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Abstract: The objective of this study is to explore the feasibility of using ultrasonic pulse wave
measurements as an early detection method for corrosion-induced concrete damages. A series of
experiments are conducted using concrete cube specimens, at a size of 200 mm, with a reinforcing
steel bar (rebar) embedded in the center. The main variables include the water-to-cement ratio of
the concrete (0.4, 0.5, and 0.6), the diameter of the rebar (10 mm, 13 mm, 19 mm, and 22 mm), and
the corrosion level (ranging from 0% to 20% depending on rebar diameter). The impressed current
technique is used to accelerate corrosion of rebars in concrete immersed in a 3% NaCl solution.
Ultrasonic pulse waves are collected from the concrete specimens using a pair of 50 kHz P-wave
transducers in the through-transmission configuration before and after the accelerated corrosion test.
Deep learning techniques, specifically three recurrent neural network (RNN) models (long short-term
memory, gated recurrent unit, and bidirectional long short-term memory), are utilized to develop a
classification model for early detection of concrete damage due to rebar corrosion. The performance
of the RNN models is compared to conventional ultrasonic testing parameters, namely ultrasonic
pulse velocity and signal consistency. The results demonstrate that the RNN method outperforms
the other two methods. Among the RNN methods, the bidirectional long short-term memory RNN
model had the best performance, achieving an accuracy of 74% and a Cohen’s kappa coefficient of
0.48. This study establishes the potentiality of utilizing deep learning of ultrasonic pulse waves with
RNN models for early detection of concrete damage associated with steel corrosion.

Keywords: concrete deterioration; non-destructive evaluation; ultrasonic testing; deep learning;
recurrent neural network

1. Introduction

Chloride-induced corrosion of steel is one of the most significant sources of deteriora-
tion in reinforced concrete structures [1–3]. It has been known that the chloride-induced
deterioration mechanism occurs in three phases: corrosion initiation, rust propagation,
and corrosion acceleration, as illustrated in Figure 1 [4–6]. The corrosion initiation pro-
cess starts when the thin passive layer (Fe2O3) on the surface of the reinforcing steel bar
(rebar) becomes unstable and depleted due to the migration of chloride ions [7,8]. The
rust then propagates and begins to form on the rebar surface. This oxidation process of
the metallic iron causes the rebar volume to increase up to about sixfold on the oxidized
section compared to its uncorroded state [9]. This increasing volume induces internal
tensile stress on the concrete, which could result in enhanced porosity and microcracks in
the steel and concrete interfaces [10]. As the tensile stress increases, the microcracks start
to spread and open more paths for chloride ions to penetrate the concrete [11], increasing
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the permeability of the concrete. This also accelerates the penetration rate of harmful
substances and moisture within the concrete and the corrosion process. Without sufficient
maintenance activities, this could lead to major damages such as surface-breaking cracks,
spalling, and delamination defects, which affect the integrity of the structure [12]. Moreover,
beyond the point of corrosion acceleration, the cost of rehabilitation of reinforced concrete
elements would exponentially increase after the formation of visible concrete damages
such as surface-breaking cracks and spalling [13] (see Figure 1). Therefore, it is important
to evaluate the condition of reinforced concrete exposed to harsh environmental condi-
tions on corrosion of steel in concrete and, if necessary, to perform appropriate preventive
maintenance actions.

Materials 2022, 15, x FOR PEER REVIEW 2 of 29 
 

 

concrete interfaces [10]. As the tensile stress increases, the microcracks start to spread and 
open more paths for chloride ions to penetrate the concrete [11], increasing the permea-
bility of the concrete. This also accelerates the penetration rate of harmful substances and 
moisture within the concrete and the corrosion process. Without sufficient maintenance 
activities, this could lead to major damages such as surface-breaking cracks, spalling, and 
delamination defects, which affect the integrity of the structure [12]. Moreover, beyond 
the point of corrosion acceleration, the cost of rehabilitation of reinforced concrete ele-
ments would exponentially increase after the formation of visible concrete damages such 
as surface-breaking cracks and spalling [13] (see Figure 1). Therefore, it is important to 
evaluate the condition of reinforced concrete exposed to harsh environmental conditions 
on corrosion of steel in concrete and, if necessary, to perform appropriate preventive 
maintenance actions. 

 
Figure 1. Conceptual illustration of concrete deterioration caused by corrosion of steel in concrete 
and cost for rehabilitation of the deteriorated concrete with various severities [14]. Deterioration 
stages: ⓛ rebar de-passivation; ② rust layer expansion; ③ crack formation;  ④ surface-breaking 
crack formation; ⑤ concrete spalling; and ⑥ member failure.  

It is known that microscopic changes in corrosion-induced concrete damages can be 
effectively evaluated by several laboratory testing techniques such as scanning electron 
microscopy (SEM), nuclear magnetic resonance (NMR), and thermo-gravimetric/deriva-
tive thermo-gravimetric (TG/DTG) [15]. However, these methods require an invasive pro-
cedure to obtain testing samples for laboratory inspection and inevitably induce some 
surface damages in concrete. Furthermore, these methods could include additional pro-
cesses (e.g., surface preparation, sampling, and repairing) when applied to actual struc-
tures, which makes the methods labor-intensive and high-priced. Therefore, invasive test-
ing methods are reluctantly used for condition assessment of actual structures. 

There are various non-destructive evaluation (NDE) techniques that are effective for 
in situ evaluation of chloride-induced steel corrosion in concrete structures. The corrosion 
of steel in concrete can be explained by an electrochemical process in which both flows of 
electrical currents and chemical reactions occur. NDE methods based on electrochemical 
principles have been widely used to evaluate the initiation and activity of steel corrosion 
in concrete. For example, the half-cell potential (HCP) measurement is used to investigate 
the electrical activity of steel corrosion in concrete induced by chloride ions [16]. The prob-
ability of corrosion activity of steel in concrete is determined based on HCP (or corrosion 
potential, Ecorr) readings in accordance with ASTM C876-15. Furthermore, the rate of steel 
corrosion (or corrosion current density, icorr) can be measured by the polarization re-
sistance of steel in concrete, Rp, which is directly proportional to icorr. There are several 

Initiation

2 6

Time

Depassivation
Rust layer
expansion Crack

formation

Surface-breaking
crack formation

Passivation

Surface coating

Concrete 
spalling

Member
failure

1 4 53

Rust Propagation Acceleration

C
on

cr
et

e 
C

on
di

tio
n

Sealing/
Coating

Patching/
grouting

Demolition &
Replacement

R
ep

ai
r C

os
t

Figure 1. Conceptual illustration of concrete deterioration caused by corrosion of steel in concrete
and cost for rehabilitation of the deteriorated concrete with various severities [14]. Deterioration
stages: 1© rebar de-passivation; 2© rust layer expansion; 3© crack formation; 4© surface-breaking
crack formation; 5© concrete spalling; and 6© member failure.

It is known that microscopic changes in corrosion-induced concrete damages can be
effectively evaluated by several laboratory testing techniques such as scanning electron
microscopy (SEM), nuclear magnetic resonance (NMR), and thermo-gravimetric/derivative
thermo-gravimetric (TG/DTG) [15]. However, these methods require an invasive procedure
to obtain testing samples for laboratory inspection and inevitably induce some surface
damages in concrete. Furthermore, these methods could include additional processes (e.g.,
surface preparation, sampling, and repairing) when applied to actual structures, which
makes the methods labor-intensive and high-priced. Therefore, invasive testing methods
are reluctantly used for condition assessment of actual structures.

There are various non-destructive evaluation (NDE) techniques that are effective for
in situ evaluation of chloride-induced steel corrosion in concrete structures. The corrosion
of steel in concrete can be explained by an electrochemical process in which both flows of
electrical currents and chemical reactions occur. NDE methods based on electrochemical
principles have been widely used to evaluate the initiation and activity of steel corrosion in
concrete. For example, the half-cell potential (HCP) measurement is used to investigate the
electrical activity of steel corrosion in concrete induced by chloride ions [16]. The probability
of corrosion activity of steel in concrete is determined based on HCP (or corrosion potential,
Ecorr) readings in accordance with ASTM C876-15. Furthermore, the rate of steel corrosion
(or corrosion current density, icorr) can be measured by the polarization resistance of steel
in concrete, Rp, which is directly proportional to icorr. There are several NDT methods for
measuring the polarization resistance of steel in concrete: linear polarization resistance
method [17], Tafel extrapolation method [18], electrochemical impedance spectroscopy [19],
etc. The electrical resistivity (ER) measurement has also been widely studied for evaluating
the corrosive environment (e.g., water saturation and chloride penetration) of concrete and
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the corrosion rate of steel in concrete [20]. However, it has been challenging to evaluate
the damage of concrete associated with steel corrosion by electrochemical measurement
parameters such as HCP (or Ecorr), Rp, icorr, and/or ER. Those parameters could be highly
affected by various environmental factors (e.g., water saturation, humidity, and tempera-
ture) which are not really correlated with concrete deterioration (e.g., enhanced porosity,
microcracks, and surface-breaking cracks).

On the other hand, it has been demonstrated by numerous researchers that ultra-
sonic pulse wave measurements are effective for evaluating the various types of concrete
deteriorations such as honeycombing [21], delamination defects [22], surface-breaking
cracks [23,24], microcracks [25], and bottom-up cracks [26]. Figure 2 illustrates the ultra-
sonic pulse wave propagation through concrete, a heterogenous and anisotropic material.
A transmitting transducer, placed on one side of the concrete, generates ultrasonic pulse
waves travelling through the concrete, which are measured by a receiving transducer on
the opposite side of the concrete. Concrete acts as a low-pass filter for ultrasonic pulse
waves. Some low-frequency components directly propagate to the receiver, while some
high-frequency components are suppressed and/or delayed by reflection and/or diffusion
due to the heterogeneous and anisotropic features of concrete. Theoretically, the earlier
part (also called the coherent part) of the ultrasonic signals is informative of the global
properties of concrete, while the later part (also called the incoherent part) of the signals
is a result of the superposition of the diffused waves from the presence of aggregates and
various defects in concrete [27]. Several previous researchers have used the coherent part of
the ultrasonic pulse waves to evaluate the properties of concrete [20,22,27]. For example, it
has been demonstrated that ultrasonic pulse velocity (UPV) of concrete is a good indicator
of the overall quality of concrete with various deterioration levels. The presence of defects
in concrete would delay the first arrival time (time of flight) of the ultrasonic pulse waves
through concrete [27]. UPV has been demonstrated to be sensitive to major faults or open
fractures, which serve as an effective barrier to ultrasonic wave transmission. However,
it is known that UPV is unlikely to be affected by such minor faults as enhanced porosity
and/or micro-, ill-defined, and closed cracks in concrete, which are generated by steel
corrosion in concrete.
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Figure 2. Illustration of the ultrasonic pulse wave propagation through concrete, a heterogenous and
anisotropic material.

Some researchers found that the signal interpretation based on the change in the
incoherent part is more effective for evaluating the early concrete damages using nonlinear
ultrasonic parameters such as coda wave interferometry (CWI), sideband peak count index
(SPC-I), and energy redistribution index [25]. Schurr et al. [28] used CWI to detect small-
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scale concrete damages caused by external loadings. In their research, the change in the
phase shift of the incoherent part of ultrasonic signals is far clearer than that of the coherent
part. Research by Castellano et al. [29] observed that more cracks and voids in concrete,
caused by cyclic loadings, increased the SPC-I, the number of peaks above a threshold in
the spectral amplitude of ultrasonic signals. It was demonstrated that SPC-I is sensitive to
minor concrete damages caused by the early load steps, while UPV values remained stable.
Furthermore, Arumaikani et al. [24] noticed that the SPC-I is effective in evaluating internal
concrete damages caused by corrosion of steel in concrete that could not be observed
on the surface of the concrete. However, it has been argued that the performance of the
evaluation model based on such nonlinear ultrasonic parameters can be strongly dependent
on engineering judgments. As will be discussed in this study, the sensitivity of the nonlinear
parameters could be affected by the choice of nonlinear parameters and input signals used
for the calculation of the parameters.

Another, more systematic solution for exploiting ultrasonic pulse waves to detect early
concrete damage is the use of deep learning. Since ultrasonic pulse signals are time series,
the data sequence is an important feature, and the recurrent neural network (RNN) would
be a good method for deep learning of ultrasonic pulse waves. The RNN method has been
successfully used in several fields, most notably in medicine. Singh et al. [30] utilized the
RNN models for the classification of electrocardiogram (ECG) data for detecting arrhythmia
with an accuracy of up to 88.1%. Kim et al. [31] utilized both RNN and convolutional
neural network (CNN) methods for the classification of ECG data. In their study, the RNN
models perform slightly better than CNN. Additionally, the RNN method has also been
successfully applied for more complex signals such as human speech. Rejaibi et al. [32]
applied the RNN method for differentiating human voices in depressed and non-depressed
states with more than 70% accuracy. However, the application of RNN to monitor concrete
conditions based on ultrasonic pulse data is currently very limited.

The main objective of this research is to investigate the feasibility of ultrasonic pulse
wave measurements as an early detection method for corrosion-induced concrete damages
by using a deep learning classification model based on RNNs. For these purposes, this study
aims to perform three main tasks as follows: (1) evaluating the change of parameters in
the ultrasonic pulse signal from each method to corrosion levels, which will be undertaken
by performing accelerated corrosion to reinforced concrete specimens, (2) developing
classification models through deep learning of ultrasonic pulse waves based on three RNN
algorithms (long short-term memory, gated recurrent unit, and bidirectional long short-
term memory), and (3) developing classification models based on conventional ultrasonic
testing parameters (ultrasonic pulse wave velocity and signal coherence). This study
will demonstrate the potential of deep learning classification models based on RNN of
ultrasonic pulse waves for early detection of concrete damages, which is superior to the
classification models based on the conventional ultrasonic testing parameters.

2. Materials and Methods
2.1. Fabrication of Test Specimens

Figure 3 illustrates a reinforced concrete cube specimen with a size of 200 × 200 ×
200 mm3 used in this study. A 235 mm long reinforcing steel bar (rebar) was embedded in
the middle of the concrete cube specimen (see Figure 3b). A middle part of the rebar was
waterproofed by three layers of coating (see Figure 3c): first, two thin layers of urethane
were applied on the surface of the rebar; second, Teflon tape was rounded on the hardened
urethane layer; third, a 100 mm long PVC pipe was placed on the Teflon coating in the
middle of the rebar. Consequently, only 70 mm of the rebar was directly exposed for
accelerated corrosion. The concrete cubes were shaped using 20 mm thick wooden forms.
Concrete was cast as the rebar was horizontally situated through a punch-hole on one side
of the forms. Concrete specimens were cured in the air for 24 h after casting concrete. After
demolding, the concrete specimens were moved to and stored in a constant temperature
and humidity room in the laboratory (temperature of 20 ± 3 ◦C and relative humidity of
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50 ± 5%). The concrete cube specimens were divided into four groups based on nominal
diameters of rebars in concrete: 10 mm, 13 mm, 19 mm, and 22 mm, which are referred
to as D10, D13, D19, and D22, respectively. Each group has three sub-groups with three
different design compressive strengths of concrete: 18 MPa, 24 MPa, and 40 MPa. Table 1
shows the mixture proportions of the concrete used for the fabrication of the concrete cubes.
Rebars in the concrete specimens were subjected to various corrosion levels. The target
corrosion levels in this study were 0%, 3%, 6%, and 12% for D10 and D13 specimens and
0%, 5%, 10%, and 20% for D19 and D22 specimens. In addition, there were three copies of
concrete cube specimens for each combination of test variables. Consequently, this study
included a total of 108 reinforced concrete cube specimens.
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Table 1. Summary of mixture proportions of concrete used for fabrication of concrete cube specimens
in this study.

Mix
Design

w/c
(%)

Mixture Proportion (kg/m3)

W C S G AE

Mix 1 58.5 168 287 957 898 2.58
Mix 2 50.7 170 335 870 956 2.50
Mix 3 34.6 166 480 720 993 4.32

Note: W: water, C: cement, SV: volume of sand, AV: volume of aggregates, C: Portland cement type I, S: sand, G:
gravel, AE: high-performance air-entraining agent.
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2.2. Accelerated Corrosion Tests

The rebars in concrete cube specimens were subjected to an accelerated corrosion pro-
cess to simulate the chloride-induced steel corrosion using the impressed current technique.
The target theoretical corrosion levels in this study were calculated based on the following
Faraday’s Law [33]:

Mth =
WIappT

F
(1)

where Mth is the theoretical mass density of steel rust (kg/cm2), W is the equivalent weight
of steel as a ratio of the atomic iron weight to the iron valency (27,925 g), Iapp is the current
density applied to the specimen (A/cm2), T is the duration of current flows (or corrosion
process) (s), and F is Faraday’s constant (~96,487 As). Before the accelerated corrosion
process, each specimen was immersed in a 3% NaCl solution until fully saturated condition.
Then, the specimen was electrified on a setup shown the Figure 4. The positive pole of the
power supply (Sorensen XPF 60-20D) was attached to the rebar, which effectively made the
rebar an anode. The negative pole of the power supply was connected to the stainless-steel
mesh (i.e., SUS 316) around the specimen, which served as a cathode. The corrosion of
the rebars in the concrete specimens started as soon as the current was sent by the power
supply. A digital multimeter (Keysight 34461A) was located between the power supply
and the stainless-steel mesh to monitor the current flowing through the concrete specimens.
The current data measured by the digital multimeter were stored in a desktop computer
through a LabVIEW-based monitoring program and the theoretical corrosion level of rebar
was automatically calculated in real time in the program. The accelerated corrosion test for
each specimen continued until the target theoretical corrosion levels were reached.
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2.3. Steel Mass Loss Ratio

In this study, the steel mass loss ratio of corroded rebars, θ (i.e., corrosion level in
this study), was defined as the ratio (in percentage) of the mass loss of the corroded rebar,
ms,loss(θ), normalized by the mass of the solid rebar in the working area, ms,WA(0), as
follows:

θ =
ms,loss(θ)

ms,WA(0)
× 100 [%] (2)

The actual amount of steel mass loss was evaluated in accordance with ASTM G1-
03 [34]. After the accelerated corrosion process finished, the specimens were broken into
two parts by using a splitting tensile test setup, and rebars in concrete were separated
from the concrete. The corroded rebars were first cleaned by using ultrasonic waves and
immersed in NaOH solution to remove the rust layer in steel bars. The sandblasting
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method was used to remove the remaining rust that was not removed using the mentioned
procedure, which resulted in cleaned rebars (see Figure 5).
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The actual steel mass loss was determined by Archimedes’s principle of buoyancy.
First, the weight of the cleaned rebar was measured in the air, which is denoted as ms,air.
Second, the cleaned rebar was submerged in the water by 70 mm (the depth of the working
area), and the weight of the cleaned rebar was measured, which is denoted as ms,water.
Then, the mass of corroded rebars corresponding to the working area can be determined
as follows:

ms,WA(θ) = (ms,air(θ)−ms,water(θ))ρs/ρw (3)

Here, θ is corrosion level of corroded rebars and ρs and ρw are mass densities of
steel and water, respectively. Then, the steel mass loss of corroded rebars, ms,loss(θ), was
determined by difference between ms,WA(0) and ms,WA(θ), as follows:

ms,loss(θ) = ms,WA(0)−ms,WA(θ) (4)

Figure 6 shows the comparison of theoretical and actual steel loss of the reinforcing
steel considering all design mixes and rebar diameters. It can be observed that the theo-
retical steel loss generally overestimates the actual steel loss. In this study, the actual (or
measured) steel loss values were used for correlating the degree of concrete damages and
the change in the ultrasonic pulse waves.

2.4. Ultrasonic Pulse Wave Measurements

Figure 7 illustrates the test setup of ultrasonic pulse wave measurements transmitted
through a reinforced concrete cube specimen. The standard test procedure according
to ASTM C 597/C597M-16 [35] was used to measure ultrasonic pulse waves through
concrete cube specimens that were subjected to different steel corrosion levels. The setup is
composed of a pulser-and-receiver (Olympus 5077PR), a digital oscilloscope (PXIe1073), a
pair of P-wave transducers (Olympus X1021), and a desktop computer for data acquisition,
display, and storage. The pulser-and-receiver droved the 50 kHz P-wave transducer by a 100
V rectangular pulse with a width of 10 µs. Transducers with a center frequency range of 50–
54 kHz are commonly used for NDE based on ultrasonic pulse wave data [36,37], including
studies for the detection of internal cracks due to corrosion [24]. The receiving transducer
placed on the opposite side of the concrete specimen measured the ultrasonic pulse waves
through the concrete. The received signal was digitized with a 10 MHz sampling rate by
the digital oscilloscope. Ultrasonic pulse wave measurements were conducted on each
specimen before and after the accelerated corrosion test. In this study, ultrasonic tests were
performed on the two test points on the surface of ultrasonic measurements (see Figures 3a
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and 7b). Sensors on test point 1 were attached to the concrete surface directly above the
rebar, while sensors on test point 2 were located 50 mm horizontally from the center to
avoid the rebar. In this study, five measurements were repeated at each test point.
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Figure 7. Test setup for ultrasonic pulse wave measurements through the concrete cube specimens:
(a) source and receiver in the through-transmission configuration, and (b) location of test points 1
and 2 on a surface for ultrasonic measurements.

Figure 8a presents the typical P-wave signals measured from the concrete cube speci-
mens, and the enlarged signals are shown in Figure 8b. The signals from Figure 8a,b were
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processed in MATLAB using normalization by Z-scoring. The velocity of an ultrasonic
wave can be calculated by dividing the wave path by the travel time, as follows:

Vp =
L

ta − td
(5)

where Vp is the wave propagation velocity, L is the distance between transducers (200 mm
in this study), ta is the initial wave arrival time, and td is the delay time computed during
probe calibration. When the two transducers were positioned opposite each other, the
time for the first arrival wave was recorded, and the delay time was calculated. It should
be noted that P-waves are potentially faster in time signals than any other refracted and
reflected waves from the boundary of concrete cube specimens. The arrival of transient
stress waves through cylinders was computed using the modified threshold approach
based on the observed ultrasonic signals. Using the conventional threshold method used
in earlier investigations, an estimated arrival time was initially obtained in this way. After
that, a precise arrival time was calculated by fitting a line to the signal data. The intersection
of the two P-wave travel times was then used to determine the P-wave travel time. The
intersection of the fitting line and the measured zero-signal stage was used to determine
the P-wave travel time.
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specimens under the four different target steel corrosion levels: (a) ultrasonic waves at different
target corrosion levels (θ = 0%, 5%, 10%, and 20%), and (b) enlarged ultrasonic signal around the first
arrival of the wave shown in (a).

To analyze the nonlinear parameters of ultrasonic wave signals, this study used
signal coherence in the form of magnitude square coherence (MSC). The MSC function is
calculated by

γxy( f ) =
Sxy( f )√

Sxx( f )Syy( f )
(6)

where γxy( f ) is the coherence, Sxy( f ) is the cross-spectral density of x and y, and Sxx( f )
and Syy( f ) are the power spectral densities of x and y, respectively. The resultant value is
a number between 0 and 1.0, with a value around 1.0 indicating high signal coherence.
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As can be seen from the equation, assessing the coherence between concretes with and
without damage requires a baseline value. To obtain the coherence values in this study,
signals were initially collected on specimens before and after the accelerated corrosion
process. A subset of the time-domain signals was then chosen, and each signal was
converted into power spectral density using fast Fourier transform (FFT). In this study, a
part of the tail end of the ultrasonic wave signals with a length of 0.1 ms was used for signal
consistency calculations. The coherence was computed from the converted signals using
MATLAB’s ‘mscohere’ function [38]. The time window of 4500 ns to 14,500 ns was chosen
for the average MSC analysis, which represents the tail end of the signal. The limited
length is based on studies related to coda wave interferometry, which typically uses a very
short window at 3 ms or lower [26,28]. Typical coherence curves are shown in Figure 9.
The ultrasonic signals from the different steel corrosion levels were each compared to the
signals from the solid conditions (0% vs. 3%, 0% vs. 6%, 0% vs. 12% for D10 and D13
specimens, and 0% vs. 5%, 0% vs. 10%, 0% vs. 20% for D19 and D22 specimens). The
coherence value was averaged within a certain frequency frame in this investigation so that
the outcome may be reported as a single number and analyzed with steel corrosion levels.
Two frequency ranges used for averaging MSC are shown in Figure 9. Ranges 1 and 2
represents frequencies lower than the central frequency of the transducers and frequencies
adjacent (lower and higher) to the central frequency, respectively.
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3. Recurrent Neural Networks (RNNs) of Ultrasonic Pulse Waves
3.1. Architecture

The general flowchart of RNN development conducted in this study is shown in
Figure 10. The RNN has the capability of analyzing time series data. This is because the
RNN has the “memory” feature, called hidden state, that retains the information from
the previous time steps. A typical RNN algorithm works as shown in Figure 11 in the
following steps [39]: (1) the first data point in the sequence, a0, is delivered from the input
layer to an RNN cell; (2) the cell adjusts the value of the a0 by a weighting function w,
resulting as y1; (3) the second data in the sequence, x1, is put into the hidden layer; (4) both
x1 and y1 are put together into the layer and have both of their output readjusted by weight;
and (5) the process (2–4) is repeated until all of the data points within a sample have been
processed in that layer and in the next hidden layers. The loss function, which is based on
the errors obtained from every calculation in each layer, is then used to update the w from
each hidden layer. The w, along with the algorithm, is updated from the last layer to the
first. This process is called backpropagation [40] and is performed multiple times during
the iteration until the least error value is obtained.
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3.2. Long Short-Term Memory (LSTM)

The primary form of a RNN might not give a satisfactory performance due to the
vanishing gradient problem caused by long iterations [41]. Alternative approaches such
as long short-term memory (LSTM) and gated recurrent unit (GRU) have been used to
overcome the limitation of the RNN. The LSTM approach has internal gates to regulate
information that should be retained or forgotten [42]. Figure 12a shows the architecture of
an LSTM cell within an RNN and its working mechanism.



Materials 2023, 16, 3502 12 of 26

Materials 2022, 15, x FOR PEER REVIEW 14 of 29 
 

 

 

 
Figure 12. Architecture of a cell in the modified RNN methods for: (a) LSTM, and (b) GRU. 

In general, LSTM works by the following steps: (1) selecting information to be dis-
carded from the current input, (2) selecting information to be kept in the cell state, (3) 
updating the old cell information, and (4) determining state features of the output cell that 
should be retained. The work on the first step is conducted by the sigmoid unit that acts 
as the forget gate. In the second step, the at-1 and xt are utilized to decide which information 
needs to be updated through the tanh layer, which effectively becomes the input gate. The 
at-1 and xt are then used to go through the tanh layer to obtain the new cell information 
candidate ct. The third step updates the old information currently being kept in the cell or 
ct-1 based on the decision made by the forget gate (first step) and decided information 
candidate ct (second step). In the final step, the input yt-1 and xt are used by the sigmoid 
(output gate) to obtain a vector of values ranging from −1 to 1. These values are then mul-
tiplied by the weighting function from the output gate, resulting in the final output. The 
output of each gate in the LSTM is described in equations shown in Table 2, where wf, wi, 
wo, and wy are weighting functions and bf, bi, bo, and bh are bias vectors. It is also reported 
that having a bidirectional iteration of LSTM (or BiLSTM) can improve the model perfor-
mance significantly [43]. This bidirectional approach basically uses the same principle as 
the conventional, forward-moving RNN, but with the process starting from the end part 
of the data in addition to the forward-moving RNN. 

Table 2. Outputs in an LSTM and a GRU cell. 

Model Gate Type Equation 

LSTM 

Forget gate 𝑓 =  𝜎(𝑤 𝑎 , 𝑥 + 𝑏 ) 
Input gate 𝑖 = 𝜎(𝑤 𝑎 , 𝑥 + 𝑏 ) 

Output gate 𝑜 = 𝜎(𝑤 𝑎 , 𝑥 + 𝑏 ) 
Hidden gate 𝑦 = 𝑡𝑎𝑛ℎ(𝑤 𝑎 , 𝑥 + 𝑏 ) 

Final Output 𝑐 = 𝑓 𝑐 + 𝑖 𝑦  𝑎 = 𝑜 tanh 𝑐  

GRU 
Update gate 𝑧 = 𝜎(𝑤 𝑥 + 𝑣 𝑎 + 𝑏 ) 
Reset gate 𝑟 = 𝜎(𝑤 𝑥 + 𝑣 𝑎 + 𝑏 ) 

Figure 12. Architecture of a cell in the modified RNN methods for: (a) LSTM, and (b) GRU.

In general, LSTM works by the following steps: (1) selecting information to be
discarded from the current input, (2) selecting information to be kept in the cell state,
(3) updating the old cell information, and (4) determining state features of the output cell
that should be retained. The work on the first step is conducted by the sigmoid unit that
acts as the forget gate. In the second step, the at−1 and xt are utilized to decide which
information needs to be updated through the tanh layer, which effectively becomes the
input gate. The at−1 and xt are then used to go through the tanh layer to obtain the new cell
information candidate ct. The third step updates the old information currently being kept
in the cell or ct−1 based on the decision made by the forget gate (first step) and decided
information candidate ct (second step). In the final step, the input yt−1 and xt are used by
the sigmoid (output gate) to obtain a vector of values ranging from −1 to 1. These values
are then multiplied by the weighting function from the output gate, resulting in the final
output. The output of each gate in the LSTM is described in equations shown in Table 2,
where wf, wi, wo, and wy are weighting functions and bf, bi, bo, and bh are bias vectors. It is
also reported that having a bidirectional iteration of LSTM (or BiLSTM) can improve the
model performance significantly [43]. This bidirectional approach basically uses the same
principle as the conventional, forward-moving RNN, but with the process starting from the
end part of the data in addition to the forward-moving RNN.
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Table 2. Outputs in an LSTM and a GRU cell.

Model Gate Type Equation

LSTM

Forget gate ft = σ
(

w f [at−1, xt] + b f

)
Input gate it = σ(wi[at−1, xt] + bi)

Output gate ot = σ(wo[at−1, xt] + bo)
Hidden gate yt = tanh

(
wc[at−1, xt] + by

)
Final Output ct = ftct−1 + ityt

at = ot tanh ct

GRU

Update gate zt = σ(wzxt + vzat−1 + bz)
Reset gate rt = σ(wrxt + vrat−1 + br)

Hidden state yt = tanh
(
wc[at−1, xt] + by

)
Final output at = zt.at−1 + (1− zt)yt

3.3. Gated Recurrent Unit (GRU)

Another widely used RNN method is the gated recurrent unit (GRU). Originally
introduced by Cho et al. [44], GRU has recently been adopted by various researchers with
a performance comparable to LSTM and, in some cases, outperforms LSTM [43,45]. For
the same set of hyperparameters, the GRU network can also be trained faster since the
architecture is simpler than LSTM: it has no cell state ct and instead uses the hidden state yt
to transfer the information to the next cell. Furthermore, GRU only has two gates which
are called the update gate and reset gate, as shown in Figure 12b. The equations in the
GRU model are shown in Table 2, where w and v are the weight for xt and at−1, respectively.
With this simpler process, the GRU process takes less memory to compute and can be
trained faster.

3.4. Data Preparation

The collected data was preprocessed to start with zero-mean, which improves learning
efficiency of the RNN algorithms. The data was then prepared as two types: raw signal
in the form of time series and extracted features in a systematic way. Both types of data
were then downscaled into several sampling frequencies, which will be discussed further
in Section 4.2, to further improve the training efficiency as well as to reduce the signal
noises caused by a training process. The raw signal has a resolution equal to the sampling
rate of the oscilloscope, which is 10 MHz. Considering that the central frequency of the
transducers is 50 kHz, the maximum data resolution was limited to only 1 MHz to make the
training process more efficient while still allowing higher frequency bands to be analyzed.

In this study, time series data were compressed by systematic feature extraction
processes to further improve computational efficiency. For these purposes, standardized
spectral entropy and instantaneous frequency were calculated to extract both time and
frequency information from time series, following prior research works [46,47]. Spectral
entropy is based on the equations of the power spectrum and probability distribution of
signals. The power spectrum of the mth signal (or x(m)) is denoted by S(m), where m is the
index of frequency point. S(m) can be obtained by squaring the magnitude of its discrete
Fourier transform X(m). Mathematically, the fundamental equations are as follows:

H = −
M

∑
m=1

R(m)log2R(m) (7)

R(m) =
S(m)

∑M
i=1 S(i)

(8)

S(m) = |X(m)|2 (9)

where H is the spectral entropy, R(m) is the probability distribution, i is frequency index in
the calculation of R(m), and M is the total frequency points. The second feature is instanta-
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neous frequency, which is a measure of change in the time parameter of a nonstationary
signal associated with the average of frequencies as the signal changes. The fundamental
equation of the instantaneous frequency finst is as follows:

finst(t) =
∑N

i=1 fiP(ti, fi)

∑N
i=1 P(ti, fi)

(10)

Here, finst is a summation of value from i = 1 to the N, where i is a step and N is the
end step of the analyzed time-frequency window within a signal. Every step corresponds to
the time step interval and its corresponding frequency measurement. P is the spectrogram
power spectrum, t is time, and f is frequency of the signal input. More details regarding
instantaneous frequency can be found in the research by Boashash [48]. Both spectral
entropy and instantaneous frequency are standardized, which further improves the learning
efficiency for neural network training [46]. The standardization is based on Z-scoring with
the following equation applied to each data point in the dataset:

Z =
x− µ

σ
(11)

where z is the new value on a data point after the standardization, x is the existing value of a
data point, µ is the mean of dataset, and σ is the standard deviation. Figure 13 shows typical
results from feature extraction. The feature extraction reduces the number of samples from
10,000 points in time series to 129 points, which significantly reduces computational cost.
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ized instantaneous frequency of ultrasonic pulse waves measured from the concrete specimens with
various corrosion levels. Left and right columns represent the results from the concrete specimens
belonging to the MIX1 and D10, and the MIX1 and D19 groups, respectively.



Materials 2023, 16, 3502 15 of 26

3.5. Bilinear Classification Model

A bilinear classification model was developed to divide the dataset into two classes
based on the steel corrosion level, θ, with a threshold of 3%. A part of the dataset corre-
sponding to θ < 3% was classified as Class 1, which represents the solid to initial corrosion
level. The remaining dataset (θ ≥ 3%) was classified as Class 2, which represents a medium
to high corrosion level. A preliminary numerical experiment revealed that the effects of
concrete mixture proportion and rebar size were not considerable on the performance of
the classification model. In this study, ultrasonic pulse data were classified only based
on steel corrosion levels (or concrete early damage condition). The more general model
would be more effective as an in situ NDE method because specific material information
is not always given or reliable in field surveys. The threshold level of the classification
model was determined based on the initial steel corrosion level that starts to cause concrete
deterioration (enhanced porosity and microcracking in concrete). In this study, it was
observed that the relative mass of concrete specimens, which is the difference between
damaged and solid concrete specimens, gradually increased as the amount of impressed
current increased in the accelerated corrosion test. Based on that observation, it can be
inferred that the expansion of rust products causes some internal concrete defects, which
resulted in changes in the porosity of concrete. Surface-breaking cracks typically were
observed at corrosion levels between 4% and 5%. Therefore, it is reasonable to say that a
corrosion level of 3% can be selected as a threshold to detect early damage caused by steel
corrosion in concrete. Based on the classification, there are a total of 222 data in Class 1 and
164 data in Class 2. RNN models were trained using 80% of data, randomly selected, from
each class. The remaining 20% of the data for that class were used to test the trained model.

3.6. Performance Evaluation

The accuracy and Cohen’s kappa (later referred as kappa) were used to compare the
classification performance of each method. The accuracy is a ratio between the true positive
(TP) and true negative (TN) classifications given by the method to the total number of
predictions [49]. Therefore, high numbers of false-positive (FP) and false-negative (FN)
classifications will reduce network accuracy. However, accuracy alone is not enough to
demonstrate a method’s performance. Researchers have incorporated kappa to evaluate
prediction models [50,51], in addition to the accuracy. The kappa is a chance-corrected
method for assessing agreement among raters [52]. The equations to calculate these param-
eters for this study are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, and (12)

Cohen′s Kappa =
Accuracy + pe

1− pe
. (13)

where pe is the rate of agreement between the prediction and actual class value by chance,
which is calculated using following equation,

pe =
((TN + FN)× (TN + FP)) + ((FP + TP)× (FN + TP))

(TP + TN + FP + FN)
. (14)

with Kappa ranges from −1 to 1, with the value below 0.4 regarded as low agreement, 0.41
to 0.60 regarded as moderate agreement, 0.61 to 0.80 as substantial agreement, and 0.81 to
0.99 as near-perfect agreement [53].

4. Results and Discussion
4.1. Bilinear Classification Models Based on Conventional Ultrasonic Testing Parameters

Bilinear classification models were developed based on the two conventional ultrasonic
testing parameters, which will be compared with deep learning classification models in
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Section 4.3. In this study, two conventional ultrasonic testing parameters (relative P-wave
velocity and signal consistency) were reduced from the ultrasonic pulse waves collected
from the concrete specimens with different steel corrosion levels, θ. The two reduced
ultrasonic testing parameters were divided into two classes according to the steel corrosion
level, with a threshold of 3%, consistent with the definition described in Section 3.5 for the
deep learning classification models.

Figure 14 shows the distribution of the relative P-wave velocity (i.e., the P-wave
velocity of damaged concrete after the accelerated corrosion process normalized by the
P-wave velocity of solid concrete) with actual steel corrosion levels. Overall, the effect
of the steel corrosion levels cannot be clearly seen because of a scattering of the relative
P-wave velocity with steel corrosion levels from 0% to 20%. In this study, a linear equation
was used to relate the relative P-wave velocity and the steel corrosion levels as follows:

Vr,P = 0.0007θ + 1.0006, with R2 = 0.0008 (15)

where Vr,P is the relative P-wave velocity of concrete, and θ is the actual (measured) steel
mass loss (or corrosion level). The best-fit line looks almost flat with particularly low R2,
which reveals that the relative P-wave velocity might not be an effective parameter for
evaluating concrete damages caused by corrosion of steel in concrete.
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Figure 14. Classification based on the relative P-wave velocity data.

Figure 15a,b show the distribution of average magnitude square coherence (MSC)
values for the two different frequency ranges: Range 1 and 2, respectively. Average MSC
shows a descending trend with respect to the steel mass loss. It can be seen that average
MSC is a better indicator for classifying early concrete damage caused by steel corrosion
than Vr,P. Using linear regression, the obtained R2 were 0.18 and 0.17 for Range 1 and
Range 2, respectively. The regression equations for Range 1 and Range 2 were obtained as
follows:

MSC1 = −0.0166θ + 0.4523 for Range 1 (16)

MSC2 = −0.0133θ + 0.3983 for Range 2 (17)
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Range 1, and (b) Range 2 (see Figure 9).

Table 3 summarizes the threshold values for Vr,P, and average MSCs was determined
by the linear regression equations (Equations (15)–(17)), corresponding to the steel cor-
rosion level of 3%. The confusion matrix based on the classification models for the two
conventional ultrasonic testing parameters is summarized in Table 4. Accuracy and Cohen’s
kappa values were calculated using Equations (12)–(14). As expected, the performance of
the classification model based on relative P-wave velocity, Vr,p, was not satisfactory, with
accuracy of 53% and kappa of 0.07. Those values are as low as those predicted by chance
alone. Conversely, the classification models based on MSC resulted in far more improved
accuracies greater than 70%. The improved accuracy demonstrates that ultrasonic pulse
waves can be used for early detection of concrete damages caused by steel corrosion. It
can be inferred that incoherence parts of ultrasonic pulse waves are more sensitive to the
internal concrete damages by progression of steel corrosion than coherence parts. However,
it should be noted that the performance of the MSC-based models, like other nonlinear
ultrasonic parameters, is strongly affected by engineering + judgment on the selection of
input signals and signal processing processes. For example, two different frequency ranges
(Ranges 1 and 2) in this study resulted in different performances (Table 3). Therefore, more
systematic approaches are needed to optimize the capabilities of ultrasonic pulse wave
measurements for condition assessment of concrete.

Table 3. Parameter thresholds for Vr,p and MSC methods.

Class Steel Corrosion
Loss Vr,p MSC1 MSC2

Class 1 (N) <3% Vr,p < 1.0027 MSC > 0.40 MSC > 0.36

Class 2 (P) ≥3% Vr,p ≥ 1.0027 MSC ≤ 0.40 MSC ≤ 0.36
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Table 4. Confusion matrix for classification based on Vr,p and MSC methods.

Predicted

Vr,p MSC1 MSC2

P N P N P N

Actual
P 95 (45.2%) 91 (43.4%) 119 (62.9%) 45 (23.8%) 123 (65.1%) 41 (21.7%)

N 8 (3.8%) 16 (7.6%) 10 (5.3%) 15 (7.9%) 10 (5.3%) 15 (7.9%)

Accuracy 52.8% 71.0% 73.0%

Cohen’s kappa 7% 20.0% 22.9%

4.2. Deep Learning Classification Model

A series of numerical experiments was performed to investigate the variation of the
performance of deep learning classification models, with varying inputs and hyperparame-
ters for RNN models. As such, an optimal set of parameters was determined, which resulted
in the best performance of the deep learning classification model. Table 5 summarizes the
critical parameters and ranges of each parameter considered in this study.

Table 5. Summary of critical parameters as variables for training deep learning models of ultrasonic
pulse waves in this study.

Parameter Range

Length of time signal 1 ms, 2 ms, and 5 ms
Sampling frequency of time signal 100 kHz, 250 kHz, 500 kHz, and 1000 kHz

Type of input
Time series (TS), instantaneous frequency

(IF), spectral entropy (SE), and
combination of IF and SE (IFSE)

Network LSTM, BiLSTM, and GRU

Hyperparameter Batch size 1, 2, 4, 8, and 16
Epoch 100, 200, 300, 400, and 500

4.2.1. Effects of Input Type

To observe the effect of input type on the model performance, a series of trainings
using different types of input has been conducted. The input consists of (1) time series (TS),
which is the raw signal in the time domain, (2) spectral entropy (SE), and (3) a combination
of instantaneous frequency and spectral entropy (IFSE). Figure 16 shows the variations of
accuracy of the deep learning classification models with these inputs based on the three
RNN models (i.e., LSTM, BiLSTM, and GRU). While not shown in this article, it is found
that the use of IF as an input in the RNN models resulted in similar trends to those based
on SE. The top, middle, and bottom rows of the figure are results for LSTM, BiLSTM, and
GRU, respectively. The left, middle, and right columns of the figure are the results using
time series data with lengths of 1 ms, 2 ms, and 5 ms, respectively. Training of the RNN
models was performed with fixed hyperparameters, epoch of 100 and batch size of 16.
Hyperparameters will be discussed in more detail in Section 4.2.3. In addition, the Adam
optimizer and a network size of 100 were used as default values in the deep learning
toolbox in MATLAB.

Overall, the use of SE and IFSE resulted in comparable accuracy levels. It was also
observed that the use of IFSE for fixed networks and length of time resulted in slightly
better accuracy values compared to the models based on SE. The best accuracy was 69%,
which was obtained based on SE of ultrasonic pulse waves with a length of 5 ms and a
sampling frequency of 1000 kHz, as a base input of the deep learning model. The accuracy
based on IFSE was 68% for the same test setup (see Figure 16f). It can be noticed that the
accuracy of the deep learning classification models based on an input of time series (TS)
was less than that of using spectral entropy (SE) or the combination of spectral entropy and
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instantaneous frequency (IFSE). The best accuracy based on TS was only 56% for the LSTM
model using an input of TS with a length of 1 ms and a sampling frequency of 1000 kHz.
For the same set of parameters, the use of SE and IFSE resulted in more improved accuracy
of 63% and 68%, respectively.
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Figure 16. Variation of accuracy of the deep learning classification models based on three input data
types (time series, TS; spectral entropy, SE; and combination of instantaneous frequency and spectral
entropy, IFSE). Top, middle, and bottom rows represent the results based on the three RNN models:
LSTM, BiLSTM, and GRU, respectively. Left, middle, and right columns represent the results based
on three different lengths of ultrasonic pulse waves: 1 ms, 2 ms, and 5 ms, respectively.

Care is needed when using the time series data as an input of RNN models of ultrasonic
pulse waves in concrete. Ultrasonic pulse wave data collected in this study involved
relatively high variabilities in the amplitude and first arrival times. The variability of
time series data could be caused by various sources of experimental uncertainties, such as
inconsistent coupling conditions, surface roughness of concrete and heterogeneous features
of concrete, which are not really related to the severities of concrete damages. RNN models
are known to be especially sensitive to the sequence of the data points. Consequently,
experimental uncertainties in ultrasonic waves could have more impact on the performance
of the RNN-based classification models [54]. Moreover, RNN models trained using the
time series data have high computational costs. Therefore, it is not recommended to use
time series data as an input for RNN-based deep learning in this study.
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4.2.2. Effects of Input Data

Figures 17 and 18 show the variations of the accuracy of the deep learning classifica-
tion models with increasing sampling frequency of ultrasonic pulse waves used for the
calculation of input data for RNN models. These figures represent the results based on SE
and IFSE extracted from ultrasonic pulse wave data with different lengths (1 ms, 2 ms, and
5 ms). Training of the models was performed with fixed hyperparameters, epoch of 100 and
batch size of 16. The Adam optimizer and network size of 100 were used as default values
in toolbox in MATLAB. Overall, it was noticed that the best accuracy of each model was
obtained at a sampling frequency lower than 1.0 MHz. This is reasonable since the use of
50 kHz transducers in this study resulted in an effective bandwidth with a frequency range
of 100 kHz to 1000 kHz. The best accuracy was observed at 69% by using SE of ultrasonic
pulse waves with a length of 5 ms and a sampling frequency of 500 kHz as an input of
BiLSTM (see Figure 17c).
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Figure 17. Variation of accuracy of the deep learning classification models based with various
sampling frequencies for calculation of inputs. Top and bottom rows represent the results based on
the SE and IFSE, respectively. Left, middle, and right columns represent the results based on the three
different lengths of ultrasonic pulse waves: 1 ms, 2 ms, and 5 ms, respectively.

In addition to sampling frequency, the variation of signal length was also considered.
The networks were trained with 5 ms (full length), 2 ms, and 1 ms. It is noticed that each
network behaves differently to the input data properties. The LSTM network performed
better using shorter sample lengths, with the best accuracy of 68%. The accuracy of LSTM
models increases from 54% to 65% as the length of signals decreases from 5 ms to 2 ms. It
can be inferred that the LSTM is more sensitive to the coherent part of the signal, which is
mostly located in the early part of the time series. On the other hand, the accuracy of the
model based on GRU remained stagnant without regard for the length of time series, with
the best accuracy in a range of 60% to 64%. The most noticeable improvement was found
with the use of BiLSTM: the longer time series resulted in greater accuracy. The accuracy of
the BiLSTM classification models increased from 62% to 69% as the length of times signals
used for calculation of IFSE increased from 1 ms to 5 ms.
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Figure 18. Variation of accuracy of the deep learning classification models based on three different
lengths of time series for calculation of inputs. Top and bottom rows represent the results based on
the SE and IFSE, respectively. Left, middle, and right columns represent the results based on the three
different RNN networks: LSTM, BiLSTM, and GRU, respectively.

4.2.3. Effects of Hyperparameter

This section discussed the effect of the hyperparameter setup, particularly related
to the number of epochs and batch sizes, on the accuracy of the deep learning models.
Deep learning models, including RNNs, can be run with virtually limitless combinations of
hyperparameters. Models that are undertrained often have the characteristics of unbalanced
true predictions between each class, which translates to low accuracy. On the other hand,
models that are overtrained often cannot recognize the dataset outside of the training
dataset, leading to overfitting. In an RNN, an epoch refers to a single pass through the
entire dataset during training. During each epoch, the model’s parameters are updated
based on the errors made in predicting the output for each example in the dataset. The batch
size refers to the number of sequences that are processed simultaneously by the network
during training. The batch size is adjusted to balance the trade-off between computational
efficiency (training time) and the ability to estimate the true gradient of the loss function.

Figure 19 shows the variation of accuracy of the deep learning classification model
with five different epochs (100, 200, 300, 400, and 500) and four different batch sizes (2,
4, 8, and 16). All results in the figure were calculated from BiLSTM based on SE or IFSE
as an input. SE and IFSE were calculated based on the time series with a length of 5 ms.
The results from three different sampling frequencies (250 kHz, 500 kHz, and 1000 kHz)
are shown in each figure. Overall, it was observed that the IFSE input resulted in slightly
higher accuracy than the models trained only with SE. For most results from the use of
SE and IFSE, accuracy of the RNN model changes only little with the various epochs and
batch sizes considered in this study. However, it was clearly noticeable that the accuracy of
the classification model could be enhanced by tunning the hyperparameters. For example,
the use of SE results in best accuracy of 71% for the parameter setup of sampling frequency
of 1000 kHz with epoch of 200 and batch size of 8. Furthermore, the use of IFSE results in
slightly higher best accuracy of 74% for the parameter setup of sampling frequency of 250
kHz with epochs of 500 and batch size of 16. The accuracy of 74% on that setup was the
best-attained accuracy in our tests. This reveals that the deep learning classification model
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based on BiLSTM can improve the accuracy of the classification up to 150% more than the
estimation by chance alone.
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Figure 19. Variations of accuracy with epochs in a range of 100 to 500 with various batch sizes
and two different types of input for BiLSTM. The upper and lower rows indicate the results based
on spectral entropy (SE) and combination of instantaneous frequency and spectral entropy (IFSE),
respectively. The first to fourth columns from the left side indicate the results determined by using
batch sizes of 2, 4, 8, and 16, respectively. The results from three different sampling frequencies (250
kHz, 500 kHz, and 1000 kHz) are presented as red, blue, and green solid circles in each figure.

4.3. Performance Comparison of Methods

Figure 20 compares the best performance of the deep learning classification models
based on the three RNN models (LSTM, GRU, and BiLSTM) with tuned hyperparameters.
Furthermore, the performance of the classification models based on the two conventional
ultrasonic parameters (relative P-wave velocity and signal coherence) is also shown in the
figure. The classification thresholds for the conventional methods are based on the obtained
regression lines with θ at 3%, which returns Vr,P 3% of 1.00027 and coherence of 0.36.
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Figure 20. Comparison of performance of classification models based on all tested methods:
(a) accuracy, and (b) Cohen’s kappa.

It was demonstrated that the performance of the deep learning classification models
was far more improved than those based on the relative P-wave velocity, Vr,p. Among the
tested parameters, the BiLSTM model with fine-tuned hyperparameter has the best overall
performance, with an accuracy of 74% and kappa of 0.48. The GRU model has slightly
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less performance, with the top performing model demonstrating an accuracy of 71% and
kappa of 0.40. The least performing RNN model was the LSTM with an accuracy of 67%
and kappa of 0.32. The UPV method was placed in a distant last place, with an accuracy
of 53% and kappa of 0.07. Therefore, Vr,p is not an effective parameter for detecting early
concrete damages caused by steel corrosion in the rust propagation period. Previous
researchers observed that UPV of concrete was sensitive to the presence of surface-breaking
cracks and subsurface cracks and voids [55]. However, Vr,p of concrete did not show a
clear correlation with the corrosion levels of steel in concrete in this study, even for the
concrete specimens with surface-breaking cracks (i.e., D19 and D22 specimens). It was
observed in this study that the surface-breaking cracks first appeared on the surface of
concrete at a corrosion level ranging from 4% to 5%. The surface-breaking cracks were
tightly closed at the early stage of corrosion. Furthermore, corrosion products could fill the
microcracks and enhanced porosity of damaged concrete. Therefore, it can be inferred that
early concrete damages caused by steel corrosion could not affect the coherence parts of
ultrasonic pulse waves. Even so, the signal-coherence-based classification model resulted
in far more improved accuracy of 73% compared to the UPV model. This result reveals
that incoherent parts of ultrasonic pulse waves are informative of the minor concrete
damages associated with steel corrosion. However, the balance of true positive predictions
between the classes from the signal coherence method was relatively low, which resulted in
a kappa of 0.23. The overall low performance of the signal coherence method is attributed
to the significant changes in frequency response caused by the formation of cracks in
concrete. The variation of signal coherence remains a very low value and becomes stable
regardless of the corrosion level progress. Furthermore, as discussed in this study, the
distribution of signal coherence, as a nonlinear ultrasonic parameter, could be dependent
on several signal processing parameters such as the length of signals, the range of time,
and frequency windows, as discussed in Section 4.1. Therefore, special cares are needed to
find an optimal set of parameters that result in the best performance of the model based on
signal coherence. Therefore, it was demonstrated that the deep learning approach based on
RNN for ultrasonic pulse waves is a potential method for evaluating early concrete damage
caused by steel corrosion in the rust propagation stage.

5. Conclusions

This study investigated the feasibility of ultrasonic pulse wave measurements for early
detection of concrete damages caused by corroded steel in concrete using a deep learning
approach based on RNN. A series of experimental studies was performed in the laboratory
to collect ultrasonic pulse waves through reinforced concrete cube specimens where a
reinforcing steel with various corrosion levels was embedded. A bilinear model, classifying
the reinforced concrete cubes into solid and damaged concrete according to the threshold of
3% steel corrosion, was developed based on deep learning of ultrasonic pulse waves using
RNN. The performance of the deep learning classification model based on three different
RNN models (LSTM, GRU, and BiLSTM) were compared. Furthermore, the performance
of the deep learning classification models were compared with the classification models
based on two conventional ultrasonic testing parameters (relative P-wave velocity and
signal consistency). Summarized below are four important findings in this study:

1. The performance of deep learning classification models was affected by various
parameters: length of time signal, sampling frequency of time signal, type of input,
networks, and hyperparameters (batch size and epoch). The use of an extracted
feature (i.e., IF and/or SE) as an input of RNN-based deep learning models resulted in
better performance and far more improved computational efficiency than using time
series. It was observed that time series with a length of 5 ms and a sampling frequency
of 500 MHz was appropriate as an input of the feature extraction processes. However,
it was difficult to reach general conclusions on the effects of various input and training
parameters because different sets of parameters affected the performance results for
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the three RNN algorithms in a different way. A fine-tuning of hyperparameters further
improved the performance of deep learning classification models.

2. Deep learning classification models, in the form of RNNs, were effective for the evalu-
ation of early concrete damage caused by steel corrosion in concrete with acceptable
accuracy. The best performance was obtained using the bidirectional long short-term
memory (BiLSTM) model based on a combination of instantaneous frequency and
spectral entropy (IFSE) of ultrasonic pulse waves with a length of 5 ms and a sampling
frequency of 250 kHz. Based on this method, the obtained accuracy and Cohen’s
kappa were 74% and 0.48, respectively.

3. It was demonstrated that the relative P-wave velocity was not practical for detect-
ing early concrete damages associated with steel corrosion in the rust propagation
phase. The classification model based on ultrasonic pulse velocity (UPV) resulted in a
relatively low accuracy of 53% with a kappa of 0.07.

4. The classification model based on signal coherence achieved more improved accuracy
of 73% than that based on UPV. However, the method resulted in a relatively low
kappa of 0.23, which is attributed to unbalanced true positives between classes. In
addition, there are many parameters in this method, such as the analyzed signal
time series and frequency window, that are not standardized and require engineering
judgment. Therefore, special care is needed to optimize the model that results in the
best performance of the model.

5. The ultrasonic pulse wave data used in this study were collected from the limited
number of concrete specimens fabricated in the laboratory, with corroded steel artifi-
cially accelerated by the impressed current technique, in specific saturation conditions
(fully saturated conditions). Furthermore, signal measurements in this research were
performed in the direct measurement configuration, which could limit this study’s
practicality for actual structures. Therefore, more systematic studies that consider
various experimental conditions in field applications are needed to reach more general
conclusions.
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