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Abstract: Flood-controlled ancient dikes play a significant role in flood control and have received
widespread attention as historical and cultural symbols. Flood-controlled ancient dikes often undergo
disasters, and research on their repair is receiving increasing attention from experts and scholars.
This article studies the control of seepage and bank slope instability in flood-controlled ancient dikes.
Starting from the repair of ancient dike materials, three types of work are carried out: a test of soil’s
mechanical properties, finite element numerical simulation, and repair technology research. The
research results show that the soil of the ancient dike site has hardened after being contaminated with
waste oil from catering. The strength index of the ancient dike soil decreases and shows brittleness
when the water content is 15% and the oil content exceeds 6%. The strength index and permeability
coefficient of oil-contaminated soil improved using modified lime mortar (MLM), which was achieved
using the method of MLM to repair oil contaminated soil. When the MLM content was 10% and the
oil content was 6%, the friction angle of the soil sample reached its maximum value. When the MLM
content was the same, the higher the density of the soil sample, the greater the friction angle and
cohesion and the smaller the permeability coefficient. Establishing a finite element numerical model,
through comparative analysis, it was found that after MLM remediation of oil-contaminated soil, the
extreme hydraulic gradient of the ancient dike decreased by 31.3%, and the extreme safety factor of
the bank slope stability increased by 31.2%. MLM pressure grouting technology was used to improve
the soil during the remediation of contaminated soil at the ancient dike site. Through on-site drilling
inspection, the effective diffusion radius of MLM grouting was obtained, and the plane layout and
grouting depth of MLM pressure grouting were determined. The on-site water injection permeability
test showed that using MLM pressure grouting technology can effectively repair oil-contaminated
soil in the ancient dike while reducing the permeability coefficient by 8–15%.

Keywords: flood-controlled ancient dike; silty clay; oil pollution; mechanical characteristic of MLM
soil; MLM pressure grouting; seepage coefficient of MLM soil

1. Introduction

The urbanization process in China has had a significant impact on the urban water sys-
tem structure, and urban construction planning optimization based on flood control safety
and historical water engineering protection is gradually becoming a research hotspot [1–5].
Many ancient embankments in southern China are adjacent to residential buildings, and
rainwater and sewage pipelines are staggered. While ancient dike works play the role
of flood control, they are affected by the leakage of waste oil from residents’ catering,
resulting in changes in the nature of the soil mass of the flood-control dike, resulting in the
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aggravation of the damage of piping soil flow caused by flood scouring and changes in
the soil strength, resulting in the change of the overall stability of the bank slope and even
landslide damage. Lime is the main building material for ancient projects around the world.
The repair of ancient dikes requires the use of lime, which has better compatibility with the
materials of the original structure to be repaired. There are few reports on the remediation
of oil-contaminated soil with lime. Previous research has mainly focused on two aspects: on
the one hand, experimental research on the physical and mechanical properties of mineral
oil-contaminated soil, and on the other hand, the research on lime-modified raw soil and
the reparation of ancient building materials.

The mineral oil of common contaminated soil includes oil, gasoline, diesel, and
gasoline, and the contaminated soil includes cohesive soil, fine sand, silty clay, etc. Oil-
contaminated soil samples were prepared by mixing the residual soil and oil and were
tested in the laboratory. The results showed that oil pollution led to the deterioration of
the geotechnical properties of the soil samples. Compared with raw soil, its maximum
dry density, optimum water content, permeability, and shear strength decreased [6–8].
The particle size distribution and density of soil samples have a great impact on the
mechanical properties and permeability of oil-contaminated clayey silt. With the increase
in oil content, the friction angle of soil samples decreases, the cohesion does not change
significantly, and the permeability coefficient increases significantly [9]. After the gravel is
polluted by oil, with the increase in oil content, the friction angle decreases and the cohesion
increases significantly [10–12]. After the clay is polluted by gasoline, the pH value of the
clay decreases significantly and the conductivity increases. Additionally, at first, with the
increase in gasoline content, the friction angle slightly increased and the cohesion decreased
significantly. However, with the increase in the lead content in gasoline, the friction angle
and cohesion decreased [13,14]. Another study investigated the effect of petroleum-derived
contaminants on the permeability, cohesion, friction angle, and shear strength of fine sand.
An increase in cohesion was observed for sand with up to 1% oil contamination, after which
the cohesion began to decrease, which also resulted in the reduction in the permeability [15].
After diesel contaminated the loess, the permeability coefficient of the loess decreased with
the increase in diesel content, and the compression modulus and unconfined compressive
strength were almost unchanged [16–18]. Gasoline pollution poorly graded sand, low-
plasticity clay, and silt, and decrease in the friction angle and an increase in the cohesion of
the soils were found with an increase in contamination. Unconfined compressive strength
of silty soil decreased with increasing gas oil percentage, which is different from low
plasticity clay [19,20]. The oil content also affects the bearing-capacity characteristics of
sandy loam soil and the settlement of the footing, and was also found to significantly
reduce the load settlement and ultimate bearing capacity of the footing [21]. Through the
direct shear test and bearing capacity test of strip shallow foundation, it is shown that the
oil content reduces the shear strength and bearing capacity of sand to varying degrees [22].
Based on the above research, the physical and mechanical behavior of different types of
soil polluted by different kinds of mineral oil is complex, which is quite different from the
original soil’s properties. It is necessary to evaluate the changes in physical and mechanical
properties of silty clay contaminated by oil and to analyze the impact of waste oil pollution
on the stress–strain relationship, seepage characteristics, and microstructure characteristics
of silty clay, providing basic data for the improvement in the contaminated soil.

Due to the special historical and cultural value of ancient dikes to be preserved during
repair, the repair materials should be compatible with the raw materials, and lime should
be the main material [23–27]. There are many experimental studies on adding lime and
additives to change soil properties. Previous studies have obtained five properties of
natural hydraulic lime mortar, namely the type of natural hydraulic lime [28–30]; the ratio
of binder to aggregate [31]; the effect of the water–cement ratio on the fluidity of lime
mortar [32,33]; the characteristics of aggregate, including composition, particle size, and
distribution [34]; and the curing conditions [35]. The results show that when the ratio of
binder to aggregate of lime mortar is 1:3, its mechanical properties can be improved and
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better carbonation can be obtained [36–38]. Lime and binder can be used to change the
mechanical properties and durability of raw soil, and the modification effect of raw soil
will increase with the increase in lime content [39–44].

Many scholars have studied the effects of physical and mechanical properties of soil
on the seepage and bank-slope stability of flood control dikes. Based on the change in the
microstructural arrangement of soil particles, the microscopic change in the permeability
coefficient of soil is studied experimentally [45–47]. The coupling equation of seepage and
erosion shows that the pore water pressure in soil increases until the hydraulic gradient is
greater than the critical hydraulic gradient, and the fine particle phase migrates and loosens
from the soil, resulting in deformation and instability [48–51]. Research on bank-slope
stability has shown that numerical analysis methods provide an appropriate and effective
tool to establish numerical models. Based on changes in the intrinsic properties of soil
and experimental data, the bank-slope stability remains to be analyzed [52–57]. Current
research rarely involved the characteristics of lime to improve the oil-contaminated soil,
and carrying out relevant research is urgently needed to repair the soil to reinforce the
ancient dike.

2. Methodology and Materials
2.1. Methodology

There are many flood-controlled ancient dikes in China. These ancient dikes still play
a role in flood control, and at the same time, they are often protected cultural relics and
landmark buildings in towns. Representative flood-controlled ancient dikes in southern
China are all distributed in densely populated towns along rivers (in Figure 1a). Take the
Lanxi ancient dike as an example, which is located at the intersection of Qujiang, Jinhua,
and Lanjiang rivers, as shown in Figure 1b. The ancient dike was first built in 1512 AD and
consists of a wharf and an ancient dike [58], as shown in Figure 1c,d. The ancient dike is
built of red sandstone, and the city gate hole is the entrance and exit from the ancient wharf
to the town, as shown in Figure 1e,f.
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(a) 

Figure 1. Characteristics of flood-controlled ancient dikes in South China. (a) Typical ancient dike
distribution; (b) aerial view of Lanxi Ancient Dike; (c) ancient dike boundary stele; (d) ancient wharf;
(e) city gate hole in ancient dike; (f) side view of ancient dike.
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Ancient dikes have suffered various forms of damage. The bank slope of Lanxi
Ancient Dike is mainly filled with artificial soil, Figure 1a. During the rainy season, the
confluence of river water often leads to a surge of river water (Figure 2b). In addition,
rainfall and groundwater collection lead to leakage of the ancient dike wall, and waste oil
from residential and catering pollutes the soil, as shown in Figure 2c,d. After the soil of the
ancient dike was polluted by the waste oil from catering, the stability of the bank slope was
reduced, and landslides and other damages occurred, as shown in Figure 2e.
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Figure 2. Damage to ancient dike. (a) Engineering geology of Lanxi ancient dike; (b) flood of Lanjiang
river; (c) leakage; (d) oil pollution; (e) bank slope collapse.

Through experiments, the physical and mechanical parameters of soil were obtained,
and changes in soil, oil content, and modified lime mortar (MLM) content on mechanical
indicators were compared and analyzed. Then, the stability of flood-controlled ancient dike
was studied using the finite element numerical analysis approach to take into account the
intrinsic variability of the soil parameters. The research provides theoretical guidance for
the study of ancient dike seepage, slope stability, and reinforcement measures, as shown
in Figure 3.
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2.2. Materials
2.2.1. Soil

The soil for the test was taken from a typical section of the Lanxi Ancient Dike.
Figure 4a,b is a typical section of the Lanxi dike. It follows that the ancient dike’s geology
can be divided into three soil layers, namely newly filled layers I1 and I2 and sand gravel-
filled layer II. The thickness of soil layers I1 and I2 is 2.5~4.5 m, the thickness of sand
gravel layer II is 6.1~11.5 m, and the layer below layer II is the argillaceous silty sand
layer. The soil of layer I1 is newly artificially filled soil, mainly composed of silty cohesive
soil with mixed rubble and a small number of broken bricks in the middle. In some
embankment sections, there are still brick wall structures of previous houses left. This
layer of soil has poor uniformity, complex material composition, unstable properties, and
poor impermeability. The filling soil of layer I2 is mainly composed of silty clay with sand
gravel. Compared to layer I1, this layer has a relatively long filling history. The structure
of this layer is moderately dense, with general uniformity. This layer of soil has medium
water permeability. Layer II is composed of sandy gravel pebbles, mixed with silty clay,
and is moderately dense with medium water permeability. The impact range of waste oil
leakage from catering is mostly in layer I1 and layer I2, and the impact range of seepage
deformation is in layer I1, layer I2, and layer II. The soil used in this test is taken from this
range, and after drying and screening, the soil with a particle size of less than 2 mm is
taken for the remolded soil test.
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Figure 4. Soil sampling of a typical section of an ancient dike. (a) TV histogram of boreholes in strata
I1 and I2; (b) bored soil core of soil layers I1 and I2; (c) bank slope collapse.

The ancient dike is adjacent to residential buildings and municipal facilities, and the
bank slope often collapses suddenly, as shown in Figure 4c.

The dry density and moisture content of soil samples of soil layers I1, I2, and II were
measured with the drying method, the specific gravity with the pycnometer method, and
the liquid plastic limit and plastic limit of I1 and I2 soil samples with the combined liquid
plastic limit method according to the Standard for Soil Test Methods (GB/T50123-2019), as
shown in Table 1.

Table 1. Physical property parameters of silty clay.

Soil Dry Density
/g·cm−3

Volumetric
Water

Content/%

Liquid
Limit

/%

Plastic Limit
/%

Plasticity
Index

Specific
Gravity

I1 1.53 ± 0.08 44.4 ± 2.1 44.4 27.4 17.6 2.70
I2 1.68 ± 0.07 41.2 ± 1.5 43.5 26.2 18.4 2.65
II 1.79 ± 0.13 38.6 ± 1.1 / / / 2.72
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After the soil sample was fully air-dried, it was fully rolled with a rubber rod and
sieved through a 2 mm sieve, and the sieve residue was stored in a sealed bag for standing
by. In order to analyze the composition and distribution of soil particles, a 0.075 mm sieve
was used to divide the soil samples into two groups: coarse particles with a diameter of
0.075~2 mm and fine particles with a diameter of less than 0.075 mm. The soil samples were
put into a self-sealing bag for standby, as shown in Figure 5a. Then, 0.075~2 mm soil sample
were sieved with fine screen, and fine particles smaller than 0.075 mm were analyzed with
a laser particle size analyzer (MS2000) (Hangzhou, Zhejiang province, China), as shown in
Figure 5b,c. The instrument can analyze particles of 0.02~2000 µm, adopt a scanning speed
of 1000 times/s, and perform platform conversion with intelligent dry and wet methods
according to standard operating procedures (SOPs).
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Figure 5. Particle size distribution test of soil sample. (a) Sandbagging at 0.075~2 mm; (b) fine
particles less than 0.075 mm were packed separately; (c) laser particle size analyzer; (d) gradation
curve of soil samples.

The particle grading curves of three soil samples were obtained, as shown in Figure 5d.
The mass of 0.005~0.075 mm silt in soil samples exceeded 50% of the total mass of fine
particles, and the mass of clay particles with a particle size of less than 0.005 mm was
about 10%.

2.2.2. Oil

Through environmental field investigation and geological survey, according to the
composition analysis of soil samples, it is found that the leakage of waste cooking oil
causes soil contamination. With the change in waste oil content, soil properties change. The
mechanism of the influence of waste cooking oil infiltration on soil properties is still unclear,
and there are few relevant studies. This paper carried out an experimental study on this
topic. Since the main component of waste cooking oil is edible oil, light and low-viscosity
vegetable oil was selected as the test oil. See Table 2 for its physical parameters.

Table 2. Physical parameters of edible oil (normal temperature) [59,60].

Oil Density/g·cm−3 Viscosity
Coefficient/Pa·s

Surface
Tension/mN·m−1

Freezing
Point/◦C

Vegetable oil 0.912 11.2 34.2 −5.0

2.2.3. Prepare Oil Contaminated Soil

The test is divided into two groups, namely, a consolidated undrained test and a
saturated seepage test. The effect of oil content on the mechanical properties of soil was
studied by measuring the stress–strain relationship of soil samples through a consolidated
undrained triaxial test. The saturated seepage test was used to study the influence of
reducing the fine particle content in soil samples on the permeability coefficient and to
explore the change in the permeability coefficient in the process of seepage deformation.

Soil samples with a dry density of 1.53 g/cm3, 1.68 g/cm3, and 1.79 g/cm3 and a grain
size of 0.075~2 mm were each taken for preparing samples for the consolidated undrained
test. The masses of soil, water, and oil were calculated according to Equations (1)–(3). The
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reconstituted soil samples were configured with a water content of 15%; an oil content
of 0%, 3%, 6%, 9%, and 12%; a diameter of 3.8 cm; and a height of 7.6 cm. GDS triaxial
apparatus (DYNTTS) was used for he consolidated undrained compression test.

m0= (1 + 0.01w0 )ρdV (1)

where m0 denotes the mass of air dried soil, g; w0 is air dried moisture content, %; ρd is the
dry density of soil sample, g/cm3; and V is the volume of soil sample compactor, cm3.

∆mw= 0.01
(
w′ − w0

)
ρdV (2)

where ∆mw is the amount of water that should be added to the soil sample, g, and w′ is the
water content to be configured for the soil sample, %.

∆O= 0.01
(
O′ −O0

)
ρdV (3)

where ∆O is the amount of oil that should be added to the soil sample, g; O′ is the oil
content to be configured for the soil sample, %; and O0 is the initial oil content, which is
generally zero.

2.3. Test Method

The soil sample was mixed with vegetable oil and left to stand for 24 h. The microstruc-
ture and main components of the soil sample were analyzed using scanning electronic
microscopy (SEM) (Hangzhou, Zhejiang province, China) and energy-dispersive spec-
troscopy (EDS). Due to the poor conductivity of soil, it is necessary to perform sputtering
with gold in advance, about 15 min before SEM scanning. After the sample stage is sent
to the corresponding position of the instrument, the sample needs to be automatically
evacuated for 20 min to avoid interference with the radiation signal of the scanned sample.
A vacuum is maintained at 7.0 × 10−5 mbar, and then one moves to the sample stage using
the relevant buttons and finds the best observation position, changes the magnification and
focus, and adjusts the astigmatism until a satisfactory image is obtained. The voltage is
12~15 kV, and photos are taken at 1000 times magnification; then, satisfactory images are
saved and printed.

The microscopic analysis adopts ZEIZZ-EVO15 (Hangzhou, Zhejiang province, China)
scanning electron microscope for phase analysis, LaB6 electron gun, acceleration voltage
EHT of 12~15 KV, probe current I probe of 20 pA, X-ray composition analysis current of
300~600 pA, and working distance WD of 8~15 mm. The EDS is used to determine the
elemental composition of the sample by the back-scattered detector image. X-ray diffraction
(XRD) was used to study the crystalline and amorphous phases of the original soil samples
and the soil samples contaminated by vegetable oil.

According to Standard for geotechnical testing method (GB/T50123-2019), after evenly
mixing with water, the soil surface is covered with film and left to stand at room tempera-
ture, 20 ◦C, for 24 h, and then the oil and soil are mixed with an oil content of 3%, 6%, 9%,
and 12% and left to stand for 7 d. Oil content soil samples are prepared densities of 1.53,
1.68, and 1.79 g/cm3. After saturation in a vacuum in pure water in a vacuum cylinder
for 8 h, the consolidated undrained test is carried out on the GDS triaxial tester. The test
process is shown in Figure 6.
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Figure 6. Schematic diagram of the experimentation process.

The MLM is then prepared. The main component of hydrated lime is Ca (OH)2, and
the mineral powder is S95-grade ground granulated blast furnace slag. The modified lime
mortar (MLM) is prepared according to a ratio of hydrated lime to mineral powder of 2:3,
the water–cement ratio is 0.43, and additives such as viscosity additives are added. The
modified lime mortar is mixed evenly with 5%, 10%, and 15% content and 6% oil-content-
contaminated soil after 24 h of static and cured at 20 ◦C and 90% relative humidity for
7 days for standby.

See Table 3 for the composition ratio of the two test soil samples.

Table 3. Test soil sample grouping and sample preparation ratio.

Soil Dry
Density/(g/cm3) Water Content/% Oil Content/% MLM Content/%

LO 1.53, 1.68, 1.79 15 ± 1 0, 3, 6, 9 0

LOM 1.53, 1.68, 1.79 15 ± 1 6 5, 10, 15
Note: LO is a mixed sample of silty clay and oil; LOM is a mixed sample of oil-contaminated silty clay treated
with MLM.

The test flow of two soil samples is shown in Figure 7.
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3. Experiment and Analysis

The test was divided into two groups. For the first group, the results of microstructure
and strength properties of oil-contaminated soil with 0%, 3%, 6%, and 9% oil content were
analyzed, and for the second group, the changes in strength and permeability properties of
MLM were analyzed to improve oil-contaminated soil.

3.1. Characteristics of Oil-Contaminated Soil
3.1.1. Microstructure Test

The microstructure and main constituent elements of soil samples were analyzed
using scanning electron microscopy, and the microstructure of crystalline and amorphous
materials of original soil samples and soil samples contaminated with vegetable oil were
studied using phase analysis.

According to the image of the change in the SEM microstructure in Figure 8, it can
be seen that the microstructures of silty clay with various oil content exhibit different
characteristics. From Figure 8a, it can be observed that the microstructure of silty clay
without oil is mainly granular. Figure 8b displays that the soil with an oil content of 3%
is mainly scaly and massive. Figure 8c shows that when the oil concentration reaches
6%, the silty clay has a clear internal morphology of distinct flaky and block structures.
The pores decrease and become compact. Figure 8d shows that silty clay with 9% oil
content is granular, and small pores are obviously developed in it. In summary, energy
spectrum analysis shows that the soil sample is mainly composed of O, Si, and Al and a
small amount of Fe, K, Ca, and Mg. In the process of increasing the vegetable oil content,
silty clay presents different structural properties. The undisturbed soil is powdery, and
the scale-and-plate structure appears after the oil content increases. When the oil content
continues to increase, the soil structure appears as porous cementation structures.

XRD diffraction analysis showed that there was no obvious change before versus after
the crystal composition of the soil were contaminated by oil. It can be judged that there
was no chemical reaction between vegetable oil and the soil, and no new substances were
produced. Figure 9 shows that the main components of oil-contaminated soil samples were
quartz (SiO2), microcline (KAlSi3O4), muscovite (K0.77Al1.93(Al0.5SiO3.5)(OH)2), Albite
(AlSi3O4) and chlorite-serpentine ((Mg, Al)4(Si, Al)4O10(OH)4). Among these, quartz
accounted for 48%, microcline accounted for 24%, muscovite accounted for 17%, albite
accounted for 8%, and chlorite-seripentine accounted for 1%.

3.1.2. Strength Property Test

When preparing soil samples, the dry density was 1.68 g/cm3, the water content was
15%, and the oil contents of the different samples were 0%, 3%, 6%, and 9%. The soil
volume, water volume, and oil volume were measured according to Equations (1)–(3). The
soil particles were weighted, and the water and oil were fully mixed and then covered with
film for storage and left to stand at room temperature for 24 h. After the soil, water, and
oil were evenly mixed, the soil was taken for sample preparation. After the sample was
saturated in a vacuum for 7 h in the saturator, the GDS triaxial apparatus was used for
a consolidated undrained compression test. The system shall set the confining pressure
and back pressure by levels, and the confining pressure and back pressure differences of
the different groups were 30 kPa, 60 kPa, 90 kPa, and 120 kPa. The pressure difference
was kept between the confining pressure and, the backpressure was kept as a constant
in each test. After each stage of confining pressure and backpressure pressurization, a
pore pressure coefficient B value test was conducted. The pore pressure coefficient B was
the pore-pressure coefficient under the condition of equal isotropic stress, which is the
increment of pore pressure caused by the unit increment of confining pressure when the
soil is in the state of isotropic compressive stress. If the B value is greater than or equal to
0.95, the sample can be considered saturated. Under special circumstances, the B value of
individual samples remains unchanged for a long time, which is also considered saturation.
After consolidation, the next undrained shear test can be conducted. When the bias stress
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reaches its peak value, 3~5% of the axial strain is then sheared. If the stress reading does not
decrease significantly, it is sheared until the axial strain reaches 15~20%, and the whole test
is complete. The peak value of deviatoric stress is taken. If there is no obvious peak value,
the deviatoric stress corresponding to the axial strain of 15% is taken as the peak value.

Five parallel tests on each group of samples were carried out. Due to the influence
of uncertain factors in the test, the data with large deviations were removed, the average
values of 3–4 parallel test data were taken as the result; the deviatoric stress axial strain
curves are drawn in Figure 10.
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content; (b) 3% oil content; (c) 6% oil content; (d) 9% oil content.
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Figure 10. Relationship between principal stress deviation and strain: (a) 0% oil content; (b) 3% oil
content; (c) 6% oil content; (d) 9% oil content.

It can be seen from Figure 10 that the peak value of the principal stress deviation
also increases with the increase in the confining pressure. When the oil content is 6%, the
peak value of the principal stress deviation reaches its maximum. The values under the
four confining pressures are 110 kPa, 151 kPa, 185 kPa, and 221 kPa, which are 61.8%,
51.0%, 54.2%, and 62.5% higher than the oil-free soil samples, respectively. When the oil
content increases to 9%, the peak value of the principal stress deviation of the soil sample
decreases, showing a weakening trend of strength. It can be seen that with the increase
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in oil content in soil samples, the peak value of principal stress deviation first increases
and then decreases, reaching an extreme value when the oil content is 6%. The total stress
failure circle is drawn according to the peak value of principal stress deviation under each
confining pressure, and the strength envelope of each stress circle is drawn. Soil samples
with a density of 1.79 g/cm3 are taken to draw stress circle strength envelope lines with
oil contents of 0%, 3%, 6%, and 9%, as shown in Figure 11. The dip angle and intercept of
the envelope correspond to the friction angle and cohesion of soil samples, respectively.
The friction angle and cohesion of soil samples with oil content are shown in Table 4. The
friction angle of the soil sample increased with the increase in oil content. When the oil
content increased to 6%, the friction angle reached a maximum value of 23.8◦ and then
decreases. The cohesive force of the soil sample basically increased with the increase in oil
content. The mechanical indicators of the soil show hardening.

Materials 2023, 16, x FOR PEER REVIEW 13 of 24 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 11. Mohr’s circle for stresses and strength envelope of four oil contents of soil samples (ρd = 

1.68 g/cm3): (a) 0% oil content; (b) 3% oil content; (c) 6% oil content; (d) 9% oil content. 

Table 4. Strength index of soil samples with oil content (1.68 g/cm3). 

Oil Content/% Coulomb Line Friction Angle/° Cohesion/kPa 

0 𝜏 = 0.30𝜎 + 17.21 16.79 17.21 

3 𝜏 = 0.32𝜎 + 24.36 17.90 24.36 

6 𝜏 = 0.44𝜎 + 24.53 23.80 24.53 

9 𝜏 = 0.29𝜎 + 29.82 16.25 29.82 

3.2. Properties of MLM with Oil-Contaminated Soil 

3.2.1. Effect of MLM Content on Strength Index 

In view of the large strength index of soil samples with an oil content of 6% and a 

density of 1.79 g/cm3, the change in the strength index of oil-contaminated soil after 

treatment with MLM content was tested. The MLM accounted for 0%, 5%, 10%, and 15%, 

respectively, and the soil samples with 6% oil content were prepared. The consolidated 

undrained test was completed after 7 days of curing under standard conditions. Five 

parallel tests were carried out on each group of samples, the average value of 3–4 parallel 

test data were taken as the result, and the molar stress circle and strength envelope were 

drawn; see Table 5 for its strength index. It can be seen that for the soil sample with 1.68 

g/cm3 and an oil content of 6%, the friction angle gradually increased with the increase in 

the lime content. When the MLM content was 10%, the friction angle reached a maximum 

value of 30.07°, which is 1.26 times the friction angle of the non-lime-content-

contaminated soil, and the maximum value of cohesion was 32.47 kPa, which was 1.32 

times that of the non-lime content contaminated soil. 

Table 5. Strength index of soil samples with MLM content (1.68 g/cm3, oil content 6%). 

MLM Content/% Coulomb Line Friction Angle/° Cohesion/kPa 

0 𝑦 = 0.44𝑥 + 24.53 23.80 24.53 

5 𝑦 = 0.48𝑥 + 26.71 25.84 26.71 

10 𝑦 = 0.57𝑥 + 32.47 30.07 32.47 

15 𝑦 = 0.55𝑥 + 32.32 29.03 32.32 

  

Figure 11. Mohr’s circle for stresses and strength envelope of four oil contents of soil samples
(ρd = 1.68 g/cm3): (a) 0% oil content; (b) 3% oil content; (c) 6% oil content; (d) 9% oil content.

Table 4. Strength index of soil samples with oil content (1.68 g/cm3).

Oil Content/% Coulomb Line Friction Angle/◦ Cohesion/kPa

0 τ = 0.30σ + 17.21 16.79 17.21
3 τ = 0.32σ + 24.36 17.90 24.36
6 τ = 0.44σ + 24.53 23.80 24.53
9 τ = 0.29σ + 29.82 16.25 29.82

3.2. Properties of MLM with Oil-Contaminated Soil
3.2.1. Effect of MLM Content on Strength Index

In view of the large strength index of soil samples with an oil content of 6% and
a density of 1.79 g/cm3, the change in the strength index of oil-contaminated soil after
treatment with MLM content was tested. The MLM accounted for 0%, 5%, 10%, and 15%,
respectively, and the soil samples with 6% oil content were prepared. The consolidated
undrained test was completed after 7 days of curing under standard conditions. Five
parallel tests were carried out on each group of samples, the average value of 3–4 parallel
test data were taken as the result, and the molar stress circle and strength envelope were
drawn; see Table 5 for its strength index. It can be seen that for the soil sample with
1.68 g/cm3 and an oil content of 6%, the friction angle gradually increased with the increase
in the lime content. When the MLM content was 10%, the friction angle reached a maximum
value of 30.07◦, which is 1.26 times the friction angle of the non-lime-content-contaminated
soil, and the maximum value of cohesion was 32.47 kPa, which was 1.32 times that of the
non-lime content contaminated soil.
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Table 5. Strength index of soil samples with MLM content (1.68 g/cm3, oil content 6%).

MLM Content/% Coulomb Line Friction Angle/◦ Cohesion/kPa

0 y = 0.44x + 24.53 23.80 24.53
5 y = 0.48x + 26.71 25.84 26.71
10 y = 0.57x + 32.47 30.07 32.47
15 y = 0.55x + 32.32 29.03 32.32

3.2.2. Impact of Contaminated Soil Density on Strength Index

According to 10% of MLM content, soil samples with densities of 1.53 g/cm3, 1.68 g/cm3,
and 1.79 g/cm3 were prepared. After the soil samples were cured under standard conditions
for 7 days, five parallel tests and consolidated undrained shear tests were conducted on
each group of samples, and the average value of 3–4 parallel test data was taken as the
result. The peak value of the average principal stress deviation at each oil content is shown
in Figure 11. The average friction angle and cohesion at each oil content are shown in
Figure 12. It can be seen that the friction angle of the three densities of soil samples is the
largest when the oil content is 6%, and the larger the density is, the larger the friction angle
is, which is 25.59◦, 27.72◦, and 30.07◦, with an increasing ratio of 8.3% and 8.5%.
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The peak value of the principal stress deviation of soil samples with densities of
1.53 g cm3, 1.68 g/cm3, and 1.79 g/cm3 at each oil content is shown in Figure 12. The
friction angle and cohesion at each oil content are shown in Figure 13. The cohesion of
the three densities f soil samples increased with the increase in oil content. When the oil
content was 9%, the cohesion was divided into 26.47 kPa, 27.67 kPa, and 29.82 kPa. The
cohesion of the three densities of soil samples increased with the increase in oil content. When
the oil content was 6%, the cohesion was divided into 28.63 kPa, 32.40 kPa, and 32.66 kPa.
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Figure 13. Strength index of three densities of MLM soil samples under each oil content (MLM
content 10%). (a) Relationship between friction angle and oil content; (b) relationship between
cohesion and oil content.

3.2.3. Permeability Test

(1) Influence of oil content on permeability
The permeability characteristics of soil samples with different oil content and 10%

MLM content were studied. After the soil sample was saturated in a vacuum for 12 h,
the permeability coefficient of the soil sample was measured using the variable-head
permeability test. According to Darcy’s law, the seepage flow through the soil sample at
the same time was equal to the flow through the water head gauge. The seepage coefficient
can be expressed as

kT = 2.3
aL

A(t2 − t1)
log

H1

H2
(4)

where a denotes the sectional area of variable head pipe, a = 3 cm2; L is seepage path,
L = 4 cm; A is the cross-sectional area of the soil sample, A = 30 cm2; t1, t2 are the starting
and ending time of the measured water head, s; and H1 and H2 are the starting and ending
head, cm.

The relationship between the permeability coefficient of the three densities of soil
samples and the oil content is shown in Figure 14a. The permeability coefficient increases
with the increase in the oil content. The maximum increase was in the soil samples with a
density of 1.53 g/cm3. The permeability coefficient of the soil samples with an oil content of
9% was 2.18 × 10−5 cm/s, which is 2.4 times the permeability coefficient of the 1.79 g/cm3

soil sample. The soil sample used in this test was silty clay mixed with MLM. After
vegetable oil pollution, a film is formed on the surface of soil particles, which shortens the
seepage path of water between soil particles and increases the permeability coefficient.
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Figure 14. Permeability coefficient variation of three densities of soil samples. (a) Relationship
between oil content and permeability coefficient (MLM content 10%); (b) relationship between MLM
content and permeability coefficient (oil content 6%).
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(2) Influence of MLM content on permeability
The permeability coefficient of the three densities o soil samples decreases gradually

when the MLM content increases, and the relationship between the MLM content and the
permeability coefficient is shown in Figure 14b. The permeability coefficient of the soil
sample with a density of 1.53 g/cm3 and an MLM content of 15% was 9.86 × 10−7 cm/s,
which is 24% of the permeability coefficient of soil samples with an MLM content of 0%,
namely 4.03 × 10−6 cm/s.

The permeability coefficient of the three densities of soil samples decreased gradually
with the increase in lime content, and the relationship between MLM content and perme-
ability coefficient is shown in Figure 14b. The permeability coefficient of the soil sample
with a density of 1.53 g/cm3 and MLM content of 15% was 9.86 × 10−7 cm/s and that
of the soil sample with MLM content of 0% was 4.03 × 10−6 cm/s; the former is 24% of
the latter.

4. Numerical Simulation Results and Discussion
4.1. Numerical Simulation Results

After the soil of the Lanxi ancient dike was contaminated with oil, the permeability
coefficient and strength index of the soil changed, affecting the permeability deformation
and stability of the bank slope. When using the finite element method to establish a
numerical model [61], several diagonal lines are used to simplify the slope surface of the
flood-controlled ancient dike. The elevation of the ancient dike top is 33.05 m, the elevation
of the dike foot is 26.88 m, the elevation of the ancient dike foundation is 24.80 m, the
height of the vertical section is 6.17 m, the width of the top is 0.22 m, the bottom height of
the lower slope section of the upstream is 19.05 m, and the slope from bottom to top are
22◦ and 43◦, respectively. The ancient dike is adjacent to the building, and the building
foundation is a deep foundation. The upper load directly acts on the bearing layer, and
its effect on the ancient dike can be ignored. The numerical model adopts quadrilateral
continuous elastic-plastic elements with a grid edge length of 0.5 m, generating a total
of 7023 nodes and 6877 elements. The numerical model of the ancient dike is shown in
Figure 15. Point A1 is located 2.10 m above the foundation behind the ancient dike, that is,
at 26.90 m elevation. See Table 6 for mechanical parameters of ancient dike soil after oil
pollution and MLM repair.
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Figure 15. Numerical model of Lanxi ancient dike.
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Table 6. Physical and mechanical indexes of soil layer in the typical section.

No. Name Thickness
/m

Dry Density
/kN·m−3

Friction Angle
(Oil Content

6%)/º

Cohesion
(Oil Content

6%)/kPa

Initial Per-
meability

Coefficient
(Oil Content
6%)/cm·s−1

Friction Angle
(MLM Content

10%)/º

Cohesion
(MLM

Content
10%)/kPa

Initial Permeability
Coefficient (MLM

Content 10%)/cm·s−1

I1
Artificial

fill-1 3.5 15.3 22.4 18.5 1.24 ×10−5 26.5 22.3 1.83 ×10−6

I2
Artificial

fill-2 4.1 16.8 23.8 24.5 9.70 ×10−4 30.1 32.5 1.65 ×10−6

II Sandy
gravel 10.6 17.9 35.0 0 4.12 ×10−4 35.0 0 4.12 ×10−4

III Pelitic
siltstone >7 20.3 40.0 56.5 / 40.0 56.5 /

The numerical analysis results indicate that the seepage and slope stability of the
ancient dike after being contaminated with oil are shown in Figure 16. Under external
water level fluctuations, the hydraulic gradient of the soil varies with the location. Analyze
the hydraulic gradient changes at point A1 on the back of the wall. The results of finite
computing show that the hydraulic gradient of the ancient dike soil changes with the rise
and fall of the flood peak of the Lanjiang River. At the maximum rate of water pressure
change, the hydraulic gradient of the soil reaches its maximum value. The distribution
of gradient values corresponding to a 6% oil content in the soil is shown in Figure 16a.
When the water level change rate continues to increase, the hydraulic gradient at point
A1 rapidly increases. When the water level is 26.58 m, the water level change rate reaches
its maximum value, and the hydraulic gradient at point A1 reaches its maximum value of
0.64. When the water level change rate decreases, the hydraulic gradient begins to decrease.
As the growth rate of the Lanjiang River water level slows down, the hydraulic gradient
at point A1 gradually decreases. When the flood peak rapidly decreases, the hydraulic
gradient decreases rapidly. When the water level changes slow down, the hydraulic
gradient changes gradually stabilize. In the case of a sudden drop in water level in the
Lanjiang River, when the rate of change reaches the stagnation point, the minimum stability
safety coefficient of the ancient dike is 1.004. The typical calculated sliding surface is shown
in Figure 16b. When using MLM to repair oil contaminated soil, when the MLM content
is 10%, the permeability coefficient and mechanical parameters of the soil are changed,
and the hydraulic gradient at point A1 decreases to 0.44, which is 31.3% lower than the
hydraulic gradient value of oil contaminated soil. The minimum stability coefficient of
the bank slope is 1.317, which is 31.2% higher than the stability safety coefficient of oil
contaminated soil. As shown in Figure 17.
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Figure 16. Analysis of seepage and bank slope stability of oil contaminated soil in ancient dikes (oil
content of 6%). (a) Hydraulic gradient distribution map; (b) The minimum safety factor of bank slope
stability and sliding surface.
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Figure 17. Analysis of seepage and bank slope stability in MLM repair of ancient dikes (MLM content
10%). (a) Hydraulic gradient distribution map; (b) The minimum safety factor of bank slope stability
and sliding surface.

4.2. Repairing the Flood-Controlled Ancient Dike

The MLM pressure grouting measures were adopted to repair the oil-contaminated
soil in the ancient dike. A modified lime grouting test was conducted on the ancient dike
slope, and ZK1 grouting holes were set up with a diameter of 10 cm. The MLM shall be
grouted in six steps. The MLM shall be prepared according to the proportion, and then
the soil surface shall be treated, the position of the grouting nozzle shall be calibrated,
and then the hole shall be drilled. After the grouting nozzle is installed, the pressure
grouting shall be carried out, and the static curing shall be more than 24 h. After the joint is
sealed, the secondary grouting shall be carried out, and the pressure shall be controlled at
0.1~0.5 MPa, so as to ensure that the slurry is full without leakage and dense without
bubbles. Seventy-two hours after the completion of ZK1 grouting, inspection boreholes
were set up at positions ZK2, ZK3, and ZK4 with a hole spacing of 40 cm, as shown in
Figure 18a. After testing the drilled soil samples, it was determined that the ZK2 and ZK3
drilling soil samples were filled with MLM, and no MLM was found in the ZK4 drilling
soil samples, as shown in Figure 18b–d. Therefore, the effective diffusion radius of MLM
was determined as 20 cm.
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The layout of MLM pressure grouting is shown in Figure 19a, divided into two rows
with a spacing of 100 cm and a spacing of 100 cm between each row of holes. Considering
the effective diffusion radius of the grouting as 20 cm, the MLM content in the MLM
pressure grouting area can be calculated to be about 14.6%. The drilling process is shown
in Figure 19b,c. The drilling depth was 6.00 m, as shown in Figure 19d.
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grouting; (c) completion of grouting; (d) position and depth of pressure grouting.

After using MLM pressure grouting for ancient dikes, the pore water pressure and
seepage ratio decreased significantly compared to the original structure section with good
permeability. The results indicate that setting MLM pressure grouting can effectively reduce
the permeability of the foundation soil, improve the cohesion of soil particles, and suppress
the occurrence of piping in flood-controlled ancient dikes and repair engineering without
changing the cultural relics. The compactness of the soil was improved inside the city wall,
defects were treated, and leakage channels were blocked.

In order to verify the anti-seepage effect of MLM pressure grouting, on-site water
injection permeability tests were conducted, with two inspection holes arranged as shown
in Figure 20. The results of the water injection permeability test are shown in Table 7.
According to the test, the permeability coefficient of the soil after pressure grouting with
MLM was reduced by 8~15%.
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Table 7. List of water injection permeability test results of inspection holes 1 and 2.

No.
Oil-Contaminated Soil Test Results MLM Grouting Repair Test Results

Section Hole Depth
/m

Length
/m

Permeability
Coefficient/cm·s−1 Permeability Coefficient/cm·s−1

1

1 1.0–4.0 3.00 2.47 × 10−4 2.11 × 10−4 (↓14.6%)
2 4.0–8.0 4.00 6.21 × 10−5 5.29 × 10−4 (↓14.8%)
3 8.0–12.0 4.00 2.43 × 10−4 2.38 × 10−4

4 12.0–16.0 4.00 1.11 × 10−4 1.09 × 10−4

2

1 1.0–4.0 3.00 2.15 × 10−4 1.96 × 10−4 (↓8.8%)
2 4.0–8.0 4.00 1.67 × 10−4 1.46 × 10−4 (↓12.6%)
3 8.0–12.0 4.00 1.58 × 10−4 1.52 × 10−4

4 12.0–16.1 4.10 1.40 × 10−4 1.39 × 10−4

5. Conclusions

The physical properties, strength index, and permeability coefficients of oil-contaminated
silty clay have changed, leading to the susceptibility of flood-controlled ancient dikes to
disasters such as leakage and bank-slope instability. Through dynamic triaxial tests and
variable head permeability tests, the strength index and permeability coefficient changes in
oil-contaminated soil and MLM-improved soil were obtained. By using the finite element
numerical simulation method for comparative analysis, the effect of MLM improvement on
oil-contaminated soil on improving the leakage of flood-controlled ancient dikes and bank
slope stability was obtained. Subsequently, MLM pressure grouting technology was used
to repair the ruins of flood-controlled ancient dikes. The following conclusions were drawn
from the above series of studies.

(1) After the silty clay was contaminated with oil, the relationship between the princi-
pal stress deviation and strain of the soil sample changed with the change in oil content,
leading to stress hardening. When the oil content increased, the strength index also changed.
When the oil content was 6%, the friction angle reached its maximum value, but as the oil
content continued to increase, the friction angle decreased. When MLM was used to repair
oil-contaminated soil, as the MLM content increased, the friction angle and cohesion of the
soil sample also increased. When the MLM content was 10% and the oil content was 6%,
the friction angle of the soil sample reached its maximum value. At the same MLM content,
the higher the density of the soil sample, the greater the friction angle and cohesion, and
the smaller the permeability coefficient.

(2) The finite element numerical simulation analysis shows that after the soil of the
flood-controlled ancient dike was contaminated with oil, when the water level was at its
maximum rate of change, and the water level was 26.58 m, the extreme hydraulic gradient
of the ancient dike soil reached 0.64, and the extreme safety coefficient of bank slope stability
was 1.004. When MLM was used to repair oil-contaminated soil, when the MLM content
was 10%, the extreme hydraulic gradient of the ancient dike was 0.44, a decrease of 31.3%,
and the extreme safety factor of bank slope stability was 1.317, an increase of 31.2%.

(3) MLM pressure-grouting technology was used to repair flood-controlled ancient
dikes. The effective diffusion radius of MLM was detected through grouting tests, and then
the distance, arrangement, and depth of MLM pressure grouting holes were determined.
After the MLM grouting repair of oil-contaminated soil on the slope of the ancient dike
was completed, on-site water injection permeability tests showed that the permeability
coefficient of the ancient dike soil decreased by 8–12%.

Notably, this study can provide research methods and technical measures for the
repair of similar flood-controlled ancient dikes.
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