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Abstract: This paper presents a new anisotropic visco-hyperelastic constitutive model for finite
bending of an incompressible rectangular elastomeric material. The proposed approach is based on
the Mooney–Rivlin anisotropic strain energy function and non-linear visco-hyperelastic method. In
this study, we aim to examine the mechanical response of a reinforced viscoelastic rectangular bar
with a group of fibers under bending. Anisotropic materials are typically composed of one (or more)
family of reinforcing fibers embedded within a soft matrix material. This operation may lead to an
enhancement in the strength and stiffness of soft materials. In addition, a finite element simulation
is carried out to validate the accuracy of the analytical solution. In this research, the well-known
stress relaxation test, as well as the multi-step relaxation test, are examined both analytically and
numerically. The results obtained from the analytical solution are found to be in good agreement
with those from the finite element method. Therefore, it can be deduced that the proposed model
is competent in describing the mechanical behavior of fiber-reinforced materials when subjected to
finite bending deformations.

Keywords: anisotropic visco-hyperelasticity; fiber-reinforced materials; constitutive model; finite
element analysis; relaxation tests

1. Introduction

Soft fiber-reinforced composites are widely used in both industrial and biological ap-
plications including automotive, damping structures, blood vessels, and ligaments. These
materials are characterized by their specific strength-to-density ratio, energy absorption
capability, flexibility, and electrochemical storage devices [1–4]. A soft fiber-reinforced
material may exhibit a wide range of non-linear behaviors such as anisotropy [5], vis-
coelasticity [6], temperature-dependency [7], and damage phenomenon [8]. The general
anisotropic property is caused by a number of fibers that are organized into a soft polymeric
matrix called ground substance [9,10]. Furthermore, most soft materials in nature, such
as soft biological tissues, can also possess anisotropic properties due to the reinforcing
fibers [11,12]. The simplest form of anisotropy can be achieved by the reinforcement of a
soft material with only one family of fibers. Consequently, it is important to note that the
direction of fibers has a significant role in the mechanical behavior of anisotropic materials.

In the last few years, researchers have been focused mainly on the viscoelastic behavior
of anisotropic soft materials. The mechanical response of viscoelastic materials generally
depends on the rate of deformation, which can be described by rheological models consist-
ing of elastic springs and viscous dashpots [13–15]. Accordingly, Holzapfel and Gasser [9]
introduced a fully three-dimensional model for anisotropic viscoelastic composites based
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on evolution equations for two families of fibers. Diani, Brieu, and Gilormini [16] pro-
posed an analytical viscoelastic model for anisotropic rubber-like materials under cyclic
uniaxial tension. Nguyen, Jones, and Boyce [17] presented an anisotropic viscoelastic solu-
tion for soft fiber reinforced composites, using the distinct decomposition of deformation
gradient tensors into the matrix and fiber parts. Rajagopal and Wineman [18] investi-
gated the non-linear behavior of anisotropic viscoelastic solids for different deformation
regimes such as biaxial, triaxial, shear, and extension–torsion deformations. Kulkarni, Gao,
Horner, Mortlock, and Zheng [19] expressed a transversely isotropic visco-hyperelastic
constitutive model for soft tissues, like porcine and human brain tissues, under large de-
formations and high strain rates. Anani and Rahimi [20] proposed a constitutive model
to describe the visco-hyperelastic behavior of transversely isotropic functionally graded
rubbers at different strain rates. Yang, Yao, Yan, Yuan, Dong, and Liu [21] represented
an anisotropic visco-hyperelastic model, considering the effects of temperature on fiber-
reinforced rubber composites. Additionally, Fard and Vakili-Tahami [22] developed a
coupled thermo-visco-hyperelastic damage model for soft fiber-reinforced tissues based on
a thermodynamic framework.

In material engineering science, researchers have always been interested in the me-
chanical behavior of hyperelastic materials under different deformation regimes. Recently,
the classical subject of finite bending of rectangular elastic materials has been widely in-
vestigated due to its various applications. This problem was first discussed by Rivlin in
1949 for general highly elastic incompressible rectangular systems [23,24]. In a subsequent
study, Taber [25] examined the bending problem within the context of embryonic cardiac
loops. Kanner and Horgan [26] introduced an analytical model to express the plane strain
bending of an incompressible isotropic elastic material subjected to an end moment. Later,
Shojaeifard, Sheikhi, Baniassadi, and Baghani [27] suggested a constitutive framework to
represent the time-dependent behavior of visco-hyperelastic rectangular materials under
finite bending. In our previous work, a new model was proposed for the stress-softening
of an incompressible hyperelastic rectangular bar under cyclic bending and unbending
deformation [28]. In addition, Bakhtiyari, Baniasadi, and Baghani [29] proposed a thermo-
visco-hyperelastic approach for shape memory polymers under large bending deformations
and temperature changes.

In the present study, we developed an analytical solution for describing the time-
dependent behavior of anisotropic, incompressible, visco-hyperelastic rectangular materials
under finite bending deformation. For this purpose, a separable constitutive model is
introduced based on the Mooney–Rivlin anisotropic strain energy function [9,30,31] and
non-linear visco-hyperelastic theory [32]. It should be noted that anisotropic strain energy
functions are typically composed of two parts. One part relates to the stored energy in
the matrix material, while the second part refers to the stored energy within the fibers. As
compared to previous studies on the bending problem, a key innovation of this paper is
the anisotropy of the viscoelastic material. In this work, a viscoelastic rubber-like material
is used as the matrix, which is reinforced by one family of fibers. In order to study the
influence of fiber direction, we evaluated different orientations of fibers embedded in the
matrix. As part of this work, a finite element analysis has also been performed to verify the
accuracy of the proposed analytical approach.

This paper is organized as follows: In Section 2, the governing equations and the
solution method are discussed. Section 3 describes the finite element analysis and numerical
implementation of the problem. In Section 4, the results obtained through analytical
methods are discussed and then compared with those of FEM. As a final step, a summary
and some conclusions are presented in the last section.
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2. Governing Equations
2.1. Basic Kinematics of Anisotropic Hyperelastic Materials

Let X and x determine the position vectors in the reference and current configurations,
respectively. In continuum mechanics, the deformation gradient tensor is defined by
F = ∂x/∂X, which is mapping the vector dX from the reference configuration to the vector
of dx in the current configuration. The right and left Cauchy–Green deformation tensors are
given by C = FTF and B = FFT , respectively, where the superscript T denotes the transpose
of a tensor. For an isotropic hyperelastic material, we need three principal invariants of C,
as follows [19,33]:

I1 = trC = λ2
1 + λ2

2 + λ2
3,

I2 = 1
2 [(trC)2 − tr(C2)] = λ2

1λ2
2 + λ2

2λ2
3 + λ2

1λ2
3,

I3 = det C = λ2
1λ2

2λ2
3.

(1)

where λi (i = 1, 2, 3) stands for the principal stretches of C. In addition, for an anisotropic
hyperelastic material with one family of reinforcing fibers, two additional invariants are
given as follows [19]:

I4 = a0.Ca0, I5 = a0.C2a0 (2)

where a0 is a unit vector in the reference configuration which describes the direction of the
family of fibers. It is worth noting that I5 is a pseudo-invariant of C. For a fiber-reinforced
plane strain material, the direction of fibers can be determined by the following:

a0 =

cos α
sin α

0

 (3)

where α denotes the initial angle between the fiber direction and the first axis of reference
configuration, e1, as shown in Figure 1. In the same way, it is possible to define two addi-
tional invariants (I6, I7) with corresponding unit vectors for materials consisting of two
families of fibers.
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Figure 1. Schematic of fiber direction with the unit vector of a0.

In continuum mechanics, the mechanical properties of anisotropic hyperelastic materi-
als can be determined by a decoupled strain energy density function, Ψ, per unit of unde-
formed volume. It may be defined either by the principal stretches or the left Cauchy–Green
tensor invariants. In terms of the invariants, Ψ can be written as follows [34]:

Ψ(C, a0) = Ψvol( J) + Ψiso(C, a0) = Ψvol( J) + Ψiso(I1, I2, I4, I5). (4)

where Ψvol indicates the strain energy associated with volume changes and J is the de-
terminant of the deformation gradient tensor F. On the other hand, Ψiso is regarded as
the isochoric part of the strain energy, which can be decomposed into the isotropic and
anisotropic contributions due to the matrix and fibers. It should be noted that for incom-
pressible materials, we can write det F = 1 or I3 = J = 1.
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In order to obtain the constitutive equations for an incompressible anisotropic hypere-
lastic material, the second Piola–Kirchhoff stress tensor is defined as follows [35]:

S = 2 ∂Ψ(C,a0)
∂C

= 2
[(

∂Ψ
∂I1

+ I1
∂Ψ
∂I2

)
I − ∂Ψ

∂I2
C + ∂Ψ

∂I4
(a0 ⊗ a0) +

∂Ψ
∂I5

(a0 ⊗ Ca0 + Ca0 ⊗ a0)
]
− pC−1.

(5)

where p shows the hydrostatic pressure and I refers to the identity matrix. Moreover, the
Cauchy stress tensor may be found by transferring the second Piola–Kirchhoff stress tensor
to the current configuration, according to σ = J−1FSFT . Therefore, using Equation (5),
one can compute the strain-dependent Cauchy stress tensor for anisotropic hyperelastic
materials via the following equation [36]:

σ = 2
[(

∂Ψ

∂I1
+ I1

∂Ψ

∂I2

)
B − ∂Ψ

∂I2
B2 +

∂Ψ

∂I4
(a ⊗ a) +

∂Ψ

∂I5
(a ⊗ Ba + Ba ⊗ a)

]
− pI. (6)

where a = Fa0 describes the relation between the fiber direction in the reference and current
configurations.

2.2. Anisotropic Visco-Hyperelastic Model

To describe the viscoelastic effect, the finite strain anisotropic viscoelastic model
proposed in Holzapfel [32] is considered. A visco-hyperelastic material can be expressed
via rheological models that incorporate elastic springs and viscous dashpots. Utilizing
the generalized Maxwell model, the strain energy density function can be rewritten as
follows [37,38]:

Ψ(C, a0, Γ1, . . . , Γm) = Ψ∞
vol( J) + Ψ∞

iso(C, a0) +
m

∑
i=1

γi(C, Γi). (7)

where Ψ∞
vol and Ψ∞

iso are the volumetric and isochoric part of the strain energy function and
characterize the equilibrium state of the materials in which the superscript ∞ determines
the long-term equilibrium. The additional term of ∑m

i=1 γi shows the power dissipation
and relates for the viscoelastic response. The total response of the second Piola–Kirchhoff
stress is computed in the form of the following equation [9]:

S = 2
∂Ψ(C, a0, Γ1, . . . , Γm)

∂C
= S∞

vol + Siso, (8)

with the definition

Siso = S∞
iso +

m

∑
i=1

Qi, (9)

where Qi refers to the isochoric non-equilibrium stress tensor defined by the following:

Qi = 2
∂γi(C, Γi)

∂C
. (10)

The next step is to formulate the evolution equations for each branch of viscous
damping. The isochoric non-equilibrium stress tensor, Qi, is assumed to be obtained by
the following:

.
Qi +

Qi
τi

=
.
Siso,i. (11)

where τi ∈ (0, ∞) is the material parameter and represents the relaxation time. Siso,i defines
the isochoric part of the second Piola–Kirchhoff stress tensor corresponding to the strain
energy Ψ∞

iso,i(C, a0) of the material and could be derived as follows:

Ψ∞
iso,i(C, a0) = βiΨ

∞
iso(C, a0) ⇒ Siso,i = 2

∂Ψ∞
iso,i(C, a0)

∂C
= 2βi

∂Ψ∞
iso(C, a0)

∂C
= βiS∞

iso. (12)
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where βi ∈ (0, ∞) stands for the energy factors and S∞
iso represents the strain-dependent or

hyperelastic response of the material.
Finding the total viscoelastic stress S and the non-equilibrium stresses Qi from

Equation (11) may be expressed by a convolution integral in the form of the following [38]:

Qi =
∫ t=T

t=0
exp

(
−T − t

τi

)
dSiso,i(t)

dt
dt. (13)

In order to obtain the updated algorithm of the second Piola–Kirchhoff stress S,
we must consider a time discretization ∆t = tn+1 − tn of the time interval [0, T]. The
Equation (13) can be recast as follows:

Qi,n+1 =
∫ tn

0 exp
(
−∆t+tn−t

τi

)
dSiso,i(t)

dt dt +
∫ tn+1

tn
exp

(
− tn+1−t

τi

)
dSiso,i(t)

dt dt

= exp
(
−∆t

τi

)
Qi,n +

∫ tn+1
tn

exp
(
− tn+1−t

τi

)
dSiso,i(t)

dt dt.
(14)

Utilizing Equations (12) and (14), the total viscoelastic stress at the time step of tn+1
could be calculated as follows:

Sn+1 =

(
S∞

vol + S∞
iso +

m
∑

i=1
Qi

)∣∣∣∣
n+1

= S∞
vol + S∞

iso +
m
∑

i=1
exp

(
−∆t

τi

)
Qi,n + exp

(
− ∆t

2τi

)
βi
(
S∞

iso,n+1 − S∞
iso,n

)
,

(15)

with the following definitions [32]:

S∞
vol,n+1 = Jn+1

∂Ψ∞
vol( Jn+1)

∂Jn+1
C−1

n+1, S∞
iso,n+1 = 2

∂Ψ∞
iso(Cn+1, a0)

∂Cn+1
. (16)

According to Equation (15), the strain-dependent or hyperelastic response of the
material should be calculated at each time increment. In the following, a framework for
fiber-reinforced hyperelastic rectangular materials undergoing finite bending deformation
is presented.

2.3. Finite Bending of Anisotropic Hyperelastic Materials

In this work, the fiber-reinforced material is assumed to be incompressible, which
ideally means that the volume will not change during the deformation (det F = 1 or
I3 = J = 1). Therefore, the volumetric part of the total stress, S∞

vol , can be ignored. In this
section, we will determine the isochoric response of the second Piola–Kirchhoff stress, S∞

iso,
under pure bending.

The common Mooney–Rivlin strain energy function for anisotropic hyperelastic mate-
rials is as follows [9,39]:

Ψ∞
iso(I1, I2, I4, I6) = c1(I1 − 3) + c2(I2 − 3) +

k1

2k2

{
exp

[
k2(I4 − 1)2

]
− 1

}
, (17)

which can be decomposed into two parts as follows:

Ψ∞
iso(isotropic) = c1(I1 − 3) + c2(I2 − 3), Ψ∞

iso(anisotropic) =
k1

2k2

{
exp

[
k2(I4 − 1)2

]
− 1

}
. (18)

where Ψ∞
iso(isotropic) and Ψ∞

iso(anisotropic) depict the isotropic and anisotropic parts of the strain
energy function associated with the matrix and fibers, respectively. I1 and I2 are the first
and second deformation invariants, and I4 is the fourth deformation pseudo-invariant.
Also, c1 and c2 illustrate the matrix material parameters, and k1 and k2 refer to the fiber
stiffness and fiber non-linearity, respectively.
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In order to achieve the anisotropic hyperelastic solution, we need to configure the
kinematics of the bending process. As shown in Figure 2, the reference and current
coordinates are considered to be cartesian (X, Y, Z) and cylindrical (r, θ, z), respectively.
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Figure 2. Bending of a fiber-reinforced visco-hyperelastic rectangular bar with an initial fiber angle of α.

Regarding Figure 2, the term 2θ defines the ultimate bending angle of the bar. As
shown in Figure 2, the main directions X and Y are oriented in the direction of the thickness
and length of the bar, respectively, which have a 90 degrees counter-clockwise rotation
when compared to the main directions in Figure 1. Since the deformations generated in
fiber-reinforced anisotropic materials are of a similar type, it is possible to assume that the
entire structure of the anisotropic rectangular material will exhibit a deformation field as
follows [26,40]:

r = f (X, t), θ =
Y

ρ(t)
, z = Z with


−H/2 ≤ X ≤ H/2,

− L
2 ≤ Y ≤ L

2 ,
−∞ ≤ Z ≤ +∞.

(19)

where 1/ρ(t) stands for the curvature of the bar and H and L show the width and length
of the bar, respectively. Employing Equation (19), the deformation gradient tensor becomes
as follows:

F =


d f (X,t)

dY 0 0
0 f (X,t)

ρ(t) 0
0 0 1

. (20)

Considering the incompressibility constraint, det F = 1, an ordinary differential equa-
tion will be derived, and by solving that equation, f (X, t) will be acquired. As a result,
f (X, t) will become a function that represents radius changes over time, as follows:

f (X, t) = r(t) =
√

2ρ(t)X + c(t). (21)

where c(t) is the integration constant. Moreover, the inner and outer radii will be deter-
mined by replacing −H/2 and +H/2 instead of X in Equation (21), respectively:

r1(t) =
√

c(t)− ρ(t)H , r2(t) =
√

c(t) + ρ(t)H. (22)

With the help of Equations (20) and (21), as well as employing Equations (1) and (2),
the left (and right) Cauchy–Green deformation tensor and its invariants can be obtained
as follows:

B(= C) =


ρ(t)2

r(t)2 0 0

0
r(t)2

ρ(t)2 0
0 0 1

, (23)
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where:
I1 = I2 =

ρ(t)2

r(t)2 +
r(t)2

ρ(t)2 + 1, I3 = 1,

I4 =
ρ(t)2

r(t)2 cos2α +
r(t)2

ρ(t)2 sin2α, I5 =
ρ(t)4

r(t)4 cos2α +
r(t)4

ρ(t)4 sin2α.
(24)

Utilizing the Cauchy stress equation, Equation (6), the Mooney–Rivlin anisotropic
strain energy function, and Equation (17), the strain-dependent stress components can be
obtained by the following:

σ∞
rr = −p(t) + 2

ρ(t)2

r(t)2
∂Ψ∞

iso
∂I1

− 2
r(t)2

ρ(t)2
∂Ψ∞

iso
∂I2

+ 2
ρ(t)2

r(t)2 cos2α
∂Ψ∞

iso
∂I4

,

σ∞
θθ = −p(t) + 2

r(t)2

ρ(t)2
∂Ψ∞

iso
∂I1

− 2
ρ(t)2

r(t)2
∂Ψ∞

iso
∂I2

+ 2
r(t)2

ρ(t)2 sin2α
∂Ψ∞

iso
∂I4

,

σ∞
zz = −p(t) + 2 ∂Ψ∞

iso
∂I1

− 2 ∂Ψ∞
iso

∂I2
,

σ∞
rθ =

∂Ψ∞
iso

∂I4
sin 2α.

(25)

where the shear stress σ∞
rθ is generated by the presence of reinforcing fibers.

In the absence of body forces, the simplified form of the first equilibrium equation in
the current cylindrical configuration is as follows [28]:

∂σ∞
rr

∂r
+

1
r
(σ∞

rr − σ∞
θθ) = 0. (26)

Next, by differentiating the strain energy function with respect to the radius, and
employing the left (or right) Cauchy–Green tensor invariants, we have the following:

dΨ∞
iso

dr =
∂Ψ∞

iso
∂I1

∂I1
∂r +

∂Ψ∞
iso

∂I2

∂I2
∂r +

∂Ψ∞
iso

∂I4

∂I4
∂r

= 2
(

r(t)
ρ(t)2 − ρ(t)2

r(t)3

)[
∂Ψ∞

iso
∂I1

+
∂Ψ∞

iso
∂I2

]
+

(
r(t)

ρ(t)2 sin2α − ρ(t)2

r(t)3 cos2α

)
∂Ψ∞

iso
∂I4

= − 1
r
(
σ∞

rr − σ∞
θθ

)
.

(27)

In light of Equations (26) and (27), one may obtain the radial stress as follows:

dΨ∞
iso

dr
=

∂σ∞
rr

∂r
⇒ σ∞

rr (r) = Ψ∞
iso(r) + K, (28)

where K is the integration constant. Applying the free-stress surfaces boundary conditions,
K is calculated as follows:

σ∞
rr (r1) = σ∞

rr (r2) = 0 ⇒ K = −Ψ∞
iso(r1) = −Ψ∞

iso(r2). (29)

Using the above result, one may find the hydrostatic pressure p(t). In this regard,
employing the radial stress from Equation (25) and the relations (28) and (29), we have
the following:

p(t) = 2
ρ
(
t)2

r(t)2
∂Ψ∞

iso
∂I1

− 2
r
(
t)2

ρ(t)2
∂Ψ∞

iso
∂I2

+ 2
ρ
(
t)2

r(t)2 cos2α
∂Ψ∞

iso
∂I4

+ Ψ∞
iso(r1)− Ψ∞

iso(r). (30)

During the bending deformation, the radius of curvature ρ(t) for incompressible
materials is related to both the inner and outer radii as follows [24]:

ρ(t) =
√

r1(t) r2(t). (31)

Substituting r1(t) and r2(t) from Equation (22), one may find the integration constant
c(t) as follows:

c(t) = ρ(t)
√

ρ(t)2 + H2 . (32)
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Furthermore, the resultant bending moment and resultant normal force can be derived
by using the total tangential stress through the following equations, respectively:

M(t) =
∫ r2

r1

r(t)σθθ(t)dr (33)

N(t) =
∫ r2

r1

σθθ(t)dr (34)

3. Finite Element Method (FEM)

In this section, a finite element analysis is carried out for the bending of an incom-
pressible anisotropic visco-hyperelastic rectangular bar composed of a polymeric matrix
substance and one family of reinforcing fibers (see Figure 3). In order to achieve this, the
COMSOL Multiphysics 6.0 software package was used to simulate the current problem. The
anisotropic type of Mooney–Rivlin strain energy function and non-linear visco-hyperelastic
method are utilized to define the strain-dependent and time-dependent behaviors of the
fiber-reinforced bar, respectively. A rectangular 2D plane strain deformable solid is chosen
with a length of 0.8 m and a height of 0.1 m. To precisely analyze the mechanical properties
of the anisotropic bar, the fibers are oriented at angles ranging from α = 0◦ to α = 90◦

in the reference configuration. Also, the bar is bent up to the maximum bending angle
of 2θ = 180◦. In Figure 2, we showed how the fibers also undergo bending deformation.
A 4-node plane strain quadrilateral element type is used to mesh the structure. Further,
mesh independency was examined to ensure the convergence of the simulation. The model
consists of 3500 domain elements, which are sufficient for the current problem. The material
properties are listed in Table 1.
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Table 1. Material properties calibrated from Yang, Yao, Yan, Yuan, Dong, and Liu [21] for polymeric
matrix material and borrowed from Allahyari and Asgari [41] for reinforcing fibers.

Mooney–Rivlin Strain Energy Function Parameters

c1(Pa) c2(Pa) k1(Pa) k2(−)

315,000 17,200 150,000 0.2

Viscoelastic parameters

βi(−) τi (s)

0.8 20
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4. Results and Discussion

This section presents the results obtained from the analytical method and compares
them with the FEM results to verify the accuracy of the proposed approach. In the following,
two standard deformation modes, the stress relaxation test and multi-step relaxation test,
are studied in detail for different fiber angles. It should be noted that in all tests, the
anisotropic bar has a length of 0.8 m and a height of 0.1 m.

In this problem, the inclusion of fibers in the matrix material leads to a slight shear
stress. Equation (25) indicates that the shear stress is zero when the fiber angles are α = 0◦

and α = 90◦. Hence, both analytical and numerical results are consistent with these fiber
angles. However, if the fibers are inserted into the matrix material at angles ranging from
0◦ to 90◦, a small discrepancy may arise due to the presence of shear stress.

4.1. Stress Relaxation Test

This section presents the response of the fiber-reinforced visco-hyperelastic model to a
finite bending relaxation test under various conditions. The fibers are embedded into the
rectangular matrix material with different initial angles. Initially, the anisotropic rectangular
material is bent until it reaches a maximum bending angle (B.A.) of 180◦ with three different
rising times (R.T.) of 20 s, 50 s, and 100 s, and then, the bending angle is kept fixed for a
period of time. Figures 4 and 5 depict the changes in tangential stress in the outer and
inner surfaces of the material, respectively. It can be observed that the stress components
rise up to their maximum values during the rising time and then gradually decrease until
they reach equilibrium values. Figure 4 shows that the outer radius experiences tensile
stress due to tensile loads applied. On the other hand, as expected, the tangential stress
at the inner radius of the bent bar is compressive (see Figure 5). As mentioned earlier,
the material is reinforced by a family of fibers with the same initial angle of α. It can be
noted that by increasing the fiber angle from α = 0◦ to α = 45◦, the magnitude of the stress
components decreases; however, by further increasing the fiber angle up to α = 90◦, the
value of the stress components increases. It could be said that this point is the result of
a change in the tensile strength of the material for different fiber angles. As mentioned,
the presence of fibers in the matrix material with angles between 0◦ and 90◦ causes shear
stresses under bending, which leads to a small error in the response of the material. We
can point out as a limitation of the presented approach that choosing fibers from softer
materials compared to the matrix can reduce the model error. Table 2 displays the error
percentage between the analytical and numerical results for different fiber angles. The
meaning of error in this part can be summed up as the biggest difference between the
obtained analytical and numerical answers. Based on these findings, it can be concluded
that the analytical approach proposed in this paper can effectively predict the mechanical
response of anisotropic materials under finite bending deformations.
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Figure 4. Variations of tangential stress in the outer radius of the bent bar for different fiber angles of
α. The ultimate bending angle is specified to be 180◦.
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Figure 5. Variations of tangential stress in the inner radius of the bent bar for different fiber angles of
α. The ultimate bending angle is determined to be 180◦.
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Table 2. Maximum error between the analytical and numerical results for the fiber angles of
α = [0◦, 90◦].

Maximum Error (%)

α=0◦ α=15◦ α=30◦ α=45◦ α=60◦ α=75◦ α=90◦

σθθ (Outer surface) 0.8 2.4 2.9 1.5 1.7 2.0 0.7

σθθ (Inner surface) 1.1 3.4 3.8 2.5 1.7 2.2 1.3

σzz (Outer surface) 1.5 2.9 3.7 3.2 1.9 1.4 1.1

σzz (Inner surface) 1.0 2.6 3.0 2.8 2.5 1.7 0.8

σrr (Neutral axis) 0.9 2.0 2.4 0.6 5.6 5.2 1.9

σrθ (Outer surface) 0 2.1 3.0 0.3 3.6 2.9 0

σrθ (Inner surface) 0 1.8 2.6 0.4 3.2 2.8 0

Figure 6 represents the variation of radial stress along the neutral axis of the bent bar
for different fiber angles. It is important to note that the inner and outer surfaces of the
bent bar have zero radial stress, while the maximum value is observed on the neutral axis.
The neutral axis refers to a longitudinal axis in the middle section of the bar, where there is
no stretch during bending. The findings from Figure 6 indicate that the radial stresses on
the bent bar are compressive. Due to the incompressibility of the fiber-reinforced material,
the neutral axis has a displacement toward the inner surface through bending deformation.
Figure 7 illustrates the magnitude of displacement of the neutral axis for the ultimate
bending angles of 90◦, 135◦, and 180◦ at different arbitrary rising times.
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Figure 6. Variations of radial stress in the neutral axis of the bent bar for different fiber angles of α.
The ultimate bending angle is defined as 180◦.
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Figure 7. Displacement of the neutral axis for the ultimate bending angles of 90◦, 135◦, and 180◦.

Figure 8 presents the alterations in shear stress caused by the inclusion of fibers, which
aids in comprehending the material’s behavior. The results obtained suggest that when
the sum of two fiber angles is 90◦, the shear stress in the inner radius closely approximates
the shear stress in the outer radius. It can be argued that for fiber angles ranging from
0 to 45 degrees, the shear stress is negative at the outer radius and positive at the inner
radius. However, a reverse effect is observed for fiber angles between 45 and 90 degrees.
Furthermore, it is found that there is no significant shear stress near by the neutral axis.
Since the shear stress within the material is zero at fiber angles of 0 and 90 degrees, both
analytical and numerical responses are similar, showing a good accuracy. However, for the
fiber angles ranging from 0 to 90 degrees, the bending of a fiber-reinforced material causes
shear stress. This leads to a slight discrepancy between the two solution methods.
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Figure 8. Variation of shear stress on the (a,c) outer radius and (b,d) inner radius of the bent bar for
two fiber angles of α = 30
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, 60

◦
. The ultimate bending angle is determined to be 180◦.
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Additionally, the impact of the fiber angle on the resultant bending moment is dis-
played in Figure 9. It has been observed that the maximum value of the moment rises with
decreasing deformation rates. Based on the data presented in Figure 9, it is evident that the
relaxed resultant bending moments maintain a consistent value at the ultimate bending
angle, regardless of the rising time. These findings align with our expectations based on
Equation (33), indicating that the resultant bending moment follows a similar trend as the
tensile tangential stress.
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Figure 9. Variation of resultant bending moment of the bent bar for different fiber angles of α. The
ultimate bending angle is defined as 180◦.

4.2. Multi-Step Relaxation Test

In this section, three multi-step relaxation tests are presented for an anisotropic visco-
hyperelastic rectangular bar. The anisotropic bar is studied with two different initial fiber
angles of 30◦ and 60◦. Then, the results of these tests are compared with those obtained
using the finite element (FE) method. During the loading condition, the bar undergoes
bending from its original state up to a maximum bending angle of 180◦ in several steps. It is
then returned to its initial unbent state in the opposite direction. The rising time (R.T.) and
relaxation time (Re.T.) for each step are assumed to be equal. Figure 10a displays the inputs
of multi-step tests, where the first input is composed of five bending stages and five relaxed
stages. The second and third inputs, on the other hand, comprise three bending steps and
three relaxed steps. It is worth mentioning that each stage of the aforementioned inputs
has a duration of 15 s, 25 s, and 40 s, respectively. Figures 10 and 11 illustrate the results of
tangential stress on the outer surface, radial stress on the neutral axis, and the resultant
bending moment of the anisotropic bar with fiber angles of 30◦ and 60◦, respectively. It is
evident that by returning the bar to its initial unbent state for the first time, some inverse
residual stress persists in the material, which gradually vanishes over time. The obtained
findings indicate a strong correlation between the presented analytical solution and the
finite element methods.
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Figure 10. (a) Inputs of multi-step relaxation test, (b) tangential and (c) radial stress components, and
(d) resultant bending moment for the fiber angle of α = 30◦.
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Figure 11. (a) Tangential and (b) radial stress components, and (c) resultant bending moment for the
fiber angle of α = 60◦.
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5. Summary and Conclusions

As the bending of hyperelastic and viscoelastic materials is an important issue in
engineering and medical industries, we attempted to study the bending of soft materials
which are reinforced with fibers. As a result of this work, we will be able to gain a
more comprehensive understanding of how soft materials behave under bending. In this
research, a constitutive model was presented to analyze an incompressible anisotropic
visco-hyperelastic rectangular bar under finite bending deformation. The proposed solution
was expanded by employing the well-known anisotropic Mooney–Rivlin strain energy
function for the strain-dependent part and non-linear viscoelastic method for the time-
dependent part. A polymeric plane strain material reinforced by one family of fibers
was investigated in this paper. The fibers were organized within the matrix in different
directions. Moreover, a finite element analysis was carried out in order to verify the validity
of the analytical formulation. To perceive the time-dependent behavior of the anisotropic
rectangular bar, two well-known stress relaxation tests and multi-step stress relaxation
tests were examined in the form of bending deformation. In the results section, the stress
components, as well as the resultant bending moment, were investigated versus time. It was
observed that the tangential stress on the outer radius of the bent anisotropic rectangular
bar is tensile, and on the inner radius, it is compressive. Additionally, we concluded
from the presented data that the amount of stress components changes with the change in
the fibers’ angle. Furthermore, the effects of some variables such as rising time, ultimate
bending angle, relaxation time, and the number of loading stages were taken into account.
There was a high degree of conformity between the FEM results and the analytical results,
which indicates the capability of the proposed constitutive model to study the mechanical
behavior of anisotropic visco-hyperelastic materials under finite bending deformations.
It was observed that at the same bending angle, the stress components and the resultant
bending moment declined with increasing rising time, and also, their values increased
substantially with the increasing curvature of the bar. It can be noted that in fiber-reinforced
soft materials, the ultimate tensile and compressive strengths can differ depending on the
structure, hardness, and direction of the embedded fibers.
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