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Abstract: The paper proposes a 3D extension of the linear tensor model of magnetic permeability
for axially anisotropic materials. In the proposed model, all phases of a magnetization process
are considered: linear magnetization, magnetization rotation, and magnetic saturation. The model
of the magnetization rotation process is based on the analyses of both anisotropic energy and
magnetostatic energy, which directly connect the proposed description with physical phenomena
occurring during a magnetization process. The proposed model was validated on the base of
previously presented experimental characteristics. The presented extension of the tensor description
of magnetic permeability enables the modelling of inductive devices with cores made of anisotropic
magnetic materials and the modelling of magnetic cores subjected to mechanical stresses. It is
especially suitable for finite element modelling of the devices working in a magnetic saturation state,
such as fluxgate sensors.

Keywords: soft magnetic materials; uniaxial magnetic anisotropy; tensor of magnetic permeability

1. Introduction

Modelling the behaviour of inductive components with magnetic cores in numerous
mechatronic devices is based on the description of relative magnetic permeability µ, which
is one of the most important properties of magnetic materials. For simple isotropic systems,
relative magnetic permeability µ can be approximated by a scalar value. However, such
a description is insufficient in the case of the most common technical applications [1],
such as electrical steels [2] or amorphous alloys [3]. Since commonly used modern soft
magnetic materials [4] are characterised by strongly anisotropic properties [5–7], relative
magnetic permeability µ has to be described as a 3 × 3 tensor. Another problematic aspect
of magnetic modelling is that such materials often work near the saturation state. This
case occurs in transductors [8], pressductors [9], and other sensors using ferromagnetic
cores [10]. It should be highlighted that when a magnetization process ends in a full
saturation state, the directions of the magnetizing field H and the flux density B induced in
the material are parallel. However, in the case of anisotropic materials, for smaller values
of a magnetizing field H, the angle between the magnetizing field H and the flux density B
should be considered in modelling [11].

A reasonably simplified, although still faithful from the physical point of view, de-
scription of magnetic properties is necessary for modelling the inductive components with
anisotropic magnetic cores. Recently, different types of software for finite element mod-
elling offer the implementation of the tensor description of relative magnetic permeability
µ, such as commercial COMSOL [12] and ANSYS [13] or open-source ELMER FEM [14].
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Apart from the tensor description, one must consider the magnetization process’s nonlinear
characteristics related to saturation flux density Bs.

Due to the need for a mathematical description of the magnetization curve, many
different models have been proposed. The known models can be divided into two main
categories [15], where “type I” models are constructed from the superposition of scalar
models distributed along all possible directions, and “type II” are constructed by the
integration of contributions of intrinsically vector elements. Since classical “type I” models
are based on a scalar approach, like in the scalar Preisach model [16], they would find
no use in the tensor description. Moreover, the mentioned model is limited to isotropic
materials, just like many models already presented in the literature [17–20]. The use of the
proposed models is impossible for modern soft magnetic materials due to their anisotropic
characteristics. The “type II” models are based on different physical phenomena, such as
the dry friction-like hysteresis mechanism based on domain wall pinning (B-DF model) [21],
Stoner–Wohlfarth (SW) model for monodomain magnetic systems [22], or energy-based
models (EB) that are derived from thermodynamic principles [23,24]. The new models
are mainly the extensions of already existing ones which improve their accuracy and
increase application possibilities, such as the anisotropic extension [25] of the Jiles–Atherton
model [26] or the MultiScale Model (MSM) [27] based on the B-DF model. The given models
deal with anisotropy modelling.

The given paper proposes another approach to magnetic curve modelling based on
tensor and energy operations addressing the uniaxial anisotropy of materials. The primary
solution for a given problem was proposed by introducing the tensor model of relative
magnetic permeability for two-dimensional models [28]. The two-dimensional simplifica-
tion is sufficient for describing the magnetic behaviour of bulk inductive components with
stress-induced anisotropy. However, the lack of three-dimensional models limits the use of
such a solution for bulk objects. The paper presents the new idea of a three-dimensional,
linear–rotation–saturation (LRS) model of relative magnetic permeability tensor µ, which
considers uniaxial anisotropy for soft magnetic materials and allows for a saturation state.
The model is based on the physical principles describing a magnetizing process [29], in
which the saturation state is connected with the rotation of magnetic flux density vector B
towards the direction of magnetizing field H. The proposed model can be used for efficient
and accurate modelling of three-dimensional inductive components with axial anisotropy.
Moreover, since only axial anisotropy occurs in isotropic materials subjected to mechanical
stresses [30], the proposed model of a magnetization process can be used for complex
magneto-mechanical modelling cases where isotropic magnetic materials are subjected to
axial and shear mechanical stresses described by a stress tensor σ.

2. Axial Anisotropy of Relative Magnetic Permeability Tensor µ in 3D

The visualisation of the three-dimensional principal axis representation of the relative
magnetic permeability tensor for anisotropic magnetic materials is presented in Figure 1.
The shape of the representation is an ellipsoid. Due to the uniaxial character of anisotropy,
two semi-axes are the same length. These semi-axes µy and µz determine the permeability
with respect to the hard axes Y and Z of magnetization, whereas the permeability with
respect to the easy axis X equals µx.

The three-dimensional principal axis description of relative magnetic permeability
tensor µ is now given by

µ =

µx 0 0
0 µy 0
0 0 µz

 (1)

It should be highlighted that for any system with axial anisotropy (with the coordinate
axes not being aligned with the principal axes of the permeability tensor), the proposed
description requires a 3D rotation. In such a case, a rotation matrix R can be used [31] as

µR = R−1µR (2)
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where R can be given in various forms. In the most general case, the rotation matrix R can
be given in the Euler form as an array of cosine values between the principal XYZ and the
rotated X′Y′Z′ coordinate axes [32]:

R =

cos(X, X′) cos(X, Y′) cos(X, Z′)
cos(Y, X′) cos(Y, Y′) cos(Y, Z′)
cos(Z, X′) cos(Z, Y′) cos(Z, Z′)

 (3)

As a result, all analyses presented in the paper can be easily converted to any orien-
tation of material anisotropy by performing the rotation transformations in terms of the
matrix R.
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Figure 1. The visualisation of relative magnetic permeability tensor µ for axial anisotropy in
three dimensions.

3. The Proposed Linear–Rotation–Saturation (LRS) Model of Relative Magnetic
Permeability for Materials with Axial Anisotropy

In line with the physical description [11], the proposed model considers three phases
of a magnetization process:

• The linear phase.
• The magnetization rotation phase, when the length of flux density vector B is equal

to saturation flux density Bs; however, the magnetostatic energy is consumed for the
rotation of flux density B vector towards the magnetizing field H.

• The magnetic saturation phase, in which when the length of flux density vector B
is equal to saturation flux density Bs, it is parallel to the magnetizing field H, and
saturation is modelled by shrinking the magnetic permeability tensor.

To simplify the model explanation, the case of axial anisotropy is considered when
the easy axis of magnetization is in line with the X axis. In such a case, also for high-
permeability materials, in the initial linear phase of the magnetization process, the magnetic
flux density B is given as

BL = µ0

µx 0 0
0 µy 0
0 0 µz

H (4)

where µ0 is the magnetic constant. In the proposed model, the length of the magnetic
flux density vector B grows with the magnetizing field H growth until reaching the value
of saturation flux density Bs. However, when the length of flux density B reaches the
magnetic saturation value Bs, the material is not yet fully saturated. The second phase



Materials 2023, 16, 3477 4 of 12

of the saturation process is related to the rotation of magnetic flux density B towards the
direction of the magnetizing field H.

The magnetization rotation phase model requires analysing the magnetostatic energy
of materials by considering hard and easy magnetization curves. Moreover, in the case
of stress-induced axial anisotropy, relative magnetic permeability values µy and µz with
respect to the hard axes Y and Z of magnetization are the same [33]. In such a case,
simplified B(H) magnetization curves (linear with saturation) are presented in Figure 2.
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In order to reach full saturation, the magnetizing vector needs to move from the easy
axis to the hard axis of magnetization. For this process, a specific amount of energy is
required. In the simplified linear model with saturation, the energy necessary to obtain full
saturation is equal to magnetostatic energy. Based on the plots presented in Figure 2, the
value of magnetostatic energies Ex and Ey (required for the magnetic saturation in X and Y
directions, respectively) can be calculated based on geometric dependencies:

Ex =
BsHsx

2
=

B2
s

2µ0µx
(5)

Ey =
BsHsy

2
=

B2
s

2µ0µy
(6)

where Bs is the saturation flux density (determined by the chemical composition of the
material and being equal for X and Y directions), whereas Hsx and Hsy are the values of the
magnetizing field required for the magnetic saturation in X and Y directions, respectively.
Finally, the average magnetic anisotropy energy Kan (measured per cubic meter of the
material) required for the rotation of magnetization in saturation from the easy axis to the
hard axis of the material [34] is given as

Kan = Ey − Ex =
B2

s
2µ0

(
1

µy
− 1

µx

)[
J

m3

]
(7)

In the rotation state, the flux density B′s in the material can be described as

B′s = µ0

R−1

µx 0 0
0 µy 0
0 0 µz

R

Hs (8)
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where R is the rotation matrix, and Hs is given as

Hs = H
|BL|
Bs

(9)

In order to perform the rotation of magnetic flux density B, the value of required
energy and the rotation angle need to be calculated. The energy can be described as the
difference between the total magnetic energy connected with the magnetizing field H and
the magnetic field energy required to reach saturation Bs:

Erot =
Bs(|H| − |Hs|)

2
(10)

The angle φ associated with the rotation is used to define the total energy Ean(φ)
required for performing this process. For a uniaxial material, their relationship can be
described by a formula [11]:

Ean(φ) = Kansin2φ (11)

where Kan is the average anisotropy energy density defined in Equation (7) (alternatively
the anisotropy coefficient), and φ is the angle of magnetization concerning the axis of
magnetization. This formula can be simplified to the linear form:

Ean(φ) =
φ

π
/

2
Kan (12)

In order to define a rotation angle ϕrot of B, one condition needs to be checked. If the
energy Erot passed for rotation is lower than the anisotropic energy Ean(φ), so if Erot < Ean(φ),
the rotation angle ϕrot equals

ϕrot = φ
Erot

Ean(φ)
(13)

The full saturation state is reached in the case where Erot ≥ Ean(φ). In full saturation,
the rotation angle ϕrot equals the angle φ between the easy magnetization axis and the
direction of the magnetizing field H.

In the final saturation stage, the magnetic flux density B is parallel to the direction
of the magnetizing field H. The length of the magnetic flux density vector B equals the
saturation value Bs and cannot increase despite the increase in the magnetizing field H. The
visualisation of rotation angles in the saturation process is presented in Figure 3.

For a numerical implementation, the rotation of the saturated vector B can be calcu-
lated with the use of a three-dimensional rotation matrix R:

B = RB′s (14)

where B′s is given by Equation (8).
From a mathematical point of view, the three-dimensional rotation matrix R can be

obtained in many ways, depending on the complexity of a rotation process. In our case, the
rotation by the rotation angle ϕrot causes the movement of the magnetic flux density vector
B towards the magnetic field strength vector H. As both vectors emanate from the origin of
the XYZ system, both share a common plane, which can be defined by a surface normal
originating from the same origin. To simplify the case, the common plane for both vectors
can be defined by a unit normal un (obtained by normalising surface normal), which equals
the vector product of the normalised magnetic flux density vector uB and the normalised
magnetizing field uH, so that

un = uB × uH (15)

where
uB =

B
|B| , uH =

H
|H| (16)
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The common plane for both vectors, where the rotation takes place, does not usually
overlap with the primary coordinate system planes such as XY, XZ, or YZ. In practice, it
is convenient to introduce a new coordinate system X′Y′Z′ for rotation such that B and H
vectors lie in the X′Y′ plane and the unit normal un is the rotation axis Z′. In such a way,
the rotation can be performed for vectors located anywhere in the body. Thus, the rotation
corresponding to the rotation angle ϕrot about the rotation axis un = [unx, uny, unz] can be
performed by using the rotation matrix defined as follows:

R =

 c + u2
nx(1− c) unxuny(1− c)− unzs unxunz(1− c) + unys

unyunx(1− c) + unzs c + u2
ny(1− c) unyunz(1− c)− unxs

unzuny(1− c)− unys unzuny(1− c) + unxs c + u2
nz(1− c)


where

s = sin(ϕrot), c = cos(ϕrot) (17)

The derived rotation matrix R can be used to perform the rotation in Formula (14).
The graphical summary of the proposed process needed in the linear–rotation–saturation
(LRS) model is presented in Figure 4. The whole magnetization process conducted for a
specific range of values for magnetic field strength H and permeability tensor components
µx, µy and µz is also presented in the Supplementary Materials as a video file.

The detailed process description is used to derive the final form of the permeability
tensor in each phase. In the first linear phase (Figure 4a), where the saturation induction is
not reached, the magnetic permeability tensor is described in a simple form:

µL =

µx 0 0
0 µy 0
0 0 µz

 (18)

As noticed, the permeability values depend solely on the initial material parameters
in the linear phase.

After the value of saturation induction has been reached, while, at the same time,
the vectors H and B are not parallel to each other, rotation is performed. In this stage
(Figure 4b), the length of H is reduced to the value Hs, as presented in Formula (9). The
magnetic permeability tensor must be modified using the rotation matrix in Formula (17).
In this phase, the permeability tensor is described as
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µrot = R−1

µx 0 0
0 µy 0
0 0 µz

R (19)
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In the final saturation state, when both the vectors H and B are aligned with the hard
magnetization direction, the magnetic permeability tensor is given as follows:
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µs =

R−1

µx 0 0
0 µy 0
0 0 µz

R

 |Hs|
|H| (20)

The above description can be utilised to build a numerical FEM version of the magnetic
permeability model. As magnetic permeability is a property that characterises the magnetic
behaviour of the material well, its accurate numerical description is a key factor affecting
the accuracy of FEM models [35].

The proposed model was implemented with open-source Octave software [36]. The source
files are available in the Supplementary Materials for further validation and development.

4. Modelling of Magnetization Curves

For the proposed method, magnetization curves B(H) have been modelled for different
angles of the magnetizing field H. The presented magnetic flux density vector B is a
projection on the direction of the magnetizing field H. Such a case occurs in a model
where the magnetizing coil is coaxial with the sensing coil placed around the magnetic
core. An example of such a model is a fluxgate sensor in Foerster configuration [37]. The
magnetization curves for different angles between the magnetizing field H and the easy
axis of magnetization are presented in Figure 5.
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Figure 5. The magnetizing curves for different angles φ between magnetizing direction and easy-
magnetization axis.

For the states where the magnetizing field H is parallel to either the minor or the
major axis of the relative magnetic permeability tensor, rotation does not appear. The area
between the curves for easy and hard magnetization axes represents the rotation state area,
where the rotation state is represented by the plot curvature between the not-saturated and
the saturated state.

The proposed model generates simplified results similar to the observation made
when analysing experimental results for different amorphous magnetic alloys with uniaxial
anisotropy. Such anisotropy can be

• Induced during the thermomagnetic annealing (Experiment in Ref. [38]).
• Induced as a stress-induced anisotropy in isotropic magnetic materials (such as soft

ferrites) subjected to mechanical stresses (Experiments in Refs. [39,40]).

It should be highlighted that the experimentally observed results of the measure-
ments of the characteristics of soft magnetic materials with uniaxial anisotropy are well
represented by the proposed model.
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In addition to the measurement results, characteristics obtained from the proposed,
generalised 3D linear–rotation–saturation (LRS) model can be compared to single dimen-
sion axial anisotropy magnetization curve models, enabling consideration of the angle Φ
between the direction of the anisotropy easy axis and the direction of the magnetizing field
H. An example of the results of modelling the magnetization curve of soft magnetic material
with uniaxial anisotropy and with an extended Jiles–Atherton model [17] is presented in
Figure 6.
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It should be indicated that the character of changes in the magnetization curve of
soft magnetic material with uniaxial anisotropy modelled with an extended Jiles–Atherton
model can be well represented by the proposed generalised 3D linear–rotation–saturation
(LRS) model. Moreover, the proposed LRS model generates more general results, enabling
fast and robust 3D relative magnetic permeability tensor modelling. The previously pre-
sented extended Jiles–Atherton model enables only the modelling of the magnetization
curve in a given direction Φ.

On the other hand, it should be highlighted that the proposed model is suitable only
for modelling the uniaxial anisotropy of soft magnetic materials. Other models should be
proposed for modelling other types of anisotropy, such as the magnetocrystalline anisotropy
of hard magnetic materials or grain-oriented electrical steels.

5. Practical Implementation

The proposed linear–rotation–saturation (LRS) model can be implemented directly
when the magnetic field strength dependence of relative permeability is used in FEM
models. However, if the magnetic model utilised edge elements, magnetic potential
analyses are carried out by FEM software (e.g. ELMER FEM 9.0, CSC – IT Center for
Science, Espoo, Finland), and the relationship derived from the Maxwell equation [41]
is utilised:

∇× (νB)− σE′ = g (21)

where σ is electric conductivity, E is the electric field, and g is a divergence-free source. In
such a case, it is necessary to transform permeability µ to reluctivity ν as a function of flux
density B instead of magnetic field strength H. The relation between those is given by

υ(B) = µ−1(B) (22)
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It should be highlighted that to solve Equation (22), the linear or nonlinear B(H)
dependence should be considered, depending on the working point on the magnetization
curve. On the other hand, the B(H) relation is always monotonous due to physical reasons.
As a result, the successive approximation method can be applied to the assessment of
ν(B) dependence.

The transition phase between the linear and rotational phase causes the B(H) curve
to have a discontinuous derivative at the transition point. Since FEM solutions are based
on the methods of solving differential equations, solving the problem of discontinuous
derivatives is a mathematical problem. It is solved in different ways, with both classical
and numerical approaches. In our numerical case, several solutions have been provided
regarding this issue [42,43]. The discontinuity problem in FEM modelling is addressed
primarily in the cases of mechanical cracks [44]. The analysis should be provided individ-
ually for each modelling case in terms of convergence for discontinuities. One example
is the Discontinuous Galerkin formulation [45]. FEM modelling tools enable using differ-
ent techniques for solving differential equations, which should be adjusted to a specific
modelling case.

6. Conclusions

The proposed 3D extension of the linear tensor model for axially anisotropic magnetic
permeability considers three phases of a magnetization process: linear magnetization,
magnetization rotation, and magnetic saturation. Moreover, the magnetization rotation
process model is based on the analyses of both anisotropic energy and magnetostatic energy,
which directly connect the proposed description with physical phenomena occurring
during the magnetization process. The proposed rotation matrix R-based description can
be easily implemented into finite element software, such as open-source ELMER FEM or
other commercially available alternatives. In the case of such implementation, the relative
permeability tensor can be modelled, which creates new possibilities for modelling the 3D
magnetostatic and magnetodynamic systems.

The modelling results align with previously presented and experimentally measured
characteristics of soft magnetic materials with axial anisotropy, such as amorphous alloys
subjected to annealing in the presence of a magnetic field or isotropic magnetic materials
(such as soft ferrites) subjected to mechanical stresses. Moreover, the results align with
other numerical models of anisotropic hysteresis. As a result, the proposed extension of the
tensor description of the magnetic permeability model enables the modelling of inductive
devices with cores made of anisotropic magnetic materials, together with the modelling of
magnetic cores subjected to mechanical stresses, which is important for sensors working
with magnetostriction effects, such as energy harvesting devices [46,47]. For this reason,
the proposed model is especially suitable for finite element models of devices working in
a magnetic saturation state, such as fluxgate sensors. Since the proposed model is three-
dimensional, it can be applied to extend existing 2D models, such as a 2D frame-shaped
fluxgate sensor [48]. In addition, due to the fact that both axial and shear stresses can be
reduced to axial stresses in the principal directions [30], the proposed model might be used
for modelling the axial and shear stress dependence of characteristics of fluxgate sensors
with cores made of isotropic materials. This means that the influence of compressive and
tensile stresses, bending, and torque should be considered in the modelling. Moreover, the
stress dependences of the 3D relative magnetic permeability tensor model and the model of
magnetic saturation are required. The proposed model covers all these requirements and
opens up the possibility of further works on modelling the mechanical stress dependence
of fluxgate sensors with stress-induced anisotropy.

However, it should be indicated that the proposed model is suitable only for modelling
the uniaxial anisotropy of soft magnetic materials. Other models should be considered to
model the other types of anisotropy observed experimentally, such as magnetocrystalline
anisotropy of semi-hard or hard magnetic materials, or grain-oriented electrical steels.
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