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Abstract: In the present work, activated-carbon-containing pellets were preparedby direct chemical
activation of sawdust, using clays as a binder. The obtained pellets (ACC) were coated with hydrox-
yapatite (HAp) nanoparticles (ACC-HAp) to improve adsorption towards Pb(II), Cu(II), Zn(II), and
Ni(II). The pellets were characterized by scanning electron microscopy (SEM), by Fourier transform
infrared spectroscopy (FTIR), and with a gas sorptometer. The effect of pH, contact time, and initial
concentration on adsorption performance was investigated. Additionally, desorption studies were
performed, and the regeneration influence on compressive strength and repeated Pb(II) adsorption
was investigated. The results showed that, after coating ACC pellets with HAp nanoparticles, the
adsorption capacity increased for all applied heavy metal ions. Pb(II) was adsorbed the most, and
the best results were achieved at pH 6. The adsorption process followed the pseudo-second-order
kinetic model. The adsorption isotherm of Pb(II) is better fitted to the Langmuir model, showing
the maximum adsorption capacity of 56 and 47 mg/g by ACC-HAp and ACC pellets, respectively.
The desorption efficiency of Pb(II)-loaded ACC-HAp pellets increased by lowering the pH of the
acid, resulting in the dissolution of the HAp coating. The best desorption results were achieved
with HCl at pH 1 and 1.5. Therefore, the regeneration procedure consisted of desorption, rinsing
with distilled water, and re-coating with HAp nanoparticles. After the regeneration process, the
Pb(II) adsorption was not affected. However, the desorption stage within the regeneration process
decreased the compressive strength of the pellets.

Keywords: activated carbon; hydroxyapatite; pellets; heavy metals; adsorption; regeneration

1. Introduction

Water and wastewater pollution with heavy metals is a global problem. Heavy metal
pollution can originate from both natural and anthropogenic sources. The main natural
sources are weathering of rocks and volcanic activities. Some of the primary anthropogenic
sources are mining, mineral processing, agriculture, and manufacturing. Most heavy metals
are toxic and carcinogenic and, therefore, can cause serious harm to the environment and
human health. They can damage the liver, kidney, brain, nervous system, and blood; cause
Alzheimer’s disease; and be lethal even at low concentrations. For example, excess copper
retention causes Wilson’s disease, and copper and zinc impede neurodevelopment when
excessive amounts enter the brain. Nickel works as a carcinogen by controlling carcinogenic
mechanisms, but lead has a deleterious effect on all organs, especially kidneys [1–3].

There are many methods for removing heavy metals from wastewater—chemical
precipitation, ion exchange, adsorption, reverse osmosis, coagulation and flocculation,
membrane separation, etc. Among these methods, adsorption is considered the most
effective and economically viable. The adsorption process also has a regeneration possibility
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for the adsorbent, thereby recovering the heavy metals as they cannot be destroyed or
degraded [2,4,5].

The properties of an ideal heavy metal adsorbent are high adsorption capacity, ease of
handling in dynamic conditions, mechanical durability (for granules and pellets), reusabil-
ity after regeneration, and high selectivity for better heavy metal recovery. The adsorbent
also should have a long application life and, afterwards, have the possibility for easy
recycling or discarding without a negative impact on the environment. Low cost and
uncomplicated manufacturing are also important factors. In the last few decades, various
adsorption materials have been investigated—natural and synthetic, inorganic and organic,
pure materials, and in combination with other materials (composites) [4,5]. Activated
carbon (AC) is a widely studied material for removing heavy metals due to its high specific
surface area and effective adsorption properties. AC has relatively high affinity towards
Pb(II), Cd(II), Cu(II), Ni(II), and Zn(II) [6–9]. Application of AC in powder form in the
adsorption process has some disadvantages, such as agglomeration and filtration difficul-
ties due to very fine particles that form a dense filter layer in slurry phase operations [10].
Additionally, a huge volume of adsorbent is required in the adsorption process. In closed
vessels, high hydraulic pressure and flow resistance can occur, and, afterward, the used
fine particle adsorbent is difficult to operate and regenerate [11]. Therefore, applying AC in
the form of pellets or granules would be essential to avoid these disadvantages.

AC is prepared from various raw materials, but the most common are wood, charcoal,
coconut, peat shells, lignite, and biomass [12]. The application of certain materials for AC
preparation and investigation-related studies is probably based on these materials’ avail-
ability in the surrounding area or country. Timber processing is Latvia’s most significant
industrial sector because forests cover more than 50% of the territory [13]. The sawdust
generated from wood processing is used to manufacture products like pellets, briquettes,
and particle boards and in various scientific research projects to develop new products.
Nevertheless, a lot of sawdust waste is just discarded, so developing a new product would
increase the practical application of this material.

Activated carbon can be prepared through chemical and physical activation. Although
physical activation is a chemical-free process, it has two main disadvantages—long activa-
tion time and high energy consumption [11]. In the chemical activation of sawdust, the AC
can be prepared through a direct activation [11,14,15] or a two-stage process including ini-
tial carbonization or pyrolysis and then activation [12,16,17]. The direct activation process
is less time-consuming and low-cost and effective adsorption properties can be achieved.
In the literature, most research on adsorption is conducted AC obtained from sawdust as
a powder or small particles (wood chips). There is a lack of information on AC pellets or
granules prepared from sawdust for heavy metal adsorption. Tang et al. [11] investigated
malachite green dye removal with AC pellets prepared by mixing AC and acid-impregnated
sawdust, hand-pressing in a cylindrical mold, and pyrolyzing. Li et al. [14] investigated
the physical characteristics of AC pellets prepared by direct activation of acid-impregnated
sawdust pressed as pellets. Therefore, in this study, AC pellets were prepared via direct
activation of an extruded mixture of sawdust, acid, and clays. Clays were added as a binder
due to their inertness and thermal resistance.

There are numerous studies about the modification of AC to improve the adsorption
capacity and affinity to specific contaminants [18,19]. One of the materials used in AC
modification is hydroxyapatite (HAp, chemical formula Ca10(PO4)6(OH)2). HAp is the most
stable calcium phosphate form, naturally occurring in bones and teeth. Synthesized HAp
is mainly used in bone defect regeneration [20]. However, there are studies about applying
HAp as a macronutrient nano-fertilizer in agriculture [21] and in the defluoridation method
(fluoride removal) for drinking water [22]. HAp can also be used for the removal of
heavy metal ions like Pb(II), Zn(II), Cu(II), and Ni(II) from aqueous solutions [23–27].
Jayaweera et al. [28], Fernando et al. [29], and Long et al. [30] showed that HAp and
granular AC (GAC) composites have higher Pb(II) adsorption than pure GAC. Studies by
Wang et al. [7] and Chen et al. [31] revealed as well that HAp and biochar (BC) composites
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have increased adsorption towards Pb(II), Cu(II), Zn(II), and Cd(II) compared to pure
BC. In these previous studies, HAp composites were prepared using an in situ method—
during HAp synthesis. In this study, HAp nanoparticles are coated using the dip coating
method—by immersing AC pellets into diluted HAp particle solution.

The aim of this work is to prepare AC pellets by direct chemical activation of sawdust,
using clay as a binder, and to modify them with HAp nanoparticles to improve adsorption
properties towards the following heavy metals: Pb(II), Cu(II), Zn(II), and Ni(II). The
obtained pellets were characterized with various methods; Pb(II) adsorption was conducted
initially and the possible regeneration process was investigated.

2. Materials and Methods
2.1. Materials

Pine sawdust with a particle size of <0.125 mm was obtained from the Latvian State
Institute of Wood Chemistry. Illitic clays were obtained in the southwest of Latvia at 2–2.5 m
depth. A clay fraction with particle size < 63 µm (obtained by wet sieving) containing
52% clay minerals was used. For the chemical activation of sawdust, concentrated H2SO4
(Trace Metal Grade, Sigma Aldrich, St. Louis, MO, USA) was used. For the synthesis of
HAp, ≥97.0% (from marble) CaO (Fluka, Charlotte, NC, USA) and 85% H3PO4 (Sigma
Aldrich, St. Louis, MO, USA) were used. For adsorption and desorption experiments,
analytical-grade NaCl, NaOH, HCl, Pb(NO3)2 and Ca(II), Mg(II), Pb(II), Cu(II), Ni(II), and
Zn(II) standard solutions with concentrations of 1000 mg L−1 (Sigma Aldrich, St. Louis,
MO, USA) were used.

2.2. Preparation of ACC Pellets

Sawdust was mixed with clays and 50% sulfuric acid. The volume ratio of sawdust,
clays, and sulfuric acid was 1:1:1, accordingly. The mass was mechanically mixed and
extruded through a syringe with a diameter of 4 mm. The obtained rods were dried on a
stove at 100 ◦C for 30–40 min, broken into 6–8 mm-long pieces, and pyrolyzed at 500 ◦C
for 2 h with a heating rate of 5 ◦C min−1 in nitrogen flow. After cooling, the pellets were
rinsed to remove the remaining sulfate ions.

2.3. Synthesis of HAp

HAp was synthesized by a wet precipitation reaction between Ca(OH)2 and H3PO4,
as described before [32], with few modifications. The suspension of 0.15 M Ca(OH)2 was
obtained by the “lime slaking “process, where CaO is vigorously mixed with distilled water
for 1 h. Then, 2 M H3PO4 was slowly (~0.75 mL/min) added to the Ca(OH)2 suspension
under vigorous stirring. The temperature of the synthesis was maintained constant at 45 ◦C.
When the pH reached 7, the synthesis solution was stabilized (stirred) for 2 h. The obtained
precipitates were matured at ambient temperature for 14–15 h and then filtered.

2.4. HAp Coating

Next, 2–3 wt% HAp nanoparticle suspension was prepared from filtered HAp precipi-
tates. The pellets were immersed in HAp suspension for 20–30 s, taken out, and dried at
60 ◦C until reaching constant mass. This procedure was repeated two times.

2.5. Characterization of Pellets

Specific surface area (SSA), pore size distribution, and total pore volume were deter-
mined with the nitrogen gas adsorption method, performed with QuadraSorb SI (Quan-
tachrome Instruments, Boynton Beach, FL, USA). SSA was calculated according to the BET
method. The pore size distribution and total pore volume were derived from desorption
branches of isotherms using the BJH model.

The point of zero charge (pHpzc) was determined using the pH drift method. One
pellet (~0.05–0.06 g) was immersed in 20 mL of 0.01 M NaCl solution with pH values
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between 3 and 10. After 24 h under agitation, the final pH was measured. The pHpzc is the
point where pHinitial − pHfinal = 0.

Surface morphology was investigated with a scanning electron microscope (SEM)
Phenom ProX (PhenomWorld, Eindhoven, The Netherlands). The acceleration voltage was
5 kV.

For the analysis of functional groups, Fourier transform infrared (FTIR) spectra were
taken using a Thermo Scientific Nicolet™ iSTM50 (Thermo Fisher Scientific, Waltham,
MA, USA) spectrometer in the Attenuated Total Reflectance (ATR) mode. Spectra were
obtained over a range of wavenumbers from 400 cm−1 to 4000 cm−1, using 64 scans with
4 cm−1 resolutions. For the measurements, the pellets were crushed in a pestle. Before
every measurement, a background spectrum was taken.

Compressive strength tests were conducted with a testing machine Tinius Olsen 25ST
(Tinius Olsen, Redhill, UK), using a load cell with a maximum load capacity of 250 N and a
compression speed of 1 mm/min. The pellets were compressed vertically.

2.6. Adsorption Studies

For all experiments, one pellet (~ 0.05–0.06 g) was mixed with 5 mL of heavy metal
solution and shaken at 150 rpm at room temperature. Multi-metal solutions containing
Cu(II), Pb(II), Ni(II), and Zn(II) (50 mg L−1 each) were used for sorption kinetics and pH
influence on adsorption. These solutions, with pH 4–6 and an adsorption time of 24 h,
were used to evaluate the pH influence on removal percentage. Multi-metal solution with
pH 6 at various adsorption time intervals (8, 16, 20, 24, 30, and 40 h) was examined for
sorption kinetics experiments. The pH of the solutions was adjusted with HCl and NaOH.
Pb(II) solutions with pH 6 and various initial concentrations (50–1500 mg/L) were used to
obtain sorption isotherms. All used solutions for adsorption experiments also contained
background cations—80 mg L−1 of Ca(II) and 30 mg L−1 of Mg(II). These ions were added
to bring the experiment closer to actual adsorption conditions because all types of water
(except for distilled) contain calcium and magnesium ions, and they can decrease the
adsorption efficiency. Heavy metal concentrations were determined using an inductively
coupled plasma mass spectrometer ICP-MS, 8900 Triple Quad (Agilent Technologies St.
Clair, CA, USA). The removal percentage (R %) was calculated as follows:

R % = (C0 − Ce)/C0 ∗ 100% (1)

where C0 and Ce (mg/L) are the initial and equilibrium heavy metal concentrations, respectively.

2.7. Adsorption Kinetic and Equilibrium Models

To analyze and describe the kinetics of Pb(II), Cu(II), Zn(II), and Ni(II) adsorption, pseudo-
first-order (PFO) and pseudo-second-order (PSO) models were used [33]. The linear equations
for PFO and PSO models are expressed by the following Equations (2) and (3), accordingly:

ln(Qe − Qt) = lnQe − k1t (2)

t/Qt = 1/k2Qe
2 + 1/Qe ∗ t (3)

where Qt (mg/g) is the adsorbed amount at a certain time (t); Qe is the adsorbed amount
(mg/g) at equilibrium; and k1 (h−1) and k2 (g/mg·h) are the adsorption rate constants of
PFO and PSO, respectively.

Langmuir and Freundlich isotherm models [34,35] were applied for Pb(II) adsorption
to interpret the adsorption isotherm data. The linear form of the Langmuir isotherm is
as follows:

Ce/Qe = 1/qmax ∗ KL + Ce/qmax (4)
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where Ce is the metal ion concentration (mg/L) at equilibrium, KL is the Langmuir constant
(L/mg), and qmax is the maximum adsorption capacity (mg/g). The linear form of the
Freundlich isotherm is as follows:

logQe = logKF +
1
n
∗ logCe (5)

where KF is the adsorption capacity (mg/g) and n is the adsorption intensity.

2.8. Desorption Studies

One ACC-HAp pellet was mixed with 5 mL of Pb(II) solution with a concentration of
50 mg/L and pH 6 and shaken at 150 rpm at room temperature. After 20 h, the metal-loaded
pellet was removed, slightly rinsed with distilled water, and inserted into a flask with 5 mL
of HCl or HNO3 solutions at pH values of 1–3 for 30 min. Afterward, the pellet was rinsed
with distilled water until reaching neutral pH. Desorption efficiency (D%) was calculated
as follows:

D % = mdes/mads ∗ 100% (6)

where mads and mdes (mg) are the masses of Pb(II) adsorbed on the adsorbent and desorbed
from the adsorbent, respectively.

2.9. Regeneration and Repeated Adsorption

One ACC-HAp pellet was mixed with 5 mL of 200 mg/L Pb(II) solution at pH 6
and shaken at 150 rpm at room temperature. After 20 h, the pellet was removed and the
residue Pb(II) concentration was measured in the solution. The pellet was slightly rinsed
with distilled water and inserted into a flask with 5 mL of HCl (1) at pH 1–2 for 30 min
for compressive strength experiments and (2) at pH 1.5 for 1 h for repeated adsorption.
Afterward, the pellet was rinsed with distilled water until reaching neutral pH, dried,
and re-coated with HAp particles as described above. This adsorption–regeneration cycle
mentioned above was repeated three more times.

3. Results and Discussion
3.1. Physical Characterization

The physical appearance of both pellets can be seen in Figure 1. ACC pellets are black
but become greyish/blue when coated with HAp nanoparticles. The morphology of the
ACC-HAp pellet is shown in Figure 2. Clay mineral particles (sheets) can be seen inside
the pellet (Figure 2a). Figure 2b shows the surface of the ACC-HAp pellet.
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Figure 2. SEM images of ACC-HAp (a) cross-section and (b) surface.

The pore diameter for ACC pellets is mainly centered at about 8 nm, as obtained
from the pore size distribution (Figure 3), whereas ACC-HAp pellets contain a slightly
larger amount of smaller pores than ACC with a peak at about 4 and 5.5 nm. As shown in
Table 1, ACC pellets have slightly larger total pore volume and SSA than ACC-HAp—0.41
and 0.37 cm3/g and 188 and 195 m2/g, respectively. However, the statistical evaluation,
using an unpaired Student’s t-test (significance level set at p < 0.05), shows no statistically
significant difference in these characteristics between ACC and ACC-HAp pellets.
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Figure 3. Pore size distribution of both pellets.

Table 1. Specific surface area and total pore volume.

Samples SSA, m2/g Total Pore Volume, cm3/g pHpzc

ACC 195 ± 8 0.41 ± 0.02 6.3 ± 0.8
ACC-HAp 188 ± 9 0.37 ± 0.03 6.5 ± 1.3

The pHpzc for ACC is 6.3, but for ACC-HAp, 6.5. Since the adsorption processes are
conducted at lower pH than pHpzc, both pellets have a positive net surface charge during
the adsorption, which is unfavorable for the adsorption of positively charged metal ions.

The FTIR spectra of ACC pellets and ACC-HAp pellets before and after adsorption
of Pb(II), Cu(II), Ni(II), and Zn(II) are shown in Figure 4. The broad band at around
3400 cm−1 can be assigned to O-H stretching, but the one at around 580 cm−1 to O-H
bending vibrations [36]. The band at 1000–1100 cm−1 corresponds to the vibrations of
C-O [37]. The band around 1600 cm−1 is assigned to O-H bending from the absorbed
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water. The bands at 798 cm−1, 778 cm−1, and 692 cm−1 are attributed to Si-O stretching
from quartz particles in clay. The band at around 400–460 cm−1 could be attributed to
Si-O bending from clays [38]. In the ACC-HAp spectra, an additional band at 564 cm−1

corresponds to the vibrations of the phosphate groups from the coated HAp particles. The
presence of the other HAp phosphate group around 1037 cm−1 can be seen as a slight shift
to the right of the band at 1000–1100 cm−1 [30]. After the adsorption, the intensity of the
band at 1000–1100 cm−1 decreases, suggesting that -PO4 and C-O functional groups were
involved in the adsorption process.
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3.2. Adsorption Studies

The effect of initial pH on the competitive adsorption of Pb(II), Cu(II), Ni(II), and Zn(II)
by both ACC and ACC-HAp pellets are shown in Figure 5. The results show that the uptake
percentage increases by increasing the pH, and the maximum adsorption of all ions is
reached at pH 6 for both pellets. Therefore, in this work, pH 6 was used in other adsorption
studies as the optimum pH value, similar to other studies in the literature [7,28,29].
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Figure 5. Effect of pH on the removal of Pb(II), Cu(II), Ni(II), and Zn(II) for 24 h by (a) ACC and
(b) ACC-HAp pellets.

The influence of contact time on the competitive adsorption of heavy metals by ACC
and ACC-HAp is shown in Figure 6. According to the results, Pb(II) is being adsorbed at
a greater extent and faster than other ions. In the first 8 h, ACC-HAp removes 76% from
the added Pb(II) concentration, which is 15% more than ACC. Overall, most of the heavy
metals are adsorbed in the first 8 h due to the large availability of functional groups on the
surface. The filling of these groups results in a slower further adsorption process. When
the adsorption equilibrium for Pb(II) and Cu(II) is reached (at 20 and 24 h, respectively),
the difference between the removal percentage of these two ions has decreased. For Ni(II)
and Zn(II), the adsorption equilibrium is achieved between 24 and 30 h.
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(a) ACC and (b) ACC-HAp pellets.

According to Figures 5 and 6, ACC-HAp has slightly higher adsorption than ACC
towards all ions. Similar results were obtained in other studies, where Pb(II), Cu(II),
and Zn(II) adsorption was improved after modifying GAC [28,29] and BC [7,31] with
HAp particles.

All pellets have much higher adsorption towards Pb(II) and Cu(II) than towards
Zn(II) and Ni(II). Overall, the highest removal percentage is for Pb(II) for both pellet types.
Other studies about competitive adsorption that included Pb(II), Cu(II), and other ions
with both AC [1,39,40] and HAp [41,42] showed that Pb(II) is adsorbed better than other
ions like Cu(II), Cd(II) and Ni(II). It is suggested that this could be influenced mainly
by a combination of three factors—electronegativity, radius, and free energy of hydrated
ions [42–44]. A higher electronegativity has a positive effect on adsorption efficiency,
and for Pb(II), it is 2.33 (Paulig), but for Cu(II), Ni(II), and Zn(II), it is 1.9, 1.91, and 1.65,
respectively [42,43,45]. For ions with a smaller hydrated radius, the center of the charge is
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closer to the surface of the adsorbent, and the electrostatic interaction is stronger. Ions with
lower hydration energy are easier to dehydrate and thus adsorb. The radius and energy of
hydrated Pb ions are smaller than for other ions—0.401 nm and −1481 kJ/mol, respectively.
For Cu(II), Ni(II), and Zn(II), the hydrated radius is 0.419, 0.404, and 0.430 nm, respectively,
but the hydration energy is −2100, −2106, and −2046 kJ/mol, respectively [43,44]. For
HAp, the favorable adsorption towards Pb(II) is also explained by the ionic radius of 1.19 Å,
which is close to the Ca(II) radius of 0.99 Å [42,44]. For Cu(II), Ni(II), and Zn(II), the ionic
radius is 0.73, 0.69, and 0.74 Å, respectively [42].

To determine the rate-controlling step of the adsorption process, linear regression of
the experimental data with two kinetic models was performed. The graphical plots of the
PSO and PFO models for the competitive adsorption of Pb(II), Cu(II), Zn(II), and Ni(II) are
shown in Figure 7. The obtained kinetic parameters and correlation coefficients (R2) were
calculated and listed in Table 2. The visual analysis of the graphical plot suggests that the
PSO model better fits the experimental data. It is approved by the regression results, where
R2 values for the PSO model are higher than those of the PFO kinetic model. Moreover,
the calculated (Qe, cal) values of the PSO model are much closer to the experimental (Qe, exp)
values than for the PFO model. For Pb(II) and Cu(II), the Qe, cal values are more similar to
those of Qe, exp than for Ni(II) and Zn(II). The obtained results indicate that the adsorption
process is controlled by chemical reactions, such as ion exchange, surface complexation,
and/or precipitation [26,33]. These reactions can occur on AC and HAp surfaces [26,27,46].
This rate-controlling step agrees with the fact that both pellets have a net positive charge
during adsorption due to the pHpzc values (Table 1). Therefore, the adsorption is not
controlled by electrostatic attraction. Other studies on heavy metal adsorption by activated
carbon and HAp composite also showed that the PSO model best fits the experimental
data [7,30,31].
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Table 2. Kinetic parameters of Pb(II), Cu(II), Zn(II), and Ni(II) competitive adsorption.

Pellet Ion

Experimental
Data Pseudo-First-Order Pseudo-Second-Order

Qe, exp
(mg/g) k1 (h−1) Qe, cal

(mg/g) R2 k2
(g mg−1 h−1) Qe (mg/g) R2

ACC

Pb(II) 4.6 0.27 27.7 0.9309 0.048 5.3 0.9976
Cu(II) 4.2 0.23 34.2 0.9793 0.035 4.9 0.9888
Zn(II) 2.9 0.12 10.9 0.9666 0.011 4.5 0.9709
Ni(II) 2.2 0.11 11.5 0.9832 0.007 4.2 0.9853

ACC-HAp

Pb(II) 5.3 0.23 10.9 0.9411 0.22 5.7 0.9994
Cu(II) 4.7 0.15 8.2 0.9220 0.15 5.2 0.9962
Zn(II) 3.3 0.17 18.8 0.9580 0.19 4.6 0.9742
Ni(II) 2.8 0.12 13.7 0.9806 0.12 4.3 0.9813

The effect of the initial Pb(II) concentration on ACC and ACC-HAp adsorption capac-
ity was investigated. The obtained data are interpreted and plotted using the Langmuir
and Freundlich models (Figure 8). The constants of both models in Table 3 are calcu-
lated using the slope and intercept of the linear trend lines of graphs Ce/Qe vs. Ce and
log Qe vs. log Ce, respectively.
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Table 3. Langmuir and Freundlich adsorption isotherm constants for the adsorption of Pb(II).

Pellet
Langmuir Constants Freundlich Constants

qmax (mg/g) KL (L/mg) R2 KF n R2

ACC 47 0.0063 0.9899 2.42 2.03 0.9274
ACC-HAp 56 0.014 0.9969 1.57 2.03 0.9714

According to the R2 values, ACC and ACC-HAp isotherm experimental data are better
fitted by the Langmuir model (0.9866 and 0.9969) than the Freundlich model (0.9274 and
0.9714), suggesting that Pb(II) forms a monolayer coverage [47] on these pellets. Previ-
ous research showed that AC and AC and HAp composites can form a monolayer and
multilayer coverage [28,29].

ACC-HAp pellets have a higher KL value than ACC, indicating higher affinity towards
Pb(II), confirmed by ACC-HAp’s higher maximum adsorption capacity (qmax) than ACC
pellets—56 and 47 mg/g, accordingly. Such results could be explained as due to slightly
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higher SSA for ACC-HAp than for AC, and many studies showed that HAp particles have
a higher affinity towards Pb(II) ions than AC [6,48,49].

The adsorption performance was compared with other modified and non-modified
AC adsorbents in granular and pellet forms in the literature and summarized in Table 4.
Both ACC and ACC-HAp show good and competitive Pb(II) adsorption performance,
considering the presence of calcium and magnesium ions mentioned in Section 2.6. For
example, GAC from coconut shells studied by Caccin et al. [50] showed 1.7 times higher
Pb(II) adsorption, but took two times longer to achieve equilibrium time than ACC-HAp.
Jayaweera et al.’s [28] study revealed that GAC modification with HAp particles increased
the adsorption capacity by 18.7%. However, in this study, the adsorption capacity of pellets
coated with HAp particles was increased to only slightly higher—by 19.1%. Nevertheless,
the added value of ACC-HAp pellets is the application of the dip coating instead of the in
situ method for HAp coating, which is more time-consuming and complicated.

Table 4. Comparison with other AC adsorbents in granular and pellet forms.

Adsorbent Pb(II) Adsorption
Capacity, mg/g Equilibrium Time, h pH Reference

GAC 31.1 2.25 6 [28]
GAC and HAp composite 36.9 2.25 6 [28]
GAC and HAp composite 14.41 2.5 6 [29]
GAC from hazelnut husks

activated with ZnCl2
13.05 1 6.7 [49]

GAC from coconut shells 32.08 96 5 [50]
GAC from coconut shells 92.39 40 5 [50]
GAC modified with Na2S 21.88 - 5 [51]

Pellets from activated coal fly ash 45.25 72 7 [52]
Pyrolyzed pellets from phoenix tree
leaf powder and bentonite mixture 71 20 5 [53]

ACC 47 20 6 This study
ACC-HAp 56 20 6 This study

3.3. Desorption Studies

The desorption process is essential for reusing the adsorbent. In the desorption process
of AC, usually, inorganic acids like HCl, HNO3, and H2SO4 are used [9,43,54,55], but there
are scarce studies about HAp regeneration possibilities. Wang et al. [7] used 0.2 M HCl
(pH = 0.7) for Pb(II) desorption from BC and HAp composite.

In this study, HCl and HNO3 were used at a pH range of 1–3 for ACC-HAp regen-
eration studies, as shown in Figure 9. The results show that the desorption efficiency is
decreased by increasing the pH value. For both acids, there is a rapid decrease in desorption
efficiency at pH > 2. HCl shows the highest desorption efficiency—98% and 97% at pH 1
and 1.5, respectively. It was visually observed that, at a pH range of 1–2, HAp particles
were fully dissolved from the ACC-HAp pellet surface, but HAp was dissolved partially at
pH > 2. These HAp dissolution observations positively correlate with desorption efficiency,
suggesting that Pb(II) primarily adsorbs onto the HAp surface. On the other hand, in AC
desorption, the inorganic acids are used at pH < 1.1 [43,54,55], suggesting that desorption
efficiency decreases at higher pH.

3.4. Compressive Strength

In addition to sufficient adsorption properties, the adsorbents must also be mechani-
cally durable for better handling of the material. The compressive strength of untreated
individual ACC-HAp pellets and those pellets after four adsorption–regeneration cycles
with HCl solution at pH 1–2 can be seen in Figure 10. The results show that the compressive
strength of untreated ACC-HAp pellets varies from 0.93–1.3 MPa, with the average value
of 1.1 ± 0.1 MPa. After four adsorption–regeneration cycles, the compressive strength
decreased. The most rapid decrease is after desorption at pH 1, where the average com-
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pressive strength is 0.66 ± 0.04 MPa. At pH 1.5 and 2, the average compressive strength
is similar—0.88 ± 0.05 MPa and 0.92 ± 0.09 MPa, respectively. Due to these and the
Section 3.3 results, desorption with HCl at pH 1.5 was chosen for regeneration and re-
peated adsorption experiments.
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3.5. Regeneration Influence on Pb(II) Adsorption

To evaluate the reusability of ACC-HAp pellets, regeneration and repeated adsorp-
tion were performed. The adsorption capacity in the first adsorption–regeneration cycle
(Figure 11) is before the regeneration process. The results show that the adsorption capacity
in every following cycle is different—both higher and lower than in the first cycle. This
is probably because each regeneration process involves coating new HAp particles that
restore the adsorption properties. The adsorption capacity slightly varies between the
pellets because of uneven HAp coating that can be observed visually. However, based on
the statistical evaluation, there is no statistically significant difference in the adsorption
capacity between these cycles.
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4. Conclusions

In this study, activated carbon and clay pellets (ACC) were prepared by direct chemical
activation of sawdust and clay pellets. These pellets were successfully coated with hydrox-
yapatite (HAp) nanoparticles by dipping them into dilute HAp suspension. The obtained
ACC-HAp pellets exhibited higher adsorption towards Pb(II), Cu(II), Zn(II), and Ni(II)
than ACC. The adsorption of all ions by both pellets is controlled by chemisorption due
to a good fit of the pseudo-second-order model. The best adsorption results of ACC-HAp
pellets were reached with Pb(II) at pH 6, having the maximum adsorption capacity of
56 mg/g. The Pb(II) adsorption isotherm fitted more to the Langmuir model.

A successful desorption process of the Pb(II)-loaded ACC-HAp pellets was obtained
by using HCl solution at pH 1.5–2. At lower pH, the mechanical strength of the pellets
decreased rapidly. Due to the dissolution of the HAp coating during the desorption stage,
the regeneration process had three stages—desorption, rinsing in distilled water until
neutral pH, and re-coating with HAp particles. The regeneration process did not have a
negative effect on repeated Pb(II) adsorption, making these pellets reusable.

Our research suggests that these pellets have the potential to be used as adsorbents.
However, further research is necessary to improve their mechanical strength. Overall, the
obtained results provide insight into the effectiveness of HAp-coated pellets in removing
heavy metals from wastewater.
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