Target 500 390 290 260 200 -

Solution 1 500 391 290 266 198 9
Solution 2 496 399 289 269 194 29
Solution 3 499 390 292 248 209 24
Solution 4 495 395 293 248 206 31
Solution 5 490 390 291 273 192 32
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Table 11. Chemical compositions of steel calculated for the required hardness (Example 3).

Variables 25CrMo4 Solution 1 Solution 2 Solution 3 Solution 4 Solution 5

C (wt%) 0.22 0.25 0.25 0.32 0.30 0.21
Mn (wt%) 0.64 1.20 1.00 0.59 0.50 1.41
Si (wt%) 0.25 0.35 0.45 0.31 0.37 0.31
Cr (wt%) 0.97 0.32 0.63 0.74 0.87 0.65
Ni (wt%) 0.33 0.30 0.48 0.78 1.01 0.20
Mo (wt%) 0.23 0.11 0.02 0.10 0.05 0.00
V (wt%) 0.01 0.35 0.28 0.02 0.00 0.35

Cu (wt%) 0.16 0.16 0.07 0.05 0.04 0.15
TA (◦C) 875 910 900 846 849 903

The chemical compositions of the steel represent only a subset of the possible solutions.
The mass concentrations of carbon, chromium, nickel, and manganese undergo changes
primarily. This is due to the influence of these elements on the hardenability and the
distribution of values in the dataset. In each case, the calculated hardness is close to the
required hardness. In this case, the sum of hardness error ranges from 9 to 32 HV. Numerical
verification is not possible. Steels with similar chemical compositions are not present in the
dataset used to train and test the artificial neural networks. The results obtained can only
be verified by experiments.
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4. Conclusions and Future Work

This paper presents a method for calculating the chemical composition of steel with
the required hardness values after continuous cooling from the austenitizing temperature.
A hybrid system consisting of artificial neural networks and genetic algorithms was used
to identify the mass concentrations of elements. To perform the calculations, a computer
program was developed that included a classical genetic algorithm to optimize the chemical
composition of steel and a neural network model to calculate the values of the fitness
function. The program has a graphical user interface that allows the user to define criteria
for the solution search, constrain variable ranges, change the parameters of the genetic
algorithm, and save the results obtained. The compatibility of the calculations with the
experimental results was demonstrated in an example in which the mass concentration of a
selected element was calculated.

In this version of the program, the user defines the hardness as a single value for each
cooling rate. The fitting error is calculated as the absolute difference between the expected
hardness and the calculated hardness. Consequently, the calculated hardness can be greater
or less than the expected value. A planned extension of the program is to allow the user to
define a hardness range by specifying minimum and maximum values. In such cases, the
calculated chemical composition of the steel should ensure that the hardness falls within
that range.

The final stage of modeling should include the experimental verification of the devel-
oped models. For the presented method, it is necessary to perform steel melts with the
calculated chemical composition. In order to obtain reliable results, the sample should
be sufficiently large. At this point, it should be noted that the article is a report on the
completed phase of the planned work.

Work is currently underway on a multi-criteria optimization of the chemical compo-
sition, taking into account the phase transformation temperatures. The results obtained,
which are limited to two cooling rates and the initial phase transformation temperature,
are currently satisfactory. In future work, the number of cooling rates will be increased,
and the end temperatures of phase transformation will be introduced. The expected result
will be a method capable of calculating the chemical composition of the steel to match the
required CCT diagram. Following this phase, an experimental verification will be carried
out, including steel melting and dilatometric tests.

Designing the chemical composition of low-alloy steels with the desired properties is a
complex process. The hardness of the steel after cooling from the austenitizing temperature
is one of several essential criteria. The application of the proposed model can reduce
the costs and the number of required experiments. The results obtained can be used for
further analyses.
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