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Abstract: Optical fiber tips with the flat end-facets functionalized take the special advantages of
easy fabrication, compactness, and ready-integration among the community of optical fiber devices.
Combined with plasmonic structures, the fiber tips draw a significant growth of interest addressing
diverse functions. This review aims to present and summarize the plasmonic functionality of optical
fiber tips with the current state of the art. Firstly, the mechanisms of plasmonic phenomena are
introduced in order to illustrate the tip-compatible plasmonic nanostructures. Then, the strategies
of plasmonic functionalities on fiber tips are analyzed and compared. Moreover, the classical ap-
plications of plasmonic fiber tips are reviewed. Finally, the challenges and prospects for future
opportunities are discussed.
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1. Introduction

Among various optical components, optical fibers possess unique properties, such as
small size, mechanical robustness, flexibility, and immunity to electromagnetic interference.
The tremendous success of optical fiber technology completely changes our modern society.
Despite the countless applications of optical fibers around the world, the availabilities of
materials (typically SiO2) and geometries of optical fibers obstruct further progress. The
functionalization of optical fibers opens up a new pathway to extend the potential of optical
fibers, launching the recent rise of “lab-on-fiber” technology [1,2]. In terms of lab-on-fiber
technology, functionalized materials and components defined at the micro and nano scales
are introduced to optical fiber platforms, transforming conventional optical fibers into
multifunctional devices.

Basically, lab-on-fiber technology includes “lab-around-fiber”, “lab-in-fiber”, and
“lab-on-tip”, where the functionalization is processed on side-walls, inner holes, and
end-facets of fibers, respectively. Relatively, fiber tips are ready for integrations of
functional media and plug-and-play capability due to the planar substrate and light
transmission output [3,4]. However, the fiber tips suffer from short light-matter in-
teraction distance, small sensing area, and ultra-large aspect ratio. Fortunately, the
emergences of novel physical mechanisms and advanced nanofabrication techniques
help address the challenges with respect to lab-on-tips.

The plasmonic phenomenon involves the strong light-matter interaction in metallic
media [5,6]. The combination of plasmonics with the established fiber tips led to an exciting
spectrum of possibilities, including high performances and multi-functionalities. On the
other hand, the significant advances in tip-compatible nanofabrication techniques provide
diverse opportunities to construct on-demand fiber tips, including plasmonic fiber tips.

In this review, we aim to provide a general overview of fiber tip devices, with a
special focus on plasmonic fiber tips. Firstly, the basic physics of different plasmonic
structures (planar film, isolated nanoparticle, and nano-array) are discussed in order to
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suggest tip-compatible plasmonic configurations. Secondly, the main fabrication techniques
(self-assembly, lithography, and transfer methods) of plasmonic fiber tips are reviewed with
a comparison of the merits of each technique. Furthermore, the interesting applications of
plasmonic fiber tips are highlighted. Finally, challenges and prospects that lie ahead are
outlined in order to motivate and direct future research efforts into plasmonic fiber tips.

2. Physical Mechanisms

The plasmonic phenomenon commonly refers to the optical resonances in metallic
structures under external light excitations [7]. According to the excitation conditions
and supporting structures, plasmonic resonances include surface plasmon resonance
(SPR) at the metal-dielectric interface and localized surface plasmon resonance (LSPR) in
metallic nanostructures.

2.1. Fundamentals of SPR

SPR is a traditional plasmonic phenomenon, which is based on the collective oscillation
of free electrons in metal film on the interface with a dielectric medium. SPR can be excited
in a variety of illumination schemes. Among them, Kretschmann geometry [8] is the most
popular configuration by simply depositing a metal film, e.g., a gold layer, on a prism that
is used to achieve momentum (wave vector) matching between the incident light and the
plasmon (Figure 1). An incident beam with a transverse magnetic (TM) polarization state
(the electric field vector is parallel to the incident plane) is illuminated onto the planar
dielectric-metal interface from the prism side. When the incident angle θ is larger than
the critical angle, total internal reflection occurs at the interface, and a part of the light
propagates in the metal surface in the form of an evanescent wave. The wave vector of the
evanescent wave is equal to the vector component of the incident light (k0) parallel to the
dielectric-metal interface k‖:

k‖ = k0 sin θ =
ω

c
√

εp sin θ =
2π

λ

√
εp sin θ (1)

where ω and c are the angular frequency of the incident light and the velocity of light in
a vacuum, respectively. λ is the light wavelength, and εp is the dielectric constants of the
prism. At a certain incident angle θ0, the momentum-matching condition between the
evanescent wave and the surface plasmon is fulfilled, causing the surface plasmon wave
to be excited through the coupling of oscillating free electrons with the photons of the
incident light. As a result, there is a minimum of angle-dependent reflectance, which is the
SPR phenomenon.
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The crucial properties of surface plasmon can be derived from Maxwell’s equations
applied to a flat and infinite metal-dielectric interface. Basically, the dispersion relation of
surface plasmon is given by:

ksp =
2π

λ

√
εmεd

εm + εd
(2)
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where ksp is the wave vector of surface plasmon, εm and εd are the dielectric constants of the
metal layer and dielectric medium, respectively. Combined Equation (2) with Equation (1),
the resonance condition of SPR can be obtained as follows:

2π

λ

√
εpsin θ0 =

2π

λ

√
εmεd

εm + εd
(3)

According to Equation (3), one can obtain insight into the relationship of the incident
light wavelength, incident angle, and dielectric constant with given metal and prism
materials used. Figure 2 presents the resonance condition of SPR on a metal-dielectric
interface through coupling with a SiO2 prism (εp = nd

2 = 1.452, where nd is the refractive
index of the dielectric medium in contact with the metal layer). It can be seen that with a
given refractive index of the dielectric medium, the incident angle must be larger than a
critical value to excite SPR within a certain wavelength range. For instance, when the metal
is gold, and the dielectric medium is air (εd = 1), the required incident angle decreases
as the wavelength of the incident light increases from 400 to 1000 nm, and the minimum
angle is 44.4◦. (Figure 2a). Moreover, when the dielectric medium is water (εd = 1.3332), the
incident angle needs to be larger than 70.8◦. In addition, the operation wavelength (incident
angle) undergoes a redshift as the refractive index of the dielectric medium increases at
a fixed incident angle (operation wavelength). These dependences lay the foundations
of plasmonic sensing, including angular modulation and wavelength modulation [6,9,10].
Similar to the behavior of SPR at the gold-dielectric interface, SPR at the silver-dielectric
interface requires a critically minimal angle of incidence of 44.2◦ and 69.6◦ in air and
water, respectively. Note that for a given dielectric constant, the LSPR wavelength/angle is
shorter/smaller for silver than that for gold.
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prism used.

As Equation (2) describes, the momentum of the surface plasmon is larger than that of
the incident light in free space, causing a momentum mismatch between the light and the
surface plasmon. This is the reason why prism couplers are necessary for the excitation of
surface plasmon, as mentioned above. Meanwhile, a critically large angle of incidence is
needed. Since the guided beam within an optical fiber core is basically paraxial, i.e., the
output beam of an optical fiber is nearly normal to the fiber end-facet, the traditional SPR is
not able to be excited on common fiber tips [11].

2.2. Fundamentals of LSPR

LSPR is similar to SPR when the surface plasmon is localized [12]. Curved surfaces of
bounded geometries (e.g., metallic nanoparticles) with a size comparable to the wavelength
of light offer an effective restoring force driving the free electrons to oscillate collectively,
resulting in local plasmon resonance. In addition to metallic nano-spheres, voids of var-
ious nanoparticle (NPs) topologies support LSPR, such as nanodisks, nanowires, and
nanosheets [13], etc., as illustrated in Figure 3.
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Again, the properties of LSPR in NPs can be understood by solving Maxwell’s equa-
tions. Mie’s theory is successful in quantitating the scattering and absorption of light
by spherical particles [14]. With the sizes of particles appreciably smaller than the light
wavelength (quasistatic approximation), applying Mie’s theory to the interaction of metallic
NPs and light, the following total scattering, extinction, and absorption cross-sections can
be obtained [15]:

σsca =
32π4ε2

dV2

λ4
(εr − εd)

2 + ε2
i

(εr + χεd)
2 + ε2

i

(4)

σext =
18πε3/2

d V
λ

εi

(εr + χεd)
2 + ε2

i

(5)

σabs = σext − σsca (6)

where V is the volume of the metallic NPs, εr and εi are the real and imaginary parts of
the dielectric constants of the metallic NPs, respectively. χ represents the geometric factor
for metallic NPs (χ = 2 for a sphere and up to 20 for a high-aspect ratio particle) [16].
According to Equations (4)–(6), the resonance position of LSPR strongly depends on the
dielectric constant of the surrounding medium (Figure 4), offering opportunities for many
applications, ranging from detections of external stimuli to light modulations via external
stimuli [17,18].
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2.3. Fundamentals of Periodic Array of Nanofeatures

Beyond the LSPR in isolated metallic NPs, another classic type of nanoplasmonic
scheme is the periodic array of nanofeatures (Figure 5) [19]. The electron oscillations are
consistent in a periodic array of metallic nanostructures, beneficial to the optimization of
resonance intensity and quality factor of the LSPR mode [10,20].
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Among the various kinds of plasmonic nano-arrays, nanohole arrays have so far
been one of the most intensively investigated and utilized structures [21,22]. In 1998,
Ebbessen et al. reported an extraordinary optical transmission (EOT) phenomenon in
two-dimensional arrays of subwavelength apertures where the transmission efficiency can
exceed unity normalized to the area of the apertures [23,24]. LSPR effect is attributed to be
responsible for the EOT. Specifically, a surface plasmon is excited on the metallic surface
at the incident side; then, the energy is coupled towards the transmitted side through a
tunneling effect followed by the re-emission of surface plasmon to free-space light. The
two-dimensional arrangement of nanoholes works as a coupling grating from the incident
photon to the surface plasmon as described by:

ksp = k‖ ± iGx ± jGy (7)

where Gx and Gy are the reciprocal lattice vectors for an array assuming the nanohole array
is placed on x-y plane. i and j are integers representing the diffraction orders. The scalar
format of Equation (7) is:

ksp =

√
(k0sin θ ± iGx)

2 ±
(

jGy
)2 (8)

For a square array with a lattice pitch of P, the reciprocal lattice vectors are
Gx = Gy = 2π/P; for a hexagonal array with the lattice pitch of P, the reciprocal lattice

vectors are Gx = Gy = 4π/
(√

3P
)

. Thus, the resonance wavelengths λr of EOT associated
with square and hexagonal arrays of metallic nanoholes in a first approximation (that the
plasma dispersion of the films remains unchanged) are given by:

λr ∼=
P√

i2 + j2

(√
εmεd

εm + εd
± sin θ

)
(9)

and

λr ∼=
P√

4
3 (i

2 + ij + j2)

(√
εmεd

εm + εd
± sin θ

)
(10)

respectively. Considering the fact that the absolute value of the dielectric constant of
noble metals is normally much larger than that of the surrounding media (|εm|»εd),
Equations (9) and (10) can be simplified into:

λr ∼=
P√

i2 + j2
(
√

εd ± sin θ) =
P√

i2 + j2
(nd ± sin θ) (11)
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and
λr ∼=

P√
4
3 (i

2 + ij + j2)
(
√

εd ± sin θ) =
P√

4
3 (i

2 + ij + j2)
(nd ± sin θ) (12)

respectively. According to Equations (11) and (12), the resonance wavelength of the
nanohole arrays depends on the geometrical parameters of the lattice and the dielectric
properties of the surrounding medium, i.e., scaling with the lattice pitch of the nano-array
and/or the refractive index of the surrounding medium. This characteristic opens up the
way to tune the properties of metallic nanohole arrays and detect external variations in
dielectric conditions. It is found that the sensitivity of nanohole arrays towards external
changes in refractive index is proportional to the lattice pitch [25]. However, there is a
tradeoff between sensitivity and local field enhancement. A smaller pitch (closer nanohole
spacing) benefits the coupling between adjacent nanofeatures leading to a stronger electric
field enhancement locally known as “hot-spot” [26]. However, as the nanofeatures become
closer, the resonance peak may broaden due to the coupling and overlapping of LSPR mode
around the nanofeatures. As a result, the EOT spectrum evaluates into a wide resonant
peak, limiting the quality factor of the related nanostructures [6].

According to the above discussions, the essential difference between SPR and LSPR
is that the LSPR can be excited by direct light illumination, i.e., the formation of LSPR on
the surface of metallic nanostructures does not need to meet the momentum matching
condition [27]. Considering the near-normal illumination condition in optical fiber tips,
metallic nanostructures with LSPR responses are favorable to constructing plasmonic
fiber tips.

3. Plasmonic Functionality of Optical Fiber Tips

Fabrication approaches of plasmonic nanostructures involve bottom-up and top-down
procedures [28,29]. Bottom-up methods rely on the synthesis of materials and chemical
reactions to grow plasmonic nanostructures in dimension. Bottom-up fabrications are
attractive due to the low cost and mass production advantages, while the sacrifice of precise
control of the geometrical physical parameters of the nanostructures hinders advanced
applications. On the hand, top-down methods directly pattern nanostructures onto metallic
substrates with controlled shapes and sizes by removing materials selectively. Nevertheless,
most top-down fabrication methods suffer from high cost and low efficiency.

The flat tip of an optical fiber facilitates the popular nanofabrication techniques to
functionalize optical fiber tips for plasmonic applications [4], but proper optimizations of
the fabrication procedures are required. For example, optical fibers have small diameters,
large aspect ratios, and fragile bodies, making the preparation and handling difficult in
plasmonic functionalities. In recent years, transfer methods for plasmonic functionalities of
optical fiber tips are emerging [30]. In transfer methods, desired plasmonic nanostructures
are firstly fabricated on original substrates and then transferred onto fiber tips flexibly and
efficiently [31].

3.1. Bottom-Up Methods
3.1.1. Self-Assembly

Self-assembly (SA) is the simplest approach to functionalizing the pristine fiber
tips [32]. Self-assembly enables convenient and high throughput productions of plas-
monic fiber tips with attached NPs via the natural noncovalent bonds (e.g., electrostatic
attraction). The earliest report of using the SA method to functionalize an optical fiber
tip was demonstrated in 1995 [33]. Stokes et al. dipped a polished optical fiber tip into a
5% aqueous suspension of alumina for about three seconds, ensuring adequate attaching
of NPs. The silver deposition was then performed in a vacuum evaporation system to
coat a 100 nm thick silver layer on top of the alumina NPs on fiber tips. The silver-coated
alumina microsphere-attached fiber tips were of plasmonic functionality. They claimed the
potential of the small tip size design for micro-scale sensors of in situ measurements. In
2000, the same group optimized the fiber tip structure and demonstrated the application
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in surface-enhanced Raman scattering (SERS) [34]. In the same year, Viets et al. found
that the performance of SA-based plasmonic fiber tip could be enhanced by a factor of
6 through angled polishing of the pristine tip [35]. The intensity increased monotonically
with the increase in the angle and reached its maximum value at the fiber-polished angle of
40◦. In 2003, Cheng et al. functionalized gold NPs on fiber tips with glycine, succinic acid,
or biotin to enhance the selectivity of the sensor [36]. Adapting the SA method, Shi et al.
demonstrated a new design of a “sandwich” plasmonic functionality structure on fiber tips
in 2008 [37]. Firstly, the fiber tip was coated with silver NPs via the SA method. Then, the
plasmonic fiber tip was dipped into a solution with a mixture of silver NPs and target ana-
lyte molecules to form a random silver nanoparticle-analyte molecule sandwich structure.
It was found that the sensitivity was significantly improved, benefitting from the extremely
large electric field enhancement in the gap of adjacent silver NPs. In 2010, Andrade et al.
presented a single-mode fiber tip with a core radius of 2 µm by self-assembling silver NPs
onto the fiber tip using 3-aminopropyltrimethoxysilane [38]. Furthermore, they optimized
the NPs-modified optical fiber tips through a “layer-by-layer” procedure. It was shown
that the performance was optimal when 5 “layers” of 50 nm silver-NPs were deposited on
the optical fiber tip. They evaluated the stability of the plasmonic fiber tip as well. It was
found that there was no performance loss for the fiber tip when it was stored for 3 days in
the air. Nevertheless, the fiber tip degrades dramatically after storage for 24 h in water and
completely turns invalid after storage in a methanolic solution for the same period of time.
They attributed the degradation of the device performances to the solvolysis of the silane
linker layer contact with water and methanolic medium [39].

Note that the SA method is efficient in functionalizing optical fiber tips with varied
shapes of NPs for plasmonic aims (Figure 6a) [40]. However, the plasmonic nanostructures
produced by SA are basically arranged in a random way and are hard to be controlled
on demand. In order to address this issue, attempts have been made in very recent years.
Yap et al. tried to arrange gold nanoparticle clusters onto optical fiber end-facets with a
copolymer templated-guided SA method [41], as shown in Figure 6b. Gold nanoparticle
cluster arrays were fabricated by SA of gold NPs guided by nanopatterns of poly (styrene-
block- 2-vinylpyridine) reverse micelles on silicon or glass substrates. Cluster formation
is driven by electrostatic self-assembly of anionic citrate-stabilized gold NPs (∼11.6 nm
diameter) onto two-dimensionally ordered polyelectrolyte templates. The two-dimensional
quasi-hexagonally periodic array of the polymer template could be tuned by adjusting the
spin-coating speed. They have successfully demonstrated the tunability of nanoparticle
numbers within one cluster (5, 8, 13, or 18) as well as the spacing of clusters (37–10 nm).
This method worked well on planar substrates, while disorders of clusters appeared for
optical fiber tips. They suggested possible optimizations of the used fibers and employed
processing could be helpful in overcoming this problem. In 2014, Sciacca et al. reported a
multiplexed biosensor with one single fiber tip by attaching both gold and silver NPs onto
the fiber tip (Figure 6c) [42]. Due to the distinct LSPR positions from gold and silver NPs,
the fiber tip could detect different analytes simultaneously with a limited cross-reactivity
and in a short time frame. It was found that the deposited nanoparticle density had a
significant impact on the sensor performance, i.e., smaller quantities of NPs led to better
sensitivity. It was also suggested that the using of core-shell NPs, along with the tunability
of operation wavelength, is helpful for improving the sensor performance furthermore.
Liu et al. proposed a laser-induced SA method to fabricate a plasmonic fiber tip with high
sensitivity and excellent reproducibility (Figure 6d) [43]. A meniscus forms around the
fiber tip due to the surface tension of the suspension liquid that contains pre-synthesized
NPs as the fiber facet is above the colloid surface. Then guided laser within the fiber would
induce thermal effects on the NPs in the meniscus that controlled the deposition of NPs
on fiber tips, and the electromagnetic interactions among the closely spaced NPs help
this arrangement.
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(b) Template-guided SA approach. Reproduced with permission [41]. Copyright 2012, American
Chemical Society. (c) Multiplexed fiber tip via SA method. Reproduced with permission [42].
Copyright 2014, American Chemical Society. (d) Laser-induced SA method. Reproduced with
permission [43]. Copyright 2016, The Royal Society of Chemistry.

3.1.2. Nanosphere Lithography

Nanosphere lithography (NSL) is a bottom-up nanofabrication technique based on
the advanced SA method, which is capable of building well-ordered two-dimensional
nano-array structures [44,45]. In the NSL procedure, monodisperse nanospheres are self-
assembled in a hexagonal array on the pristine substrate first. Then, the nanosphere array is
transferred onto a target substrate, e.g., optical fiber end-facet, to work as the nanostructure
template. After metallic layers are deposited, forming plasmonic elements, the assembled
nanospheres are dissolved by a proper solvent, leaving the desired plasmonic pattern on
the fiber tip. For instance, Pisco et al. adapted the so-called breath figure methodology
to functionalize nonconventional substrates, such as optical fibers, enabling the direct
formation of regular and ordered metal-dielectric nanostructures on fiber tips for plasmonic
purposes [46,47]. As shown in Figure 7, during the fabrication, a polymeric honeycomb
was first deposited on fiber end-facet. Due to the evaporation of the polymer solution,
water droplets were auto-organized into a hexagonal pattern at the liquid/air interface
(Figure 7a). After the complete evaporation of the solution, a hexagonal imprint as a
template was produced on the polymer, followed by the deposition of desired metallic
layers. The method is efficient and powerful in constructing several configurations with
varied geometrical features on fiber tips (Figure 7b). The successful functionalization was
confirmed by the corresponding scanning electron microscope (SEM) images.
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(CPA), sparse array (SA), and sphere removal (SR).

3.2. Top-Down Methods
3.2.1. Focused-Ion Beam Milling

Focused-ion beam (FIB) milling is an advanced nanofabrication technique that im-
pinges a focused beam of ions (typically Ga) onto the target substrate to ablate surface
materials to directly pattern nanostructures (Figure 8a). Extensive efforts have been made
to functionalize optical fiber tips with the FIB method. The first work on FIB-milled plas-
monic fiber tips was reported in 2006 [48]. Nellen et al. investigated the direct writing of
micro-structures on optical fiber tips with FIB. Cleaved tips of optical fibers were coated
with a gold film with a thickness of 50 nm using the sputtering method. As shown in
Figure 8b, the gold film within the core region of the fiber was patterned to form various
square apertures. They demonstrated the transmission function of the apertured fiber
tip by the diffraction pattern measured in the Fraunhofer regime. Later, Smythe et al.
presented a systematic investigation of optical antenna arrays and used FIB to fabricate a
plasmonic optical antenna fiber probe [49]. A 3 nm sticking layer of titanium and 35 nm
of gold were first deposited on the end-facet of a multi-mode fiber, and then FIB was
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used to selectively remove the gold and titanium, leaving behind arrays of gold nanorods
(Figure 8c). The fiber tip offers a plasmonic functionality and can potentially be used for
in situ chemical and biological detection and SERS. However, plasmonic nanostructures
suffer from the broad linewidth and low peak-to-dip signal ratio in the extinction spectra
due to the strong radiative damping. In 2017, Liang et al. fabricated a plasmonic nanoring
resonator array onto an optical fiber tip using FIB milling (Figure 8d) [50]. Benefitting from
the strong coupling of the dipolar modes from the complex nanohole–nanodisk structures,
the subradiant lattice plasmon resonance supports narrow linewidth with a high peak-
to-dip signal ratio and strong near-field electromagnetic enhancement. This plasmonic
fiber tip is ideal for high-sensitivity chemical and biomedical sensing. Recently, Suleman
et al. demonstrated a plasmonic photonic crystal fiber (PCF) tip using FIB milling [51]. The
FIB method was used to fabricate resonant plasmonic nanostructures onto the end-facet
of a solid-core polarization-maintaining PCF. The implemented nanostructures consist of
an array of heptamer-arranged gold nanoholes covering the solid core of the PCF. The
nanoholes were milled with a focused He+ beam, as shown in Figure 8e.
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Figure 8. FIB milling for plasmonic functionalities of optical fiber tips. (a) Schematic of FIB milling
process. (b) Nano-aperture array on single-mode fiber tip. Reproduced with permission [48]. Copy-
right 2006, IOP Publishing Ltd. (c) Nanorod array on multi-mode fiber tip [49]. (d) Nanoring array on
multi-mode fiber tip. Reproduced with permission [50]. Copyright 2017, American Chemical Society.
(e) Heptamer-arranged nanoholes on PCF tip. Reproduced with permission [51]. Copyright 2021,
Optical Society of America.

In general, the FIB technique allows high-resolution patterning and requires no mask
on materials ranging from glass and fiber to metals. Nevertheless, FIB suffers from some
critical disadvantages. For instance, the contamination (ion doping) of the sample substrate
is unavoidable because of the poor conductivity of optical fibers, though the issue is
balanced by pre-depositing metallic films to a certain extent. In addition, angled sidewalls
of the patterned features are common during milling, which requires extra optimizations
in the design details and fabrication processes. Moreover, FIB milling is generally time-
consuming, and large-area nanostructures are almost impossible to be processed. Thus, FIB
milling is limited to proof-of-concept applications of plasmonic fiber tips.

3.2.2. Electron-Beam Lithography

Similar to FIB, electron-beam lithography (EBL) utilizes a focused electron beam to
produce micro- and nanostructures with arbitrary shapes in a two-dimensional plane. As
lithography, electron irradiation induces a chemical modification of the electron beam to
resist, i.e., the solubility of the resist is altered. By immersing the resist in a solvent, either
the exposed (positive resist) or non-exposed (negative resist) parts of the resist can be
selectively removed, as schematically shown in Figure 9a. The resist patterns produced
by EBL serve as masks for subsequent deposition or etching on fiber tips. In the last
two decades, EBL has witnessed success in the fabrication of plasmonic fiber tips thanks to
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its versatility and ultimate resolution (smaller than 10 nm). The first work on plasmonic
fiber tip completed by EBL was reported in 2007. Tian et al. used EBL to produce a nanohole
array in metallic coatings on cleaved single-mode optical fibers, where the diameter of
the nanohole ranges from 100 to 700 nm, and the pitch of the array is varied from 300 to
3000 nm (Figure 9b) [52]. Both square and hexagonal arrays are feasible to be produced on
the fiber tips using EBL. Light transmissions at 632.8 and 1550 nm showed the expected
effects of nanohole size, spacing, array symmetry, and wavelength. Later on, Lin et al.
proposed an optical fiber inline polarizer achieved by EBL-fabricated metallic nano-grid
on a single-mode fiber tip at the wavelength of 1550 and 1310 nm (Figure 9c) [53] and
gold nanodot array with a periodicity of 400 nm, a diameter of 185 nm, and 55 nm in
height (Figure 9d) [54]. In 2012, Feng et al. fabricated a concentric gold ring grating with a
period of 900 nm on the end-facet of and multi-mode optical fiber with a core diameter of
600 µm using a combination of lift-off process and EBL (Figure 9e) [55]. In detail, a 30 nm
thick gold layer was evaporated onto the polished fiber end-facet. This initial gold film
helped make the facet surface electrically conducting in order to avoid electric charging
during the followed EBL process. In 2012, Zeisberger et al. demonstrated the successful
functionalization of a fiber tip with a plasmonic metasurface consisting of gold nanoslots
on the end-facet of a modified single-mode fiber via EBL technique (Figure 9f) [56].
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According to the above cases, one can easily see that EBL is similar to FIB. EBL tech-
nique provides a precise and versatile approach to integrating plasmonic nanostructures
on optical fiber tips. Moreover, EBL offers the advantage of large-area patterning at the
order of 100 µm × 100 µm, which covers the typical dimensions of optical fiber tips. How-
ever, EBL shares some drawbacks of FIB milling. For instance, EBL suffers from angled
sidewalls of patterned structures and the time-consuming nature of the patterning process.
Additionally, the required lift-off step for metallization hinders the creation of high aspect
ratio plasmonic nanostructures.

3.2.3. Nanoimprinting Lithography

Nanoimprinting lithography (NIL) is a mechanical patterning technique that
allows the creation of large-area, high-resolution, nanometer-scale functional structures
with a nature of high-throughput capacity. Due to the mechanical modification of host
substrates in NIL, only soft or thermally softened materials (typically polymers) are
available for NIL processing. In addition, the resolution of nanoimprinted features
is limited by the applied material properties and the accuracy of the template rather
than the electron/ion scattering during FIB/EBL processing. Therefore, for plasmonic
functionalities of optical fiber tips with NIL, it starts with coating curable polymer onto
fiber tips, followed by feature replications, curing, and metallic layer depositions [57].
In 2008, Scheerlinck et al. used the NIL method to attach gold film with the imprinted
polymer to propose strong diffraction gratings at the fiber tip, shown in Figure 10a.
The plasmonic fiber tip was employed as a fiber-optic grating coupler between optical
fibers and chip waveguides [58]. In order to address the alignment issue of small-
sized optical fibers with molds, Kostovski et al. developed a parallel, self-aligned and
portable NIL for efficient and high-throughput fabrications of plasmonic fiber tips [59].
As shown in Figure 10b, they utilized a row of U-shaped grooves on the stage to confine
the applied fibers and then contacted the polymer-coated fiber tips with the molds
(antireflection nanostructure on a cicada wing and self-assembled nanostructure of
anodized aluminum oxide) to form the imprinted features. Silver layers were deposited
onto the cured polymer nanostructures to construct SERS probes. NIL is capable of
producing complex (e.g., three-dimensional) structures on optical fiber end-facet as
well. In 2016, Calafiore et al. demonstrated the fabrication of three-dimensional
structures for light wavefront manipulation on the end-facet of an optical fiber by
NIL [60]. Firstly, multilevel features were obtained by grayscale gallium-FIB milling
on a flat substrate (silicon with minimal charging), and then, the final nanofeatures on
fiber tips were formed by a sequence of two replications, as schematically shown in
Figure 10c.

3.3. Transfer Methods

The aforementioned nanofabrication methods are all based on patterning nanostruc-
tures directly on optical fiber tips. Though significant success has been witnessed in the
direct plasmonic-functionalization of optical fiber tips, the fabrication resolution (perfor-
mances) and efficiency (cost) often conflict with each other. In the last years, transfer
methods as an alternative technique to conventional nanofabrication schemes have been
developed in functionalizing optical fiber tips with plasmonic elements. Basically, the trans-
fer methods are based on transferring pre-fabricated nanostructures from planar substrates
to fiber end-facets.
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permission [58]. Copyright 2008, American Institute of Physics. (b) Schematic of a high-throughput and
self-aligned, array-imprinting steps in contact with customized molds. Reproduced with permission [59].
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The very initial demonstrations of the transfer concept were reported by Smythe et al.
in 2009 [61,62]. Firstly, gold nanostructures were produced on Si/SiO2 substrate (silicon
with a native oxide layer) using EBL. Then, a sacrificial polymer (thiol-ene) film bearing thiol
groups was used to strip the metallic features from the Si/SiO2 substrate. The thiol-ene film,
bearing the nanofeatures, was gently pressed down to contact the target substrate surface.
At last, the sacrificial thiol-ene film was removed with an oxygen plasma, leaving the pattern
of gold nanostructures attached to the final target substrate, e.g., optical fiber end-facet
(Figure 11). Metallic nanofeatures, including nanorods, nanocubes, nanowires, nano split
rings, and nanodots ranging from 30 nm to 1 µm in size, had been successfully transferred
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onto optical fiber end-facet without disturbing the distributions of the nanofeatures. Once
the versatility of the transfer technique has been proved, it becomes one of the favorite
methods for constructing plasmonic fiber tips.
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nano split rings, and nanowires on fiber end-facets. Reproduced with permission [61]. Copyright
2009, American Chemical Society.

The above transfer method is only appropriate for those materials that do not form
covalent bonds with the substrate, allowing the material to be stripped to complete the
transfer. In order to overcome the limitation, the same group conceived a simplified transfer
process using the nanoskiving and wet-transfer method [63], shown in Figure 12. In the
nanoskiving process, the epoxy nanopost array prepared by soft lithography was coated
with thin metallic films, and then embedded into the epoxy matrix and finally sectioned
into slabs by an ultramicrotome. The slabs floated on the water surface and were transferred
onto the fiber end-facet by submerging the fiber tip. At last, the carrier film was etched
with air plasma, leaving free-standing nanofeatures on the fiber tip.

Indeed, the transfer of nanofeatures onto fiber tips can be performed without the
need for a carrier film, launching the “contact and separate” approach. Firstly, the optical
fiber end-facets are coated with an adhesive layer such as curable resist and put in contact
with the planar substrates supporting the pre-prepared metallic nanostructures. After the
complete curing of the adhesive layer, the nanostructures are separated from the original
substrate and strongly bonded onto the fiber end-facets [64]. Since 2013, Jia et al. have
achieved the transfers of plasmonic nano-arrays from metallic-coated silicon templates onto
optical fiber end-facets by attaching the nanostructures with an adhesive layer covering the
fiber end-facets [30,65,66]. The transferred gold nanostructures included a nanohole array,
nanoslit array, quasi-periodic nanohole array, etc. (Figure 13).
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(a) Schematic process. Reproduced with permission [30]. Copyright 2014, The Royal Society of Chem-
istry 2014. (b) SEM images and far-field diffractions of transferred nanohole array, nanoslit array, and
quasi-periodic nanohole array. Reproduced with permission [30]. Copyright 2014, The Royal Society of
Chemistry. Reproduced with permission [66]. Copyright 2016, American Chemical Society.

On the same line of argument, our group further simplified the template transfer
method by introducing the SA as the alternative integration way of metallic nanofeatures
to adhesive attaching [67–69]. As shown in Figure 14, large-area and highly uniform gold
nanomembranes with nanohole array were fabricated on silicon wafers by EBL patterning
and subsequent metal depositions (copper layer as the sacrificial medium and gold layer
as the functional medium). The silicon substrate was used as the template for recyclable
transfers. During the transfer process, a wet etching method was applied to release the
gold nanomembranes off the template, and the freestanding nanomembranes were then
transferred onto the end-facets of different types of optical fibers, including normal multi-
mode fibers and hollow-core fibers (HCF). Sufficient van der Waals force maintains the
good bond of the gold nanomembranes. Additionally, rather than transferring the gold
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nanomembrane by a, relatively, time-consuming thermal or ultraviolet-curable adhesive,
the non-adhesive template transfer process is more flexible and efficient.
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In general, the above typical techniques are capable of fabricating plasmonic fiber tips
with high-resolution and good repeatability. In addition, more developed techniques are
proposed as well. For instance, femtosecond (fs) laser ablation [70,71] was found to be faster
and cheaper than those based on, for example, FIB milling, and a minimal impact on the
surrounding materials is involved. However, the surface of the patterned features is gener-
ally rougher. The interference lithography technique enables a large area of well-defined
periodic nanofeatures in one, two, three dimensions, or even concentric ring patterns based
on maskless exposures of different light beam combinations [72,73]. However, the main
drawbacks of this technique include the limited resolution (due to diffraction limitation
of light) and the only suitability for array structures [74]. Transfer methods are developed
to strive to combine the advantages of advanced nanofabrication techniques, e.g., high
resolution, robustness, flexibility, cost-efficient, and high yield. Notably, the main trend
of emerging nanofabrication techniques is basically demonstrated by striving to modify
beyond the transfer methods [75–77].

4. Applications

The above section discussed numerous studies that demonstrated the plasmonic
functionalization of optical fiber tips. The plasmonic fiber tips take many advantages,
such as miniaturization, robustness, multifunctionality, and many others. In addition,
the light-matter interaction is bloomed in the plasmonic fiber tips due to the nature of
plasmonic modes. Therefore, sensing and detection are the most established applications
among plenty of potentials.
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4.1. Bio-Chemical Sensing

At the very beginning of demonstrations, plasmonic fiber tips had been employed in
bio-chemical sensing. For example, the first plasmonic fiber tip produced via the natural
SA method was used as a SERS probe [33]. Actually, the simplest sensing application
of plasmonic fiber tips is to detect changes in the surrounding refractive index of their
environment through shifts of the LSPR peak wavelength. The molecular binding event
would modify the surrounding refractive index, therefore, leading to the wavelength
shift of the plasmonic fiber tips. Sciacca et al. used the SA-fabricated plasmonic fiber
tips for multiplexed biosensing [42]. Both gold and silver NPs were attached to the fiber
tips with distinct LSPR signatures, and a sensitivity of 387 nm/RIU (refractive index
unit) and biological read of binding events were achieved. Plasmonic fiber tips with
nano-arrays fabricated by advanced techniques have been demonstrated in bio-chemical
sensing [30,68,78,79].

In addition to the bio-chemical sensing in aqueous media, gaseous sensing has been
demonstrated as well. For example, in 2020, our group demonstrated a methanol-selective
plasmonic fiber tip [80]. An epoxy rich in hydroxyl groups was used as a sensitive polymer
material to bond methanol molecules selectively, and a MoS2 monolayer coating was
applied to improve the sensing response and selectivity further (Figure 15a). Later on,
we observed the relative humidity (RH) response of an SA-fabricated plasmonic fiber
tip [67]. Fast water condensation/evaporation on the gold surface is responsible for the
high performance of the fiber tip in response to RH. A high sensitivity of 279 pm/% RH is
obtained in the range of 11~92% RH. In taking advantage of the fast dynamics (response
and recovery times of 156 and 277 ms), the plasmonic fiber tip was capable of monitoring
diverse respiration patterns (Figure 15b). Similar work was reported by Liu et al. [81],
where they modified a transferred plasmonic fiber tip with silk fibroin film, the refractive
index of which was sensitive to external RH, enabling the dependent of LSPR wavelength
on RH.
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Generally, the sensing principle of plasmonic fiber tips is that the dielectric alteration
on the metallic nanostructure interfaces, such as refractive index change, temperature
variation, or molecule binding, results in the resonant wavelength(s) shifting. According to
this principle, with proper sensitive media functionalized on plasmonic fiber tips, various
sensing applications, including thermal distinguish [82], ultrasound detection [83,84],
radiation dosimeters [85,86], and magnetic field detection [87] were demonstrated, recently.

4.2. Light Field Manipulations

Illuminated by the successful integration of plasmonic functionalities with optical
fiber tips, new features were brought to conventional optical fibers beyond sensing [4].
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To date, light field manipulation is another research hotspot second to sensing based on
plasmonic fiber tips.

In 2009, Lin et al. demonstrated a fiber in-line polarizer by integrating metallic nano-
grid onto fiber end-facet [53]. Plasmonic nano-grating was also used to enable beam
generation [88]. In 2017, Principe et al. adapted the concept of metasurface to propose a
single-mode optical fiber tip for beam steering [89]. As shown in Figure 16a, a linear-phase
distribution covering the 2π range was introduced to enable the transmitted beam to be
guided in desired directions. This phase delay was achieved by tuning the side lengths of
the gold rectangle nanoholes. Another type of plasmonic fiber tip integrated with metallic
metasurface is for beam focusing. In 2019, Yang et al. proposed an on-fiber lens by pattern-
ing the core area of a photonic crystal fiber (PCF) end-facet with a circular gold metasurface
using FIB milling [90]. As shown in Figure 16b, a gold rectangle nanohole was used as
the unit element, and the orientation angle was varied radially to provide the required
phase profile for beam focusing. Experimentally, in-fiber meta-lenses with focal lengths
of 28 µm and 40 µm at a telecom band of 1550 nm were demonstrated with maximum
enhanced optical intensity as large as 234%. Recently, Zeisberger et al. demonstrated a
high-numerical-aperture (NA) lens based on a plasmonic fiber tip functionalized with
gold nanoslit metasurface [56]. The key feature of the fiber tip is the combination of a
coreless glass with gold metasurface, allowing a large NA of 0.3 after the illumination beam
expanded up to 48 µm by the coreless glass (Figure 16c).
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Figure 16. Plasmonic fiber tip integrated with metallic metasurfaces. (a) Beam steering with single-
mode fiber [89]. (b) Focusing with PCF [90], (c) focusing with coreless glass [56].

In addition to the above light field manipulation applications of plasmonic fiber tips,
extended cases were proved, including beam coupling [58], filter [91], beam splitter [60],
imaging [92], and many others.

4.3. Nonlinearity and Lasing

Most recently, plasmonic fiber tips have been used in nonlinearity and lasing. For
example, in 2021, Yang et al. achieved the fiber tip-based optical switching [74]. Interference
lithography was employed to produce gold nanograting on fiber end-facet. Interaction
between the LSPR of the gold nanograting and the band-edge plasmon induced by fem-
tosecond laser pulse excitation leading to a quenching effect of LSPR was attributed to
being responsible for the ultrafast optical switching (Figure 17a). Moreover, the plasmonic
fiber tips with proper metallic nanostructures functionalized enable mode locking [93] and
lasing [94]. Especially, Hua et al. proposed a plasmonic fiber tip for all-fiber Q-switched
cylindrical vector lasers, where the fundamental mode was converted to the first-order
mode in fiber (Figure 17b) [95]. The polarization-dependent plasmonic nanostructures were
fabricated using FIB milling, and Q-switched azimuthally polarized beam and radially
polarized beam were delivered at the wavelength of 1548.5 nm with pulse durations from
~7 to ~2 µs when pump power increases from 30 to 120 mW. The efficiency was up to 21%.
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5. Conclusions and Outlook

The emergence of plasmonic fiber tips has been a milestone in the whole optical com-
munity, ranging from theoretical advancements and device constructions to application
developments. The general advantages of plasmonic fiber tips originate from the combina-
tion of optical fiber tips with functional nanostructures. Firstly, optical fiber tips possess the
characteristics of miniaturization, robustness, and “plug and play” operation. In addition,
unlike other fiber components, fiber tips offer a unique planar platform for functional
integrations. Secondly, growing nanofabrication accessibilities bring great opportunities
to explore new functionalities and application scenarios of conventional optical fibers.
Moreover, with the help of optical fibers, practical applications of functional nanostructures
have witnessed critical progress so far.

At the same time as benefitting from the combined advantages of fiber tips and func-
tional nanostructures, plasmonic fiber tips suffer from the initial drawbacks of fiber tips
and metallic nanofabrication. For example, the main challenge is to develop a mature
fabrication technique and system for the integration of plasmonic nanostructures on optical
fiber end-facets, with improved versatilities, yields, reduced cost, technique complexity.
According to the above review, transfer methods and beyond are the most promising ap-
proach. Moreover, due to the passive nature of typical optical fibers, the related plasmonic
fiber tips are limited as isolated devices.

Considering the above conclusions, the following trends are worthy of attention in
the future:

• New achievements of modified transfer methods are expected. In terms of classi-
cal nanofabrication tools, each technique presents some limitations, while transfer
methods offer special opportunities to combine the advantages of separate meth-
ods. Collective modifications are able to provide flexibility and versatility aiming at
specific applications.

• The majority of the plasmonic fiber tips suffer from the initial Ohmic loss of metals,
which substantially weakens the signal intensity and broadens the resonance linewidth.
Therefore, material adjustments or/and structure optimizations are essential to im-
prove the performances of plasmonic fiber tips [10]. For instance, silver outperforms
most metals in loss, while the oxidization issue of silver is stumbling. Most recently,
we found that Tamm plasmon polaritons (cavity modes confined between a distributed
Bragg reflector and a metallic layer) are promising to improve the quality factor of
plasmonic fiber tip up to 100 [96].

• An as-yet-unrealized milestone for plasmonic fiber tips is to achieve active function-
ality. Current plasmonic fiber tips are static and suitable for one isolated application
post-fabrication. Tunability would bring multi-functionality to the plasmonic fiber
tips. Active materials could be chosen as the building blocks of plasmonic nanos-
tructures [97] or modified onto plasmonic nanostructures to enable tunability for
plasmonic fiber tips [98].
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• Due to the complex nature of LSPR, wide ranges of material/fiber options, and
diverse configurations of plasmonic nanostructures, the design of plasmonic fiber
tips is always cumbersome. Machine learning has fundamentally changed many
aspects of science and technology to date, facilitating the processing of large data
that are difficult for manual modelling. Therefore, machine learning is beneficial to
accurate and on-demand designs of plasmonic fiber tips for specific applications with
unparalleled efficiencies.
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