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Abstract: In this work, we investigated the MOCVD conditions to synthesize thin films with the
hexagonal P63cm h-LuMnO3 phase as a potential low-band gap ferroelectric material. The main
parameters investigated were the ratio of organometallic starting materials, substrate temperature,
and annealing effect. Two different substrates were used in the study: fused silica (SiO2) glass
and platinized silicon (Pt\Ti\SiO2\Si(100)). In order to investigate the thermodynamic stability
and quality of the developed phases, a detailed analysis of the crystal structure, microstructure,
morphology, and roughness of the films was performed by X-ray diffractometer, scanning electron
microscopy (SEM), energy dispersive spectrometry (EDS), Raman spectroscopy, and piezoelectric
force microscopy (PFM). Molar compositions in the film within 0.93 < |Lu|/|Mn| < 1.33 were found
to be suitable for obtaining a single-phase h-LuMnO3. The best films were obtained by depositions at
700 ◦C, followed by thermal treatments at 800 ◦C for long periods of up to 12 h. These films exhibited
a highly crystalline hexagonal single phase with a relatively narrow direct band gap, around 1.5 eV,
which is within the expected values for the h-LuMnO3 system.

Keywords: oxides; thin films; MOCVD; photo-ferroelectrics; narrow band gap

1. Introduction

Rare earth manganite RMnO3 are one of the most studied multiferroic
materials [1,2]. Depending on the radius of the rare earth component, they usually
crystallize in an orthorhombic (o-) structure with a Pnma space group for larger R cation
radii (R = Ba, Bi, La, . . ., Dy) or in a hexagonal (h-) lattice with a P63cm space group
for smaller R cation radii (R = Y, Sc, In, Er, Lu). The hexagonal structures are built
from MnO5 bipyramids that form layers separated by the R ions [2,3]. They exhibit an
interestingly high ferroelectric (FE) transition temperature (TC > 500 K) but relatively
weak electric polarizations. They can also be considered multiferroic [4,5] due to anti-
ferromagnetic (AFM) ordering at relatively low temperatures (TN < 130 K), as stated in
Table 1. Generally, bulk RMnO3 systems have been extensively studied as polycrys-
talline samples prepared by conventional ceramic or sol–gel methods [4] and as single
crystals synthesized by floating zone methods. As thin films, they present additional
degrees of freedom to be explored, such as preferential orientations, substrate-induced
strain phases, and interfacial modifications, which open practical paths for the devel-
opment of functional micro- and nano-devices [2]. Particular interest in the further
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study of h-RMnO3 systems stems from their relatively low-band gap (Eg) combined
with ferroelectric properties and their potential as photoactive materials for innovative
photovoltaic and photocatalytic applications [6,7]. This is especially the case in the
present time, when the development of new and efficient solar energy conversion
technologies is crucial from an environmental, social, and economic point of view.

Table 1. Lattice parameters, Curie temperatures, and magnetic ordering temperatures of hexago-
nal RMnO3 .

RMnO3 a (Å) c (Å) TN (K) Tc (K) Eg (eV) References

InMnO3 5.869 11.47 120 500 1.16 [6–8]
ScMnO3 5.833 11.17 130 -- -- [7]
YMnO3 6.148 11.44 72 920 1.53–2.10 [7,9–11]

DyMnO3 6.182 11.45 39–57 19 -- [7,9,12,13]
HoMnO3 6.142 11.42 76 873 1.35–1.40 [7,9,14,15]
ErMnO3 6.112 11.40 79–81 800 1.35 [7,15,16]
TmMnO3 6.092 11.37 84–86 >573 -- [7,9]
YbMnO3 6.062 11.36 87–89 993 1.35 [7,9,15]
TbMnO3 6.270 11.46 41–42 >590 1.4 [17,18]
LuMnO3 6.046 11.41 90 >750 1.55 [7,9,19]

The group of Fujimura et al. were the first to report the deposition of h-YMnO3 thin
films on MgO(111), ZnO(0001), Al2O3(0001) sapphire, and Pt(111)\MgO (111) using RF
magnetron sputtering (RFMS) [20–23]. Subsequently, other studies were made on h-YMnO3
grown on Pt\Al2O3(0001) and on Pt\Y2O3\Si(111) structures using molecular beam epitaxy
(MBE) [24]. These techniques usually require relatively expensive equipment and use bulky
targets of fixed composition. On the other hand, chemical methods [4] have the advantage
of comparative low cost, providing versatility in precursor composition and thus prompt
control of film stoichiometry [18]. In particular, the metal organic chemical vapor depo-
sition (MOCVD) method allows for the investigation of a series of relevant experimental
parameters in order to establish suitable deposition conditions to synthetize thin films with
a single hexagonal phase. Gerald et al. were able to deposit h-YMnO3, h-HoMnO3, and
h-ErMnO3 on ZrO2(111)\(Y2O3) and on Pt(111)\TiO2\SiO2\Si(001) substrates by pulsed
injection metal organic chemical vapor deposition (PIMOCVD) [25–27]. Their work exem-
plifies some physical and electrical property modifications, like magnetoelectric effects,
obtained in the films by the choice of RMnO3, strain engineering via substrate, film thick-
ness, and annealing conditions. h-LuMnO3 is one of the least studied materials in this family.
The band structure published in the literature points to values of Eg between 1.19 and
1.45 eV [19,28]. In their work, using DFT methods, Brito et al. calculated an indirect Eg of
1.19 eV and a direct Eg of 1.29 eV [28]; Souchkov et al. estimated a value of Eg to be
1.1–1.5 eV on single crystals [22,29]. Han et al. described an indirect Eg of 1.45 eV
and a direct Eg of 1.48 eV using ab initio calculations. They also measured a value of
1.555 ± 0.025 eV on thin films deposited on Pt\Al2O3 substrate, resorting to the pulsed
laser deposition (PLD) technique [19].

In this study, we explored the direct MOCVD method to deposit the h-LuMnO3 phase
thin films on standard fused silica glass (abbreviated to \SiO2) and silicon platinized
substrates Pt\Ti\SiO2\Si(100) (abbreviated to \Pt\Si). The experimental work scrutinized
the effects of the precursor ratio, deposition temperatures, atmosphere (O2:Ar ratio), and
in situ or ex situ thermal treatments. The quality and properties of the developed films
were characterized by X-ray diffraction, scanning electron microscopy (SEM), energy
dispersive spectrometry (EDS), Raman spectroscopy (MRS), piezo force microscopy (PFM),
and transmittance and reflectance measurements.
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2. Experimental Procedures

The metal organic precursors of Mn(tmhd)3 and Lu(tmhd)3 were synthesized from tmhd
(2,2,6,6-tetramethyl-3,5-heptanedione) with recourse to the method described by Eisentraut
and Severs [30]. In short, Mn(NO3)3·4.H2O (ABCR, Karlsruhe, Germany, 8 mmol) was
dissolved in water (30 mL) and slowly poured over an alkaline (0.64 g NaOH) ethanol
solution (30 mL) of tmhd (16 mmol). Adding 250 mL of cold water produced a precipitate
of Mn(tmhd)3. The precipitate was filtered and washed with cold water. In the case of
Lu(tmhd)3, we used Lu(NO3)3·6.H2O (Alfa Aesar, Ward Hill, MA, USA) and methanol
as the solvent. After vacuum drying using P4O10 as a water absorbent, the compounds
were purified through sublimation. The sublimation temperatures were 110–120 ◦C for
Mn(tmhd)3 and 140–150 ◦C for Lu(tmhd)3.

LuMnO3 thin films were deposited by the direct MOCVD method simultaneously
on standard \SiO2 substrates and on Pt\Ti\SiO2\Si(100). (Radiant, Albuquerque, NM,
USA) (Figure S1 in Supplementary Materials). The metalorganic precursor powders were
placed in a small crucible in the sublimation zone and slowly heated from 90 ◦C up to
140 ◦C at 1 ◦C/min. Preheated Ar:O2 (2.6:179 mL/min) was used as a carrier gas. The
substrates were glued using silver paste to a stainless steel susceptor heated by an induction
coil (2 kW). The deposition temperature was measured using a K-type thermocouple
located inside the susceptor just above the substrates and controlled by a PID Eurotherm
controller (Worthing, United Kingdom). The deposition temperature was calibrated using
the melting points of NaCl (801 ◦C) and KCl (770 ◦C). Typical thermodynamic deposition
conditions were pressure at 9 mbar (measured with a Wenzel A200, Wiesthal, Germany)
and temperature at 700 ◦C. The metal–organic compounds sublimated and flowed toward
the substrates, where complex oxidation reactions took place. The film layer was formed,
and the gaseous residues were evacuated by a pumping system through a liquid N2 trap.
After the deposition, the films were in situ annealed for 1–12 h in different environments:
pure O2; pure argon; or mixture at 1 bar. Ex situ annealing was conducted in a tubular oven
also at 1 bar of flowing gas.

X-ray diffraction patterns were acquired using a Panalytical X’Pert Pro MPD (Almelo,
The Netherlands) equipped with a X’Celerator detector and a secondary monochromator in
Bragg–Brentano geometry, with λ(CuKα1) = 1.5418 Å; 2θ step size 0.017◦ at 100 s/step. The
diffractograms were analyzed using PowderCell software (version 2.4). Average crystallite
sizes, <tc>, were calculated using the Scherrer equation: <tc> = K.λ/β.cosθ, where K is a
dimensionless shape factor with a typical value of 0.90, λ is the X-ray wavelength, β is the
line broadening at half the maximum intensity (FWHM), after subtracting the instrumental
line broadening, in radians, and θ is the Bragg angle.

Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometry (EDS) were
performed using a FEI Quanta 400 with W filament and an EDAX system, respectively.
EDS acquisition spectra were performed at 15 kV to maximize the signal from the film, and
the semi-quantification was performed standardless with ZAF correction factors without
considering the elements from the substrates.

Transmittance measurements were performed by UV-Vis spectroscopy using the LLG-
uniSPEC 2 (Meckenheim, Germany)system to measure the light absorption behavior of
the material as a function of the incident wavelength. The background was acquired
using the \SiO2 glass substrate. Diffuse reflectance measurements were obtained using
a CARY 50 Varian spectrophotometer (Agilent, Santa Clara, CA, USA) in a range from
200 to 1000 nm, using the BaSO4 compound as the white background reference. The
acquired diffuse reflectance spectrum was converted using the Kubelka–Munk function,
where the magnitude F(R∞) is proportional to the absorption coefficient. The optical band
gap (Eg) can be calculated following the relation presented by Tauc and expressed by
Davis and Mott: (α.E)1/n = (h.υ − Eg), where E = h.c/λ is the photon energy and Eg the
optical band gap energy. The power-law exponent, n, depends on the transition type,
using n = 1/2 for a direct Eg and n = 2 for an indirect Eg. The value of indirect or direct
Eg is estimated by plotting (α.h.υ)1/2 or (α.h.υ)2, respectively, as a function of the photon
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energy and extrapolating it to 0 [19,31]. In this work, the first derivative method [32] was
also used in complement to Tauc’s plot method.

Piezo-response force microscopy was performed using a scanning probe microscope
NT-MDT NTEGRA equipped with an external lock-in amplifier Zurich instruments HFLI
(Zürich, Switzerland). Commercial probes from Budget Sensors Tap190E-G (Sofia, Bul-
garia) were used, with Cr/Pt-coated tips of a radius of 25 nm, a resonance frequency
of ~151 kHz, and a spring constant k of about 48 N/m. All piezo-response force microscopy
and spectroscopy studies were performed outside the 21.1(1) kHz resonance frequency
in order to decrease electrostatic responses and topographic crosstalk.23 The images were
edited with the WSxM 5.0-10.0 software.

3. Results and Discussion
3.1. Film Composition and Phases

The first series of experimental depositions was used to calibrate the transfer function
of the precursor molar ratio to the resulting film composition. Figure 1a) shows the
experimental data obtained for different |Lu(tmhd)3|/|Mn(tmhd)3| ratios from 0.30 to
0.60. Under the specifics of the reactor and deposition conditions used, a simple linear fit
allowed interpolation of the value |Lu(tmhd)3|/|Mn(tmhd)3| = 0.47 ± 0.03 as an indicator
of stoichiometry approaching |Lu|/|Mn| = 1.00 in the films, as measured by EDS\SEM.
The rate of sublimation of Lu(tmhd)3 and incorporation of Lu cations into the film phase are
relatively more effective than that of Mn(tmhd)3 and Mn. Representative EDS spectra of the
Lu-Mn-O thin films are shown in Figure 1b,c), which confirm the presence of the expected
elements with no other impurities detected. However, quantification of the Lu and Mn
ratios in the film by the EDS method can be determined only within a relatively significant
margin of error because the electron beam penetrates successive layers in addition to the
thin film and is perturbed by each interface [33], and it also penetrates into the fused silica
or the Pt, Ti, and SiO2 buffers and reaching the Si substrate. Representative cross-section
images are presented in Figure 1d and enable us to estimate the film thickness at around
230 ± 20 nm.

Figure 2 compares the XRD patterns of a series of layers deposited at 700 ◦C on
\SiO2 from different feedstocks. The layers are also labeled with the correspond-
ing Lu/Mn ratios determined using the EDS technique. The three color-shaded
regions in Figure 1a group the different phases identified in the thin films in cor-
relation to their respective compositions. Regardless of the ratio of the starting
materials, the XRD patterns of the films shown in Figure 2a were generally amor-
phous in their initial state. The XRD patterns shown in Figure 2b were obtained
after the samples were subjected to ex situ heat treatment at 800 ◦C for 1 h in air
flow at atmospheric pressure. As can be seen, annealing promoted crystallization
in all films. However, different structural phases were formed depending on the
Lu/Mn ratio in each film. Under the specifications of the experimental MOCVD
system, deposits with an excess of the Lu(tmhd)3 precursor resulted in films with
|Lu|/|Mn| > 1.33 and developed t h-LuMnO3 (Crystallography Open Database card
n. 9007909) and cubic c-Lu2O3 (Crystallography Open Database card n. 1548519)
phases. Deposits with a deficit of Lu(tmhd)3, on the other hand, produced films
with |Lu|/|Mn| < 0.92 and exhibited a mixture of h-LuMnO3 and orthorhombic o-
LuM2nO5 phases. For films within a composition window of 0.93 < |Lu|/|Mn| < 1.33,
which corresponds to an excess of Mn(tmhd)3 (up to a maximum ratio of 0.55 in the precursor
solution), it appears to be possible to synthesize a thin film with a single h-LuMnO3 P63cm
phase. In addition to optimizing appropriate thermal treatments, the XRD proves that it is
possible to obtain the h-LuMnO3 phase in a relatively wide range of Lu/Mn ratios.
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Figure 2. XRD pattern of Lu-Mn-O films deposited on \SiO2; (a) as-deposited at 700 ◦C, (b) after ex
situ anneal at 800 ◦C 1 h.

3.2. Thermal Treatments

Since the compositional parameters used for the synthesis of sample LM08 were found
to be suitable for producing a single-phase h-LuMnO3 film on the \SiO2 substrates, a series
of films were subsequently deposited simultaneously on the \SiO2 and on \Pt\Si substrates,
with the precursor ratio fixed at |Lu|/|Mn| ~0.55. Further experiments were conducted
to investigate the effects of in situ and ex situ heat treatments on the evolution of the phase.
One series was deposited at 700 ◦C (LM700-as00) and then annealed ex situ at 800 ◦C in
air for 12 h (LM700-ex12). Other series were deposited at 800 ◦C (LM800-as00) and further
annealed ex situ at 800 ◦C in air for 12 h (LM800-ex12). Other films deposited at 800 ◦C
were annealed in situ for 4 h (LM800-in04) and 12 h (LM800-in12), as shown in Table 2.

Figure 3a,b, respectively, show both the XRD patterns of the film series deposited on
the SiO2-glass and Pt\Si substrates and the microscopic surface images obtained using
SEM. As shown in Figure 3a, the LM700-as00\SiO2 deposited film is essentially amor-
phous, as corroborated by the absence of diffraction peaks. After ex situ heat treatment at
800 ◦C for a period of 12 h, it is possible to observe the appearance of reflection peaks (002),
(004), and (112) of h-LuMnO3 in the diffractogram of film LM700-ex12\SiO2. These are
related to the crystallization of the hexagonal phase and allow for the calculation of the cell
parameters a = 6.002(2) Å and c = 11.27(2) Å, as displayed in Table 2. On the other hand,
when the film is directly deposited at 800 ◦C, the XRD of sample LM800-as00\SiO2 shows
already the (110), (004), and (112) diffraction peaks, albeit with low intensity, revealing
incipient crystallization (crystallite size is 16 ± 2 nm). The cell volume is 351(1) Å3, which is
2.2% smaller than the bulk volume for a stoichiometric sample [34]. After ex situ annealing
at 800 ◦C for 12 h in air (LM800-ex12\SiO2), the crystallization increases, the (002) peak
appears, and the other reflection peaks become much more intense with a smaller FWHM,
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indicating the growth of the crystallites (20 ± 1 nm). In addition, the lattice and cell volume
increase toward bulk values. The diffractogram of the LM800-in04\SiO2 film deposited
at 800 ◦C and annealed in situ for 4 h in oxygen indicates preferentially oriented growth
along the c-axis of the crystallized phase. A major reflection peak at 31.85◦ (004) and a
minor peak at 34.00◦ (112) allow the calculation of the lattice parameters a = 5.97(2) Å and
c = 11.22(2) Å, with a shrinkage of the cell volume to 346(2) Å3. Almost the same shrinkage
is observed in the LM800-in12\SiO2 film, annealed in situ for 12 h in oxygen.

Table 2. Deposition and annealing conditions and lattice parameters for the series of films on \SiO2

and on \Pt\Si substrates.

Sample Substrates Deposition
Temperature

Thermal
Treatment

Time
(h)

a
(Å)

c
(Å)

V
(Å3)

∆V/Vbulk
[34] (%)

LM700-
as00

\SiO2
\Pt\Si

700 ◦C
as-deposited 00 --

--
--
--

--
--

--
--

LM700-
ex12

\SiO2
\Pt\Si

ex situ 800 ◦C
1 bar air 12 6.002(2)

5.99(3)
11.27(2)
11.23(2)

351(1)
349(3)

−2.2
−2.9

LM800-
as00

\SiO2
\Pt\Si

800 ◦C

as-deposited 00 5.99(3)
5.998(7)

11.28(9)
11.22(2)

350(2)
350(1)

−2.4
−2.7

LM800-
ex12

\SiO2
\Pt\Si

ex situ 800 ◦C
1 bar air 12 6.03(2)

6.000(4)
11.34(3)
11.27(4)

357(2)
351(1)

−0.7
−2.2

LM800-
in04

\SiO2
\Pt\Si

in situ 800 ◦C
1 bar O2

04 5.97(2)
5.994(3)

11.22(2)
11.24(2)

346(2)
350(1)

−3.6
−2.6

LM800-
in12

\SiO2
\Pt\Si

in situ 800 ◦C
1 bar O2

12 5.98(2)
6.00(1)

11.23(4)
11.22(2)

348(2)
349(2)

−3.1
−2.7
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different thermal treatments. The Si * is related to the “forbidden” Si(200) plane reflection.
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Figure 3b shows the XRD pattern of the films deposited on the \Pt\Si substrates under
the same batch as the films deposited on SiO2 glass. The narrow diffraction peak located at
2θ = 33.0◦ is related to the “forbidden” Si(200) plane reflection [35]. The platinum peaks
appear at 39.95◦ (111) and 46.50◦ (200). The phase formation is not relevant for the LM700-
as00\Pt\Si sample. Then, the crystallization of the films subjected to ex situ annealing
reveals an improvement. In the LM700-ex12\Pt\Si film, the crystallite size approaches
25 nm approximately, while in the LM800-ex12\Pt\Si film, the crystallite size becomes more
noticeable, reaching around 31 nm. This is particularly evident from the reflection peaks of
the (002), (004), and (112) planes of the hexagonal structure. The X-ray diffractograms of
the in situ annealed films (LM800-in04\Pt\Si and LM800-in12\Pt\Si) have nearly the same
lattice parameters, exhibiting cell volumes of 350(1) Å3 and 349(2) Å3.

In general, the lattice parameters of the films deposited on Pt\Si show minor varia-
tions with the thermal treatments. These differences are consistent with a stronger phase
adhesion induced by the crystalline template, in contrast to the lessen strain from the
amorphous \SiO2 glass substrate. Moreover, prolonging the thermal treatments clearly
leads to recrystallization and strain relaxation, increasing the lattice volume and improving
the overall quality of the film.

In agreement with the XRD observations, Figure 4 shows surface microstructure
images obtained by SEM from these series of films deposited on the \SiO2 glass and \Pt\Si
substrates. Figure 4a,g correspond to samples LM700-as00, which exhibit a smooth texture
as expected from basically amorphous films. Relatively uniformly sized grains with a
diameter of about 200 nm can be seen on the film on SiO2 glass (Figure 4a), while they are
barely visible in the \Pt\Si films. After annealing at 800 ◦C for 12 h, the LM700-ex12 film
(Figure 4b) developed some crystallization as well as a structural contraction of the original
amorphous phase, which resulted in a denser surface and an abundance of cracks. This
transformation is evident in the partial growth of some grains at the expense of neighboring
regions, which turned the previously uniform texture into an irregular distribution of
crystallite sizes, reaching up to 300 nm in diameter. By contrast, the LM800-in04 film
(Figure 4e) has a very dense, homogeneous, and smooth surface; it exhibits a highly
dispersed nucleation and a crystallite below 20 nm, but no aggregates or visible contours.
The deposited films at 800 ◦C on/SiO2 substrate (Figure 4c) shows inhomogeneous growth,
which leads to the appearance of some outgrowth on the surface of the films. we assume
that the film does not have enough time to crystallize well even though at high temperature.
However, after TT at 800 ◦C for 12 h, the film (Figure 4d) shows a better crystallization with
very small grains and develops some cracks due to thermal expansion. The LM800-in12
film (Figure 4f) shows a recrystallized surface with a uniform distribution of grains with
a diameter of about 175 nm but no signs of aggregates or cracks. In contrast with the
relatively smooth and incipient microstructure observed for the films deposited on \SiO2
glass, those deposited on \Pt\Si show some relevant differences. With a limited annealing
time of 4 h, the film develops a very dense and crystallized surface with crystallites of
less than 200 nm in size and very dispersed porosity. However, after a 12 h annealing,
(Figure 4h,j,l), the films develop significant recrystallization, although they are affected
by some degree of porosity that can reach 250–350 nm-wide voids, possibly reaching the
substrate surface (a SEM image of \Pt\Si substrate is given in Figure S2 Supplementary
Materials). These results indicate that both the substrate and the thermal treatment have
profound effects on the evolution of the film phase microstructure and may eventually
further affect its physical properties.



Materials 2024, 17, 211 9 of 16
Materials 2024, 17, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 4. SEM images of film surface deposited on (a–f) \SiO2 and on \Pt\Si. (g–l) at different tem-
peratures and thermal treatments as described in Table 2. 

In summary, the XRD diffractograms show a relative increase in the intensity and 
definition of the reflection peaks of the P63cm phase, indicating an improvement in crys-
tallization quality with the longer in situ annealing time. The images from SEM show the 
importance of choosing a higher deposition temperature to improve the film morphology. 
Thus, the combination of deposition and sufficiently long thermal treatments promotes 
not only the h-LuMnO3 phase crystallization as a denser film. The optimized films exhibit 
the intended hexagonal P63cm phase, with the lattice parameters approaching those pre-
viously reported for ceramics [34,36] and single crystals [37]. As with films deposited by 
other methods such as spin coating [38], a relative contraction of the cell volume of the 
films is observed, between −0.39 and −3.3% compared to the bulk [34,36], mainly due to 
the strain induced by the substrates, besides slightly off-stoichiometry effects [39]. If one 
expresses the composition of the hexagonal phase as LuMn1−zO3−δ [34], it is evident that 
both the Lu/Mn composition (imposing z) and the air, the O2/Ar atmosphere (affecting δ), 
are two important chemical factors that impact the lattice volume [39]. Nonetheless, the 
changes observed in the lattice parameters due to thermal treatments should also be con-
sidered influenced by the degree of film strain imposed from the substrates, or conversely, 
the degree of relaxation due to recrystallization. 

  

Figure 4. SEM images of film surface deposited on (a–f) \SiO2 and on \Pt\Si. (g–l) at different
temperatures and thermal treatments as described in Table 2.

In summary, the XRD diffractograms show a relative increase in the intensity and
definition of the reflection peaks of the P63cm phase, indicating an improvement in crys-
tallization quality with the longer in situ annealing time. The images from SEM show the
importance of choosing a higher deposition temperature to improve the film morphology.
Thus, the combination of deposition and sufficiently long thermal treatments promotes not
only the h-LuMnO3 phase crystallization as a denser film. The optimized films exhibit the
intended hexagonal P63cm phase, with the lattice parameters approaching those previously
reported for ceramics [34,36] and single crystals [37]. As with films deposited by other
methods such as spin coating [38], a relative contraction of the cell volume of the films is
observed, between −0.39 and −3.3% compared to the bulk [34,36], mainly due to the strain
induced by the substrates, besides slightly off-stoichiometry effects [39]. If one expresses
the composition of the hexagonal phase as LuMn1−zO3−δ [34], it is evident that both the
Lu/Mn composition (imposing z) and the air, the O2/Ar atmosphere (affecting δ), are two
important chemical factors that impact the lattice volume [39]. Nonetheless, the changes
observed in the lattice parameters due to thermal treatments should also be considered
influenced by the degree of film strain imposed from the substrates, or conversely, the
degree of relaxation due to recrystallization.

3.3. Raman Spectroscopy

The quality of the h-LuMnO3 phase in the films was further inspected using Raman
spectroscopy. The spectra obtained from the different films also allowed us to follow the



Materials 2024, 17, 211 10 of 16

effects of adjustments in the deposition conditions and thermal treatments. The charac-
teristic Raman profile of the h-LuMO3 P63cm phase has 38 Raman active phonon modes:
9 A1,14 E1, and 15 E2 [40,41]. The series of films deposited on SiO2 glass were mainly
used to parametrize the composition. The results of XRD and the analysis of SEM images
indicate limited crystallization, and corresponding Raman spectra confirm the incipient
formation of the hexagonal phase. Subsequent series of films deposited on the platinized
substrates show an improvement in the quality of hexagonal phase crystallization, and
Figure 5 shows some representative Raman spectra from the film at ambient conditions.
Apart from the peak at 516 cm−1 from the Si substrate [42], the spectra approach the phonon
modes of the P63cm phase, in particular the series of A1 modes (around 118, 224, 301, 472,
and 689 cm−1) and E1 (around 642 cm−1) as reported in the literature [40] (Table 3).

Table 3. A1 and E1 Raman active modes wave no. (cm−1) of h-LuMnO3 samples.

Raman Mode A1 -- A1 A1 A1 A1 A1 E1

Single crystal [42] 121 -- 224 301 432 472 689 642
Bulk LuMnO3 [1] 117 -- 222 298 425 463 689 640
LM800-ex12\SiO2 118 140 244 303 -- 463 685 661
LM800-ex12\Pt\Si 116 140 247 302 -- 465 684 655
LM800-in04\Pt\Si 118 139 241 302 -- 465 684 644
LM800-in12\Pt\Si 118 -- -- -- -- 469 688 648

Even though the films are dominated by the hexagonal crystalline phase, the corre-
sponding Raman spectra are clearly distorted from those of the typical h-LuMO3 bulk
structure. The position of the main A1 phonon modes appears to be slightly shifted to the
lower wave number (~685 cm−1), as expected due to the film strain and lattice contraction.
In addition, broader peaks and shoulders are typical of significant lattice distortions as well
as disorder and defects in the film [28]. Furthermore, distortions at interface regions and
the possible superposition of modes from spurious phases, though not detected by XRD,
typically contribute to convolutions and perturbations in the Raman spectra.
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3.4. Optical Band Gap Measurements

Figure 6a shows the change in transmittance as a function of incident wavelength
for the coatings deposited on \SiO2 at different annealing conditions. The infrared trans-
mittance can reach 50 to 65% above 900 nm, while a significant decrease to almost 40%
is observed below 800 nm. The derivative of transmittance (dT/dE) shown in Figure 6b
shows a uniform absorption threshold for photons with an energy of about 1.5 eV for all
samples. This behavior is clearly enhanced for the three samples with a longer 12 h thermal
treatment, while it is only at the beginning for the sample with a 4 h annealing [43]. The
corresponding Tauc plots are shown in Figure 6c,d and allow the calculation and verifi-
cation of more unambiguous values of optical band gap (Eg), which are reproduced in
Table 4. It is possible to extrapolate values for indirect Eg within 0.9 to 1.1 eV, although
this is not apparent for the LM800-in04 film, which shows an absorption near 1.4 eV. In
addition, the direct Eg values are estimated to be between 1.35 for the LM800-in12 film and
a maximum of 1.68 eV for the LM800-in04 film. Figure 7a–d show the results of reflectance
measurements of the films deposited on \Pt\Si substrates. The successive local maxima
observed in the derivative (dF(R)/dE) can be associated with the distribution of density
of states in the material, with differentiated gaps and efficiencies for electron transference
from valence band to conduction band across the reciprocal lattice directions [28]. The
calculated values of Eg are listed in Table 4. The indirect Eg values range from 0.9 to 1.1 eV,
and the direct Eg values range from 1.3 to 1.5 eV and are very similar to the values for the
samples prepared on the \SiO2 glass substrates.
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Figure 6. h-LuMnO3 films on SiO2 substrates (a) transmittance and its (b) derivative; calculated
(c) indirect, and (d) direct Eg .
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Table 4. Eg calculated by Tauc model for the series of h-LuMnO3 films deposited on \SiO2 and \Pt\Si.

Sample Substrates Indirect Eg
±0.05 [eV]

Direct Eg
±0.05 [eV]

LM700-ex12 \SiO2
\Pt\Si

1.14
0.90

1.44
1.44

LM800-ex12 \SiO2
\Pt\Si

1.04
0.96

1.44
1.48

LM800-in04 \SiO2
\Pt\Si

0.96
1.11

1.1
1.43

LM800-in12 \SiO2
\Pt\Si

0.86
1.04

1.35
1.34

The independent values obtained for the h-LuMnO3 films on the different substrates
and by different methods are close to 1 eV, within a consistent and relatively narrow interval,
and in close agreement with the values reported for other h-LuMnO3 thin films [19,22],
which are here reported for the first time in thin films made by MOCVD and deposited on
the \SiO2 substrates.
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Figure 7. h-LuMnO3 films on \Pt\Si substrates (a) reflectance and its (b) derivative; calculated
(c) indirect and (d) direct Eg .

3.5. Piezo Force Microscopy Measurements

Standard arrays of Au electrode dots (1 mm2) were deposited with recourse to dc-
sputtering in order to characterize the films’ transport and polarization properties. Due
to their porosity, these Au electrodes tend to form a short circuit with the Pt substrate
layer, which makes them unsuitable for conventional macroscopic dielectric or polarization
measurements. Nevertheless, local microscopic evaluation of the piezoelectric response
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of the deposited layer is possible using the PFM technique. Figure 8a–g show PFM scans
and histograms of the LM800-in12\Pt\Si film’s surface, measured from the top deposited
Au layer. The top conductive electrode is intended to neutralize artifacts from electrostatic
charge accumulation. In fact, overall similar PFM results were checked directly on the
film phase surface since the film exhibits relatively low resistivity. Figure 8a displays the
topography of the scanned 5 × 5 µm2 area. The surface of the film exhibits an average
roughness below 7 nm; it consists of a dense packing of regular-size crystallites close to
1 µm wide. The Au layer was found to mimic the morphology of the underlying oxide
film. Moreover, the quality of the piezo-response signal-to-noise ratio is enhanced using
the Au coating in comparison to the scans performed on the uncoated film surface. The
out-of-plane piezo-response amplitude and phase scans observed in Figure 8b,c observe
some crosstalk to the topography, even when measured through the top Au electrode. The
contrast distribution alongside grain boundaries suggests that these can also act as pinned
domain walls. The respective phase histogram, depicted in Figure 8d, is distributed by
two main peaks with a near 180◦ offset, which is indicative of a preferential orientation
of the piezo-response domains (or domain walls) aligned in an out-of-plane direction
with the external electric field. Further confirmation of the presence of domains can be
observed from the lateral force (in-plane) piezo-response amplitude and phase scans seen in
Figure 8e,f. The in-plane contrasting regions encompass several grains, and the histogram
displayed in Figure 8g shows a distribution by three main peaks. Hence, this result proofs
that a significant part of the domains and domain walls have a distribution of piezo-
response orientation around the out-of-plane. Equivalent experiments were performed on
a LM800-in04 sample. The results obtained were similar and confirm both the presence of
piezoelectric properties and a typical ferroelectric-like domain structure.
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4. Conclusions

In this study, we deposited the h-LuMnO3 thin films on fused silica glass and platinized
silicon substrates using the MOCVD technique. The results show that the formation of
the h-LuMnO3 phase mainly depends on the molar ratio of the precursor (Lu/Mn) and
the deposition temperature. It was found that the h-LuMnO3 phase formation can be
achieved within 0.93 < |Lu|/|Mn| < 1.33. Moreover, the films deposited at 700 ◦C were
all amorphous, regardless of the ratio of the starting materials used. A 1 h thermal treatment
at 800 ◦C in air was sufficient to initiate crystallization and produce different phases, which
strongly depended on the ratio of the starting materials. The XRD and Raman results
indicate critical effects of thermal treatment on the quality of the growth phase. The in
situ and ex situ heat treatments for 12 h produced a well-crystallized phase. The films
grown on amorphous fused silica glass allowed the direct measurement of transmittance
and facilitated the band gap measurement using the first derivative and Tauc models. The
results showed a low-band gap between the films, with values around 1 eV for indirect Eg
and 1.5 eV for direct Eg. These values confirm the theoretical calculations in the literature
and are considered very suitable values for applications in photovoltaics and photoactive
materials. The results of the current work are very promising and show the ability of the
direct MOCVD to produce a well crystalized films on various substrates. However, the
presence of the porosity on the \Pt\Si substrates and films deposited hampered further
electrical measurements. Further studies are expected for a higher quality substrates and
should be expanded to investigate the ferroelectric measurements and bulk photovoltaic
effect, because the produced films show the necessary low-band gap feature for solar
energy harvesting.
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film deposition.
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