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Abstract: Osteoblastic and chemical responses to Poly (ether ether ketone) (PEEK) material have
been improved using a variety of low-temperature plasmas (LTPs). Surface chemical properties are
modified, and can be used, using low-temperature plasma (LTP) treatments which change surface
functional groups. These functional groups increase biomineralization, in simulated body fluid
conditions, and cellular viability. PEEK scaffolds were treated, with a variety of LTPs, incubated
in simulated body fluids, and then analyzed using multiple techniques. First, scanning electron
microscopy (SEM) showed morphological changes in the biomineralization for all samples. Calcein
staining, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS)
confirmed that all low-temperature plasma-treated groups showed higher levels of biomineralization
than the control group. MTT cell viability assays showed LTP-treated groups had increased cell
viability in comparison to non-LTP-treated controls. PEEK treated with triethyl phosphate plasma
(TEP) showed higher levels of cellular viability at 82.91% ± 5.00 (n = 6) and mineralization. These
were significantly different to both the methyl methacrylate (MMA) 77.38% ± 1.27, ethylene diamine
(EDA) 64.75% ± 6.43 plasma-treated PEEK groups, and the control, non-plasma-treated group
58.80 ± 2.84. FTIR showed higher levels of carbonate and phosphate formation on the TEP-treated
PEEK than the other samples; however, calcein staining fluorescence of MMA and TEP-treated
PEEK had the highest levels of biomineralization measured by pixel intensity quantification of
101.17 ± 4.63 and 96.35 ± 3.58, respectively, while EDA and control PEEK samples were 89.53 ± 1.74
and 90.49 ± 2.33, respectively. Comparing different LTPs, we showed that modified surface chemistry
has quantitatively measurable effects that are favorable to the cellular, biomineralization, and chemical
properties of PEEK.

Keywords: PEEK; bioactive surface; plasma modification; bone implant; biomineralization

1. Introduction

Poly (ether ether ketone) (PEEK) has multiple properties, including mechanical prop-
erties, that make it a desirable material for several orthopedic applications; however, PEEK
on its own lacks the bioactivity [1,2] necessary for successful osseointegration. This lack
of bioactivity limits its application for use in bone implant technologies. This is due to
its inability to form calcium phosphate (CaP) when implanted in vivo, which results in
poor anchoring of the bone implant. For successful osseointegration, the implant needs
surface bioactivity to promote bone repair as well as adequate mechanical properties [3,4].
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Challenges in efficacious bone implant technologies are multi-faceted. With multiple areas
identified for improvements, surface engineering of bone grafts/implants has become an
increasingly appealing proposition.

Incorporating bone minerals (calcium phosphate or bio-glass) was a sought strategy.
One group, has previously reported the enhancement of mechanical properties of the
synthetic polymer polycaprolactone (PCL) upon the addition of hydroxyapatite [4]. Ye
et al. showed the direct relationship between the quantity of bio-glass content in 3D
printed hydrogel and mechanical compressive strength. The cell viability, at all time
points, peaked at 10% bio-glass and decreased with an increasing amount of bio-glass
in the hydrogel [5]. This demonstrates that, while the quantity of bio-glass material and
compressive strength had a directly proportional relationship, the cell viability had an
inverse relationship to the scaffold functionality. This demonstrates the challenge in striking
a balance between mechanical properties and the biocompatibility of any scaffold. Fragal
et al. used wet chemistry to modify cellulose nano-whiskers, which caused an increase
in hydroxyapatite mineralization on the surface of the material [6]. In that study, a multi-
step synthesis was performed, resulting in an amine modified scaffold that was then
immersed in a weak calcium chloride solution before immersion in simulated body fluid
(SBF). Hydroxyapatite was effectively biomineralized on functionalized nano-whiskers and
demonstrated a cellular viability synonymous with hydroxyapatite; however, this process
took several days and required intensive purification for both functionalization and surface‘
treatment of the nano-whiskers.

Several bioactive molecules are key in the bone remodeling process. Inflammation of
implant site, immunogenicity, and instability of biomolecules themselves are just a few of
the current challenges in BTE [7–9]. Several of the biomolecules, and the corresponding
polymer they are often used with, have been extensively studied, for these applications.
PDLA [10,11], BMP-2 [12,13] PDGP [14] TGF-B [15], and PLGA [16,17] are just a few of
the polymers and biomolecules being used to addressed various problems in BTE. Low-
temperature plasma offers a solution to modifying the surface chemistry of a polymeric
scaffold, acting as a vehicle to transport these bioactive molecules to the surface of the poly-
mer. This technique’s flexibility is demonstrated by the variety of applications, including
surface modification [18], etching [19], modification of surface morphology [20], changing
surface energy of a material [21], and others. Overall, several techniques, methodologies,
and concepts can be implemented to optimize the biomineralization process. Figure 1 shows
a schematic of some of the distinct factors that can be used to increase biomineralization on
a scaffold and varied applications that occur as a result.

The ability to increase the cell viability and bioactivity of polymeric biomaterials using
LTP, where bulk properties of the scaffold are unaffected, is well documented [22]. This
can effectively resolve the issues of an inverse relationship between mechanical properties
and cell viability that Ye et al. observed. Plasma processing is a quick single-step surface
processing technique that can enhance the biomineralization of CaP in simulated body
fluid in vitro, allowing for the multi-phased morphology of CaP in body-like conditions.
This is optimal because hydroxyapatite makes up only one of the many compositional mor-
phologies reinforcing sections of bone. SBF has been experimentally used to quantitatively
analyze the morphological characteristics expected to be on the surface of treated scaffolds
prior to implantation [23].

PEEK applications in orthopedics continue to grow, with just a couple being in fracture
fixation [24–26] and commercialized dental implants such as VESTAKEEP PEEK. PEEK
is one of several polymers that has been investigated for scaffold application in BTE,
some of which include PCL [27,28], Polyurethane [29], and PLA [30–32]. PEEK surface
modification to enhance bioactivity has been documented using plasmas, including poly
acrylic acid [1] and a water argon gas mixture [2]. Studies reported that some forms
of surface modification of PEEK improved its bioactivity, but further optimization of
this polymeric surface is necessary for functional use in bone implants [1,2,22]. LTP
utilizing phosphate functional groups is one application used in creating thin films and
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coating preparations [33–36]. Despite the advantages of surface functionalization with
the chemical moiety PO4

3−, we are not aware of studies that have leveraged the readily
available LTP technology to stimulate the biomineralization of CaP on materials. Our
study hypothesized that using LTP technology to modify PEEK with negatively charged
phosphate groups, obtained through triethyl phosphate (TEP), would provide a higher
quantity of complexing CaP upon immersion of the modified scaffold in SBF. CaP bonding
is electrostatic [37]. Mechanistically, the PO4

3− ion, provided by the TEP plasma treatment,
will cause immobilization of the Ca2+ ion. Electrostatic bonding of PO4

3− will occur, with
the ionic Ca2+ subsequently causing nucleation forming CaP on the surface, which will
result in increased bioactivity of PEEK [38].
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to modify the substrate, while the red arrows show results and applications received from the process.

This study aims to perform the following: (1) explore a novel but robust method to
supply phosphate functional groups to the surface of PEEK; (2) compare the phosphate moi-
ety with other chemical functionalizations known for increasing CaP biomineralization on
PEEK in SBF conditions; (3) examine cell viability and (proliferation) of osteoblast-precursor
cells on PEEK with the differing plasma modifications; (4) validate findings by varying
kinetic conditions to demonstrate chemical trends with this surface processing technique.
In this study, TEP is used to supply phosphate functional groups to PEEK via LTP and this
is then compared with nitrogen functional groups supplied by an ethylene diamine (EDA)
plasma, which has been recently used to enhance biomineralization on a PLA (polylactic
acid) 3D printed scaffold [39], and also with the use of a methyl methacrylate (MMA)
plasma, which in prior studies has resulted in increased hydrophilicity of a polymeric
scaffold through oxidation [40].

2. Materials and Methods
2.1. Materials

Ethylenediamine (EDA), triethyl phosphate (TEP), and methyl methacrylate (MMA)
were purchased from Sigma-Aldrich (St. Louis, MO, USA). PEEK 450G was purchased
from Victrex. Potassium phosphate dibasic trihydrate, sodium chloride, sodium sulfate,
and sodium bicarbonate were all purchased from Arcos Organics. Tris (hydroxymethyl)
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aminomethane and calcium chloride were obtained from Alfa Aesar (Haverhill, MA, USA).
A 1 step PNPP substrate solution was purchased from Thermofisher Scientific (catalog
number 37621). The Invitrogen CyQUANT cell proliferation assay kit was purchased from
Thermofisher Scientific (catalog number V13154) (Waltham, MA, USA). All materials were
stored according to the manufacturer’s instructions.

2.2. Scaffold Formation and Biomineralization Process

A total of 2 g of PEEK pellets were placed in between 2 aluminum cylinders and
pressed into a circular scaffold at 354 ◦C and held for 1 min for the scaffolds to obtain
a diameter of 8 mm. The cylinders were then removed and allowed to cool for 3 min
before the scaffold was removed from between the cylinders. The scaffold was cut into
several pieces, dimensions of 3 × 3 mm (about 0.12 in) and placed into the Harrick PDC-001
(Harrick Plasma Inc., Ithaca, NY, USA) and then treated with different plasmas on both
sides of the scaffold for 30 min at 0.400 Torr. The PEEK materials were immediately placed
in SBF solution, prepared according to ISO (International Standardization Organization)
standard 23317 [41], scaled to a 1.5× concentration, and incubated for 18 days, avoiding
the problems of hydrolysis, and maintaining the integrity of the apatite layer [42], where
the solution was changed every 72 h.

Accelerated Biomineralization of Scaffold

Discs of 5 and 8 mm diameter were made from the plasma-treated PEEK, using carbide
punches of the appropriate diameter, and placed in 10 mL of 1.5× SBF. They were treated
under 1240 W microwave irradiation for 4 min, where the composition of the 1.5× SBF is
described in our prior work [43].

2.3. Characterization of Biomineralized PEEK
2.3.1. Chemical and Biomineralization Characterization
Calcein Staining

A total of 100 mg of each mineralized PEEK sample was lightly washed in DI water.
Each sample was immersed in a pH 10.3 ± 0.1 1 M NaOH/DI water solution and sonicated
for 5 min to dissolve the CaP on the PEEK scaffold. A total of 98 µL of the supernatant
was mixed with 2 µL of a 0.02 M calcein solution. The solute of each sample was placed
on a well plate and measured with the Ultra-LUM ultra-Cam G6 PN: 910-4110-10 digital
imaging system. The camera used to capture the fluorescent images had 12 megapixels
with an F/1.7 50 mm lens. ImageJ determined the pixel intensity from the fluorescence of
each sample to quantify the number of pixels taken out from raw RGB images. Microsoft
Excel for Mac version 16.76 was used to determine the standard deviation from the pixel
size of each sample and to perform a Student’s t-test.

Fourier Infrared Spectroscopy (FTIR)

A Bruker Alpha FTIR system was used to identify the chemical functional groups of
the biomineralized surface via ATR mode. The spectrum measured ranged from 400 to
4000 cm−1 and 64 scans of each scaffold were performed for better peak resolution.

X-ray Photoelectron Spectroscopy

PHI 5000 Versaprobe imaging was used to perform XPS (Physical Electronic Inc.,
Boston, MA, USA). A monochromatic focused X-ray with an Al k-alpha source with a 25 W
power and 100-micrometer spot size. Analysis was performed with the Multipak v9.0
software. The control sample was one where no plasma treatment was performed on the
scaffold, but was submerged in SBF for 18 days. Due to the scaffold formation method,
small quantities of metallic compositions were detected during XPS characterization, but
these were excluded from the reported data.
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2.3.2. Morphological Analysis
Scanning Electron Microscopy (SEM)

SEM was used for analyzing the surface morphological changes of the PEEK scaffold
upon mineralization of the CaP. A Quanta FEG 650 Scanning Electron Microscope Quanta
FEG 650 from FEI, Hillsboro, OR, USA) was used in high vacuum mode. An Au-Pd coating
was sputtered onto the polymer due to the non-conductive nature of PEEK. For all samples,
10 KV at a spot size of 4 was used.

Water Contact Angle (WCA)

Static water contact angle (WCA) was used to examine the hydrophilicity of the PEEK
surface with differing plasma treatments. A syringe was used to place a 7 µL water droplet
on the surface of each scaffold. Free2X Webcam recorder software captured the image and
ImageJ software 1.53 was used to analyze the material. Six measurements were used for
each group, with averages reported with standard deviation.

Surface Roughness Measurement

Keyence microscope model VHX-6000 was used to perform surface roughness mea-
surement on the PEEK material before incubation into SBF. The profile length used on all
samples was 500 µm. The Ra values were collected for each sample with the standard
deviation reported (n = 7 for each sample).

2.3.3. Biological Characterization
Alkaline Phosphatase (ALP) Absorbance

A 1 step P-nitrophenyl phosphatase disodium salt (PNPP) was used to measure the ab-
sorbance of ALP. The manufacturer’s procedure was used to perform this characterization.

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide (MTT) Cell Assay

An Invitrogen CyQUANT cell proliferation assay kit was used to detect cell prolif-
eration of the MG-63 cell line osteoblastic-like cells with a fibroblast morphology. Using
a 96-well-plate format, 30,000 cells/well were seeded and the manufacturer’s procedure
was followed.

3. Results and Discussion
3.1. Wettability of Plasma-Treated PEEK

The experiment was designed to compare both the biomineralization effect on the
PEEK surface and the cellular viability demonstrated by varying LTP. Utilizing different
LTPs causes different functional groups to appear on the scaffold, but this also affects the
wettability of the PEEK surface. The wettability of PEEK may directly affect osteoblastic
adhesion, and as it has been shown, that decreased wettability of a scaffold surface impedes
osteoblastic attachment on polymeric surfaces [44]. Water contact angle measurements
showed an increase in wettability in all treatment samples compared to the control samples
(Figure 2). The significant increase in nitrogen functionalization explains the wettability
increase in EDA. The TEP sample was originally expected to increase the contact angle of
the neat sample due to the increase in phosphate chemical functionalization. However,
there is a decreased contact angle due to phosphate bonding with additional oxygen groups
forming the PO4

3− ion, and the increased surface roughness from the plasma treatment [45].
A probable cause of the increased wettability of the MMA plasma-treated peak can be
attributed to the significantly higher oxygen composition in comparison to the control
PEEK scaffold shown in the XPS data in Tables 1 and 2.
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Figure 2. Water contact angle of PEEK samples before biomineralization, where the standard deviation
of each is shown by the error bars and N = 6 for each sample.

Table 1. XPS elemental composition of plasma-treated samples.

C1s O1s P2p N1s

Neat 77.5 18.9 0 2.6
TEP 47.9 41.3 10.2 0.6

MMA 63.0 30.9 0 0
EDA 73.6 10.2 0 14.0

Table 2. XPS elemental composition of biomineralized samples.

C1s O1s P2p N1s Ca2p

Control 87.1 8.4 0 0 0.9
TEP 57.0 28.5 1.8 4.2 1.5

MMA 86.8 10.7 0 1.2 0.8
EDA 75.0 15.8 0 1.9 1.2

In addition to the increased oxygen composition of the MMA-treated PEEK sample,
wettability is affected by the differing surface roughness for the PEEK sample resulting from
the plasma treatment [40]. It was expected that MMA-treated PEEK would have a higher
WCA than the rest of the PEEK samples, including the neat PEEK, due to its polymer
counterpart being hydrophobic. Wettable materials are materials with a water contact
angle < 90◦. The surface wetness of a material can be increased via increasing the surface
roughness. Analyzing the water contact angle together with surface roughness allows
for a clear understanding of the effect of both the functional group change and surface
roughness on wettability. In general, plasma treatment of polymeric samples increases the
surface roughness of the material, and amongst wettable materials, this increased surface
roughness causes increased wettability. Scaffolds treated with EDA did not show increased
surface roughness, unlike all other plasma-treated scaffolds; however, nitrogen-attached
functional groups, from plasma treatment with EDA, caused increased wettability for those
scaffolds [46–48]. The chemical functionalization provided by LTP along with the surface
roughness explains why all plasma-treated samples in this study had a significant decrease
in water contact angle [49–51]. The Ra values of the different samples are displayed below
in Figure 3.
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Figure 3. Ra value of surface roughness measurement of plasma-treated PEEK. The standard deviation
is shown with error bars where n = 7 for each sample.

3.2. Chemical Characterization of Biomineralization

Chemical characterization of the biomineralized PEEK samples was conducted using
FTIR. Figures 4a and 4b shows the significant increase in this PO4

3− ion in the FTIR by
the increased intensity of the phosphate ion peaks identified at approximately 940 and
1040 cm−1 for the P-O and P=O stretching, respectively [52,53]. Using a common scale to
overlay the FTIR data allowed us to measure the quantification of CO3

2− and PO4
3− by

directly comparing the size of the peaks.
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Figure 4. (a) FTIR of all biomineralized PEEK samples exemplifying the carbonate and phos-
phate peaks. (b) FTIR spectra of accelerated biomineralized samples illustrating carbonate and
phosphate peaks.

The accelerated biomineralized PEEK biomaterial showed similar chemical shifts
as the material incubated for 18 days. The kinetic increase of the biomineralization us-
ing microwave irradiation resulted in a more amorphous CaP than the material incu-
bated for 18 days, as would be expected. Figure 4b, compared to Figure 4a, showed
broader spectral peaks, comparatively not as sharp, attributed to the less crystalline
mineralization performed.

Querido’s experiment explains the relationship between crystallinity and FTIR peak
appearance. He used the Pearson correlation coefficient and analyzed the correlation be-
tween the crystallinity of the CaP using the apatite peak found at about 1015 cm−1, showing
that sharper and more intense peaks at this point signify higher levels of crystallinity of
the CaP formation [54]. Thus, the FTIR spectra behaved in a manner predicted by the
prior literature.

XPS showed a substantial increase in the oxygen composition of the TEP PEEK sample,
as shown in Table 1. The XPS further showed that the phosphate functional groups
were more effective in increasing the compositional percentage of calcium appearing on
the surface versus either the EDA or MMA plasma-treated group exhibited in Table 2.
Accelerated mineralization showed varying results concerning the compositional makeup
of CaP mineralization (Table 3). Surprisingly, during accelerated mineralization, both TEP
and MMA had significant PO4

3− take up in the sample and showed a significant decrease
in Ca2+. These results also correlate to the FTIR data, which clearly show increased levels
of PO4

3− for the A. MMA and A. TEP samples versus the MMA and TEP samples in
Figure 4a,b.
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Table 3. XPS elemental composition of accelerated biomineralized samples.

C1s O1s P2p N1s Ca2p

A. Control 73.2 20.6 0.7 2.1 1.0
A. TEP 76.7 20.6 2.1 0 0.6

A. MMA 60.8 29.7 3.4 4.8 1.3
A. EDA 78.8 16.2 0 2.6 0

Our previous work operated on the notion that both surface chemical modification and
topography etching are instrumental in optimizing the conditions for CaP to be mineralized
in biomimetic conditions. LTP allows the top few nanometers of the polymeric scaffold to
be etched on the top. This positively affects the cellular interactions with the surface of the
polymer and increases the quantity of biomineralization [55]. This further substantiates the
increase of surface area, resulting from LTP treatment, which can contribute to both the
roughening of the polymeric surface morphology and the chemical moieties availability,
where both can aid the formation of CaP [56], as demonstrated in Figure 5.
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Figure 5. Schematic illustrating the biomimetic process utilized in this study, which shows the
varying degrees of biomineralization based on the specific surface plasma treatment, or lack thereof,
that occurred.

Cotrut et al. compared techniques used to increase the surface roughness, and their
results showed that increased surface roughness enhances apatite mineralization ability
and increases osteoblastic in vitro response [57]. Negatively charged particles have been
used in previous studies to enhance the biomineralization of CaP on scaffold surfaces,
which explains why this study takes a dual approach using a singular technique in in-
creasing the bioactivity of PEEK [58,59]. FTIR results in Figures 4a and 4b and the calcein
fluorescence intensity difference shown in Figure 6 demonstrate increased levels of miner-
alization that come as a byproduct of the roughened morphology and increased chemical
functional groups.
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Figure 6. Fluorescence intensity of calcein staining with standard deviation shown by error bars
where N = 6 for each sample. The fluorescent image of the 64 well plates show each of the 6 calcein
stained samples, in direct coordination with and referred to in the graph.

The increase in intensity of the fluorescence indicates more CaP bound by calcein. Due
to the SBF immersion process, loose salts may be present on the scaffold’s surface; therefore,
the materials are washed to mitigate background noise in the signal. The byproduct
resulting from CaP is bound to the surface of the PEEK and is responsible for the resultant
detected levels of fluorescence. It is well documented that greater levels of CaP allow for
superior surface/cellular interface interaction. Additionally, optimizing the surface for the
body to naturally mineralize the phase of CaP enhances the bioactivity of PEEK. Thus yields
a better cellular environment with fewer processing steps needed for the scaffold [60].

3.3. Biological and Morphological Characteristics of PEEK Samples

The cell viability showed a statistically significant increase in all LTP-treated groups
in comparison to the untreated control PEEK scaffold shown in Figure 7b. TEP showed
a more than 30% increase in cellular viability percentage than the control at (82 ± 5)%,
whereas MMA and EDA showed a statistically significant increase in viability at (77 ± 8)%
and (68 ± 5)% compared to the control at (59 ± 6)%. Standard deviations varying by less
than 10% for all characterizations demonstrated the consistency of the method throughout
all groups. The ALP assay showed the control PEEK sample having higher expressions of
the ALP enzyme when compared to all other plasma-treated samples. All samples showed
significantly higher expression than the plated control indicated in Figure 7a. Rapid differ-
entiation of osteoblastic cells was not observed in the LTP-treated PEEK samples. However,
increased osteoblast viability with decreased osteogenic differentiation is a common out-
come for apatite layered materials [43]. With the other chemical characterization showing
higher levels of CaP surface mineralization in this study, mineralization may not occur for
several days in the SBF in vitro [58,61–64]. Several studies have shown that the process
of mineralization may take time in SBF for mineral formation. It was believed that cell
viability would increase with plasma treatment due to the increased surface area. ALP is
considered an early gene indicator for apatite formation and the weak expression despite
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strong apatite formation can be explained. Zhou’s group performed gene expression on
PLA bionanocomposites, and similar to this study, the expression of ALP, in their PLA
bionanocomposites, was reduced despite an increase in apatite. The group listed several
possibilities for this to happen but could not conclusively state why [65].
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Multiple formulations of SBF biomineralization have been used in past studies, how-
ever, this study used the method proposed by Kokubo as it is the most utilized strategy in
apatite biomineralization in SBF conditions. He stated that there is a direct time correlation
between the apatite formation on the surface of a material and the time it takes for a mate-
rial to bond to living bone. He concludes that the degree of apatite formation on a material
predicts the in vivo bioactivity of that material [66–69]. Apatite mineralization, which can
be tested by SBF immersion, is a logical precursor to both in vitro and in vivo studies, both
of which consume time and resources [70]. Additionally, mineralization formation within
the physiological extracellular matrix (ECM) allows yields with comparably better cellular
responses than using a scaffold with the CaP surface coating present before implantation of
the scaffold [71]. This will help decrease the inflammation response of the body due to the
fibrous capsulation of the scaffold upon implantation, and this same inflammation response
dictates the biocompatibility of the biomaterial being used [72]. The quantity, morphology,
mechanical properties, and composition of mineral formation on scaffolds used in body-like
conditions are critical in optimizing biomineralization for increased bioactivity of PEEK.
The mechanical properties of the scaffold will affect cellular adhesion onto the material,
hence material selection and maintaining mechanical properties throughout physiological
healing are of primary concern in tissue engineering. Additionally, osteoblastic adhesion
can be modulated using the mineralized CaP on the polymer surface [73]. The SEM images
in Figure 8 show the significant increase of CaP on the surface of the treated PEEK com-
pared to that of the control scaffold. Nucleation points created through the LTP treatment
allowed the morphology of the particulates to form, as shown in the higher magnification
images (Figure 8b).
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Figure 8. Representative SEM images showing the morphology of biomineralized samples.
(A) Control samples at 5000× magnification. (B) EDA sample performed at 10,000× magnifica-
tion. (C) MMA sample at 3000× magnification. (D) Phosphate sample at 3000× magnification.

The coarse morphology seen in Figure 8b–d results from the significant amount of
mineralization that occurred from plasma treatment. The CaP particle agglomeration, in
the biomimetic biomineralization shown in Figure 8, differs vastly from the accelerated
biomineralized samples, as seen in Figure 9. SEM showed the kinetics of how mineralization
affects both the morphology and particle agglomeration on the surface of the polymer, but
chemical indicators, extracted from comparative FTIR and XPS data, showed the same
thermodynamic formation [74].
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4. Conclusions

Novel LTP treatments were discussed and the resulting biomineralization observed
on the PEEK surface evaluated. After scaffold formation, this one-step surface treatment
technique allowed for effective surface roughening and surface functionalization of those
scaffolds. Furthermore, this technique allows for the modification of a material’s surface,
without affecting the bulk material properties. This allows for controlled optimization of
a material’s biocompatibility, which can be found using scaffold-implanted bone tissue
engineering applications. Several different LTPs are often used to modify a material’s
surface in a manner that would be conducive for biomineralization. FTIR, XPS, and calcein
staining showed increased levels of both carbonate and phosphate resulting from TEP
plasma treatment. Generation of phosphate groups across the surface of PEEK using TEP
resulted in an increase of CaP biomineralization on the surface of the PEEK material. This
CaP biomineralization led to an increase in cellular viability and proliferation compared to
all other LTP treatment methods. Although the TEP plasma-treated group demonstrated the
most significant increase in biocompatibility, all plasma-treated groups showed significantly
higher levels of cellular viability and proliferation in comparison to the untreated control
scaffold. This study has major implications for the future of PEEK in BTE and the advantage
of the one-step surface treatment method of LTP; additionally, a possible methodology to
decrease implant-associated inflammations was proposed. Future research would test the
PEEK implant’s bio-integration in an animal model for exploring the biomineralization
efficacy in vivo.
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