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Abstract: NO; is one of the main greenhouse gases, which is mainly generated by the combustion
of fossil fuels. In addition to its contribution to global warming, this gas is also directly dangerous
to humans. The present work reports the structural and gas sensing properties of the CaCu3TizO1»
compound prepared by the sol-gel technique. Rietveld refinement confirmed the formation of the
pseudo-cubic CaCuzTisO1p compound, with less than 4 wt% of the secondary phases. The microstruc-
tural and elemental composition analysis were carried out using scanning electron microscopy and
X-ray energy dispersive spectroscopy, respectively, while the elemental oxidation states of the samples
were determined by X-ray photoelectron spectroscopy. The gas sensing response of the samples was
performed for different concentrations of NO,, Hy, CO, C;H; and CyHy at temperatures between 100
and 300 °C. The materials exhibited selectivity for NO,, showing a greater sensor signal at 250 °C,
which was correlated with the highest concentration of nitrite and nitrate species on the CCTO surface
using DRIFT spectroscopy.
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1. Introduction

The growing concern around the world for air quality in recent decades has promoted
the search for an assured supply of clean air that benefits our health and the environment.
In particular, the climate change produced by the increase in the global temperature
and attributed to greenhouse gas emissions has encouraged the investigation of new
materials that detect gases such as CO,, NHy and NOy, which are the most influential to
the greenhouse effect [1]. Nitrogen oxides, typically NO and NO;, are mainly generated by
the combustion of fossil fuels and various industrial processes and are the major causes
of acid rain and photochemical smog, having a significant influence on air, water and soil
pollution [1-3]. One of the complications of these gases is that it remains in the atmosphere
for approximately 100 years, and its heating potential is approximately 280 times greater
than CO, [4].

The need to detect these gases has encouraged a global market size that accounted for
USD 3.16 billion in 2022 and is projected to surpass around USD 6.2 billion by 2030 [5]. NO,
gas sensors are used to sense the concentrations of different flammable and toxic gases,
and there is a growing demand for them in the industrial, automotive, and petrochemical
sectors. NO; gas sensors in industrial applications are being used for detecting gas leakage
and for monitoring the air quality in different industrial sectors [6,7].

The short-term exposure to concentrations of NO; can cause inflammation of the
airways and an increased susceptibility to respiratory infections, chronically weakening
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the respiratory system and possibly slowing down lung function [2,8]. Due to the harmful
effects of NO; to the environment and human activities, strict occupational exposure limits
(OEL) have been proposed by governmental agencies, such as the European Scientific
Committee on Occupational Exposure Limits (SCOEL), which recommends the hourly NO,
concentration threshold as 0.1 ppm (200 pg/m?3) [9,10]. Therefore, there is an essential need
for the development of highly sensitive, lower power consuming, and well-performing
selective NO, sensors [1,11].

The direct inspection of the exhaust emissions from engines and industrial processes
requires devices that detect NO, at middle temperatures. For this, semiconducting metal
oxide, SMO, gas sensors have desirable properties, such as high sensitivity and good
stability in harsh environments, and can easily be miniaturized to lower cost and power
consumption [12-14]. Different n-type SMO-based sensors have been studied and proposed
as promising candidates for the selective detection of NO,, such as WO3 [15-17], MoO3 [18],
ZnO [19] and tin oxides [1,20,21].

The SMO sensing mechanism is based on the change in the electrical resistance of
the sensing materials upon the exposure to the target gases [22]. When the gas sensor
baseline is air, n-type SMO adsorbs oxygen on the surface, which traps a certain number of
free electrons from the conduction band of the oxide. Ambient reducing gases react with
the formed oxygen ions, which returns the trapped electrons to the conduction band and
results in a decrease in the sensor resistance. On the contrary, oxidizing gases, such as
NO,, also capture a certain number of free electrons from the conduction band and become
negatively charged adsorbates, which results in an increase in the sensor resistance [23,24].

On the other hand, the pseudo perovskite ceramic CaCu3TigO1, (CCTO) has attracted
much attention due to its extremely high dielectric constant [25], thermal stability and
non-ohmic properties [26,27]. In this context and motivated by its remarkable properties,
studies about the gas sensor response of CCTO have shown promising properties for the
detection of Hj [28], O, [24,29,30], NO; [24], HS [31] and humidity [32,33].

This study presents the characterization and gas sensing response to NO,, H, CO,
CyH; and C;H4 compounds of pure CCTO prepared by the sol-gel technique. The study
also concerns the surface reactions responsible for the change in resistance observed during
the exposure to oxidizing gases by diffuse reflectance infrared Fourier transform (DRIFT)
spectroscopy at different temperatures to identify the sensing mechanism.

2. Materials and Methods

Pure CCTO nanoparticles were synthesized by the sol-gel technique. In this synthesis,
titanium (IV) isopropoxide Ti(OCsHy)4 (97% Sigma-Aldrich, St. Louis, MO, USA), calcium
(IT) nitrate tetrahydrate Ca(INO3)-4H,O (99% Sigma-Aldrich, St. Louis, MO, USA), copper
(II) nitrate trihydrate Cu(NOs3);-3H20 (99% Sigma-Aldrich, St. Louis, MO, USA), ethanol
C,H50H (JT Baker, Allentown, PA, USA), ethylene glycol C;H¢O, (JT Baker, Allentown,
PA, USA) and, citric acid monohydrate C4HgO7-HyO (>99% Sigma-Aldrich, St. Louis, MO,
USA) were used as starting materials. All the chemicals were of analytical grade and no
further purification was performed. The synthesis steps were the following: (a) An amount
of 1.859 g of Ca(NO3),-4H,0, 5.704 g of Cu(NO3);-3H,0 and 9.923 g of citric acid were
dissolved by stirring in 10 mL, 20 mL and 20 mL of ethanol, respectively. Once dissolved,
the Cu and citric acid solutions were added to Ca solution and mixed all together under
vigorous stirring for 1 h at room temperature. (b) In parallel, a solution of 9.599 mL of
Ti(OC3Hy)s was prepared with 30 mL of ethanol, which was stirred for 30 min at room
temperature; (c) Then, both solutions were mixed together, and 1.98 mL of ethylene glycol
was added to the mixture, which was stirred for 1 h to produce the gelification of the
solution. (d) Then, the gel was dried at 90 °C for 12 h, followed by a second drying at
120 °C for 6 h. The resultant porous material was grinded in an agate mortar and, finally,
calcined at 800 °C for 3 h in air to obtain the CCTO powders.

The obtained powders after calcination were characterized by X-ray diffraction (XRD)
in a D8 Bruker diffractometer using CuK« radiation (A = 1.5418 A). The data were collected
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at room temperature with a step size and scan rate of 0.01° and 0.1 s. The X-ray tube was
operated at 40 kV and 30 mA. Rietveld refinement of XRD patterns was performed using
TOPAS software for which a pseudo-Voigt function was chosen as a profile function.

The morphology and microstructure of the sample powders were studied using a
field emission scanning electron microscope (FEG-SEM; JEOL, Model 7500F, Tokyo, Japan)
equipped with an X-ray energy dispersive spectroscopy detector (EDS). The samples were
prepared by dispersion in isopropanol and deposited on a Si conductive substrate. The
oxidation states of the samples were determined by X-ray photoelectron spectroscopy
(XPS) using a Physical Electronics 1257 system with non-monochromatic MgK« radiation
operating at 15 kV and 400 W. The spectrum calibration was performed using a binding
energy of 284.5 eV, corresponding to the Cls orbital. Spectra were fitted by Multipack
software using Gaussian-Lorentzian functions after Shirley-type background subtraction.

Gas sensor test devices were prepared using interdigitated platinum electrodes sput-
tered with 300 pm thickness spaced by 300 um over insulating alumina substrates. Metallic
tracks on the backside of the substrate were used as the heater element. Gas sensing tests
were performed at 100, 150, 200, 250 and 300 °C, and the resistance was monitored using a
stabilized high voltage source measuring unit (Keysight 34972A, Technologies, Inc., Santa
Rosa, CA, USA) at a constant voltage of 100 mV with 8 s delay per point. The gas sensing
response of the CCTO samples was analyzed during cyclic exposure (20 min gas exposure
with 60 min recovery) to different concentrations of NO,, H,, CO, C,H; and C,H, gases.
The baseline was established by dry synthetic air during 12 h, and then exposed to analyte
gases in a concentration range between 2 and 100 ppm. To achieve this, certified pre-mixed
gas mixtures containing a trace of the test gases diluted in dry air (White Martins, Sao
Paulo, SP, Brazil) were mixed with clean dry air using mass flow controllers (MKS, Andover,
MA, USA). The total gas flow rate (test gas plus baseline gas) was kept constant (100 sccm)
during all tests. More details about this self-heating gas sensing system can be found in
Felix et al. [34].

Surface gas reactivity of the CCTO compound was studied by diffuse reflectance
infrared Fourier transform spectroscopy, DRIFTS, using an FT-IR spectrometer (Thermo
Scientific; FTIR Nicolet iS50 spectrometer, Waltham, MA, USA) containing a narrow-band
mercury cadmium telluride (MCT) detector cooled by liquid nitrogen. The CCTO powders
were mounted in a diffusion cell chamber from PIKE technologies with a KBr window and
temperature control. The powders were heated at 300 °C for 1 h in the presence of dry
air with a flow of 20 mL/min to clean the powder surface in similar conditions to the gas
sensing experiments. Later, the same flow of a NO, /air mixture with a concentration of
0.5% was introduced into the diffusion cell chamber to obtain a significant signal in the
DRIFT cell, and FTIR measurements at 300, 275, 250 and 225 °C were performed for 25 min,
while spectra were recorded every 5 min with scans between 1000 and 4000 cm ™! and with
a step of 4 cm~!. The signals of NO,, NO, He and O, were simultaneously followed by a
mass spectrometer (OmniStar™, Pfeiffer; gas analysis system, GmbH, Asslar, Germany).
The same study was performed using a gas flow of a NO;/He mixture to compare the
influence of oxygen on DRIFTS results.

3. Results
3.1. XRD Characterization

Figure 1a shows the XRD pattern of the CCTO sample. The analysis confirmed the
formation of the pseudo-cubic CCTO compound (JCPDS File No. 75-2188), and the residual
formation of CuO was also detected. Rietveld refinement (Figure 1b), with a GoF parameter
of 1.5, confirmed the mentioned CCTO phase that exhibited a unit cell parameter (a) of
0.7397 nm and a crystallite size (f) of 72 nm. The refinement also showed that the secondary
CuO phase is 3.6 wt.% of the sample.
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Figure 1. (a) XRD pattern of CCTO sample, (*) K, peak from (022) reflection. (+) Peak from CuO
phase; (b) Rietveld refinement of XRD CCTO pattern.

3.2. SEM Results

The microstructure observed by SEM showed the formation of polycrystalline par-
ticles with sizes between 1 and 5 um, as shown in Figure 2. The crystalline grains of the
micrometric particles exhibited sizes of about 300 nm. The EDS analysis performed on
the CCTO sample indicated the presence of the expected elements, as shown in the inset
spectrum in Figure 2.

T

Figure 2. SEM image of CCTO sample obtained by secondary electrons detector. Inset: EDS analysis
of CCTO particles.

3.3. XPS Results

The XPS analysis of CCTO powders revealed the expected results. To elucidate the
surface chemistry and oxidation states of the different elements, high-resolution XPS spectra
(HRXPS) were collected for Ca, Cu, Ti and O, as shown in Figure 3.

The analysis of the Ca2p signal (Figure 3a) showed that the HRXPS can be fitted
by two Gaussian curves with main binding energies at 346.4 and 347.2 eV, which have
been associated with Ca?* [35] and the same oxidation state in superficial CaTiOs-like
structures [36], respectively. Similar analyses were performed for the other elements and
the results are presented in Table 1. The energies found in the Cu spectrum (Figure 3b)
evidence two peaks, in addition to the expected satellites for Cu, which were attributed to
different Cu-O coordination sites [37]. The lower energy was assigned to Cu*, while the
higher energy was assigned to species involving Cu®*. The Ti2p spectrum (Figure 3c) can
also be fitted by two Gaussian curves, indicating the presence of different valence states.
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The binding energies can be assigned to Ti** (458.6 eV) and Ti%* (457.9 eV) [37,38]. The
O1s spectra (Figure 3d) is decomposed in two curves, for which peaks are assigned as
lattice oxygen (O?~) [35] and chemisorbed oxygen species on the surface, like in the case of
O, [31].
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Figure 3. High-resolution XPS spectra of the different elements present in sample CCTO: (a) Ca2p,
(b) Cu2p, (c) Ti2p, and (d) Ols.

Table 1. Binding energies, area under the curve, and oxidation state as obtained from HRXPS spectra.

Sample CCTO
Element Binding Energy ! Area ? Oxidation State 3
c 346.4 79.1% Ca?*
a 347.2 20.9% CaTiO;
c 9325 8.0% Cu*
u 934.1 92.0% Cu?*
- 457.9 23.3% Tis+
! 458.6 76.7% Ti4*
o 529.8 89.2% 0%~
532.0 10.8% 0,

1 Binding energy obtained from the fitted curve in the HRXPS spectra. % Relative percentage of the area under the
curve normalized to the fitted curve. 3 Representative oxidation state or species assigned to the binding energy.

It was also measured the area under the curve of the fitted curves was also measured
to estimate the relative amount between the various atomic species, for which results are
also presented in Table 1. From this analysis, it follows that most of the calcium is in the
Ca?* state, whereas most of the copper is in the Cu?* state with a slight portion of Cu*. The
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23% of Ti** ions calculated from the Ti signal are associated with the oxygen vacancies in
CCTO ceramics [37,38].

3.4. Gas Sensing Response

The gas sensing response was tested for different concentrations of NO,, Hy, CO, C,H;
and C;Hjy. The material exhibited the most significant gas sensor response for NO,, while
for the other gases the response was very low. Figure 4 shows the sensor response of the
CCTO sample at 250 °C for different NO, concentrations, and a reversible sensor response
down to the lowest levels of gas exposure can be seen. The sensor signal (SS) was defined
as the ratio of the sensor resistance measured when exposed to the target gas (Rgas) to the
resistance in the baseline gas (Ryi;), i.e., Rgas/Rair- It can be observed that the SS grows as
the concentration of NO, increases from 2 to 100 ppm. These results are similar to those
published by Felix et al. [24] that reported an SS close to 7 when material was exposed to
100 ppm of NO; at 300 °C in CCTO thin films prepared by the polymeric precursor method.

7

250 DC 100 ppm
——SS CCTO

50 ppm

— 6_
2“5
8 59

Sensor Signal (R

1 1
= 1004
E 754
2 50
o2 — M |_|
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Figure 4. Gas sensing response of CCTO sample as a function of the NO, concentration at 250 °C.

Additional measurements at different temperatures showed that the sensor signal
is higher at 250 °C for almost all the tested concentrations, which means that the SS was
temperature dependent, as shown in Figure 5. The increasing resistance of CCTO samples
under the oxidant atmosphere of NO; is consistent with the n-type behavior of the SMO
sample, which was also reported by Parra et al. [29] and by Felix et al. [24] for a CCTO
ceramic prepared by the sol-gel technique. This electronic response can be attributed to the
oxygen vacancies deduced from the Ti** /Ti** ratio measured by XPS. Oxygen vacancies
carry an effective charge of +2e, which is neutralized by 3d electrons on the titanium atoms,
forming two Ti** ions for every oxygen vacancy. At low temperatures, the oxygen vacancies
and the Ti** ions are bound by a small energy of 0.1-0.2 eV, which is sufficiently large, so
that only a few of the defects are separated. Electrons associated with the unattached Ti**
ions are responsible for conduction, making use of the narrow 3d conduction band [39].

The range of selectivity of a gas sensing material is an important parameter used to
evaluate practical applications. Figure 6a illustrates the selectivity of CCTO to NO,, Hj,
CO, C;H; and CyHy (10 ppm) at 250 °C, represented by the ratio between the SS in the
presence of NO; and the SS under the interferent gas, i.e., SSNo, / SSinter ferent- Under these
conditions, the response of the CCTO sample was more than 2.5-fold larger for NO, than
for the other gases. The radar chart of Figure 6b depicts the SS at 250 °C for the various
gas concentrations tested, and it confirms that the selectivity of CCTO increases with the
gas concentration.
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Figure 6. (a) Gas selectivity at 10 ppm and 250 °C of CCTO sample; (b) sensor signal of CCTO sample
at 250 °C for the concentrations of different gases.

3.5. DRIFTS Measurements

The most accepted model for gas detection in SMO materials is related to the transfer
of free charge carriers between the absorbed molecules and the semiconductor surface [23].
This model proposes that, in air atmosphere, n-type semiconductors have a depletion layer
at the surface produced by the electron transfer from the surface to the chemosorbed oxygen
molecules. In other words, the absorbed oxygen molecules trap electrons from the oxide
surface by ionization and become O, , O™ or 0%~ depending on the temperature [40]. The
density of electrons in the depletion layer decreases with the concentration of chemisorbed
oxidizing analyte gases at the surface, leading to an increase in surface resistance and,
consequently, sensor resistance [23,24]. Thus, the variations of the increase in the electrical
resistance at different temperatures should be related to the concentration of oxygen
adsorbates and the nitride species on the ceramic surface.

IR DRIFT spectroscopy is an excellent tool to keep track of changes at the surface
induced by the interaction between a target gas and the sensing material. Figure 7a shows
the DRIFTS curves measured at 250 °C under NO, /air and NO, /He mixtures, considering
that the wavenumber ranges that are of interest are below 1900 cm~!. The spectrum
obtained in the exposure of NO, /air exhibits the typical range between 1600 and 1200 cm
that has been attributed to various nitrite, NO, , and nitrate, NO; , species, which could
be from molecularly adsorbed NO; [41]. The peak at 1630 cm ! is associated with the
vibrational band of gaseous NO, [42], while the peaks at 1600 and 1569 cm ™! seem to arise
from asymmetric and symmetric stretching vibrations of nitro species, respectively [22].
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Overall, the bands below 1580 cm ™! correspond to the N-O stretching vibrations of surface
nitrate species [43]. In contrast, despite that, in the spectrum of the experiment with
NO,/He, peaks at 1630 and 1600 cm ! can be identified, the intensity of the bands below
1580 cm~! are much lower. This will be related to lower concentrations of nitro species on
the surface, as will be shown below.

Absorbance (a.u.)

(a) DRIFTS 20 min
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Figure 7. DRIFT spectra of CCTO powders (a) at 250 °C in NO,/air and NO,/He mixture at-
mospheres and (b) in NO, /air mixture at different temperatures and differential integrated ab-
sorbance (inset).

Figure 7b depicts the DRIFT spectra at different temperatures obtained under the
NO,/air mixture. It is observed that the spectra are similar, although with different
intensities for the nitrite and nitrate bands, with the highest signals measured at 250 °C.
The bands observed between 1580 and 1450 cm ! can be attributed to the adsorbed species
on the CCTO surface, which is promoted by the oxygen present in the air mixture, given the
higher amounts in those experiments. According to Beer’s law, the integral absorbance of
the IR spectra is related to the surface concentration of adsorbed species on the surface [44].
Thus, using the software OMNIC™ Specta (Thermo-Fisher), the integral absorbance as
the area under the curve was calculated to be between 1650 to 1400 cm ™! of the DRIFTS
spectrum measured in the NO;/air and NO, /He mixture. The subtraction between the
former and the latter is plotted in the inset image of Figure 7b as the differential integral
absorbance among NO,/air and NO,/He atmospheres. The curve reaches a maximum
value at 250 °C, which decreases at higher temperatures. This confirms that at 250 °C the
maximum concentration of NO, molecules is adsorbed as nitrite and nitrate species on
the CCTO surface. This is well correlated with the highest sensing response plotted in
Figure 5, since a large concentration of such adsorbates is essential to produce the change
in electrical resistance.

The exact identification of peaks in the nitrate region is not straightforward as the
different nitrate species (i.e., monodentate nitrates, bridging monodentate, chelating and
bridging bidentate nitrates) have overlapping vibrations [43]. Ueda et al. [22] studied the
NO;-sensing properties of In,O3, which is also an n-type semiconductor gas sensor. They
showed that the nitrite NO, species form monodentate, chelating bidentate and nitro
compounds anchored to the In atoms. Similarly, DRIFT studies of the catalytic reduction
of NOx on a zeolite-supported Cu catalyst have shown that the group of peaks in the
1650-1500 cm~! wavenumber region after the exposure to NOyx and O, can be assigned to
different configurations of surface nitrates bonded to Cu atoms [45,46].

The origin of the n-type behavior in CCTO has been explained due to structural
defects, particularly oxygen vacancies, that produce a moderate conductivity at elevated
temperatures [31]. In n-type SMO, the electron concentration is mainly determined by the
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concentration of stoichiometric defects, such as oxygen vacancy, and it is believed that
the gas sensitivity of n-type SMO is proportional to the concentration of oxygen vacancy
related defects [47]. This generates electrons in the conduction band, which, in the surface,
interact with oxygen to form chemisorbed oxygen ions. Similarly, Roso et al. [48] proposed
that the sensing mechanism of NO; in InyO3 at 350 °C takes place first for the formation of
the nitrite specie:

NOzgas + €7 = NO, 4 1)

Thus, it is proposed that in CCTO, according to the evidence, the reaction of Equation (1)
would occur among NO, molecules and electrons in a 3d conduction band promoted by
oxygen vacancies [39]. This reaction is responsible for the increasing resistance of the
sensor proportional to the NO, concentration. The proposed sensing mechanism reaches its
maximum at 250 °C due to the increased conductivity of the ceramic at that temperature [31].
The adsorbed nitrate species would be bonded to the Cu atoms [45,46] of the CCTO structure,
as suggested by DRIFT spectra.

Since the highest concentration of NO, molecules adsorbed as nitrite is at 250 °C on
the CCTO surface, the decreasing response at 300 °C is explained by the lower adsorption
of the nitro molecules on the surface, which reduces the change in the electrical resistance.

4. Conclusions

The sensing response of the CaCu3TizO;, ceramic prepared by the sol-gel technique
was studied for different gases. The gas sensing response of the samples exhibited a high
selectivity of NO, compared to Hy, CO, C;H; and C;Hy analytes, showing the higher sensor
signal at 250 °C. DRIFTS measurements confirm that at 250 °C the maximum concentration
of NO, molecules is adsorbed on the CCTO surface, which would react with electrons in the
conduction band of nitrite species. This is well correlated with the highest sensing response
obtained at that temperature since a large concentration of such adsorbates is essential to
produce the change in electrical resistance. DRIFT measurements contribute to monitoring
the sensing mechanisms under operating conditions, which allows deeper insights into
the chemical sensing phenomenology and, consequently, to the development of superior
chemical sensor devices. Additional characterizations, such as long-time stability and
humidity effects, are the next steps of our research to explore the potential commercial
applications on this CCTO sensor.
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