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Abstract: The existence of more than thirty stress–strain equations, including those proposed by the
government regulations in many countries, seems to indicate that additional, unifying, and at the
same time generalizing research is necessary for this subject. Many expressions can be found to set
or determine the initial modulus of elasticity of concrete, i.e., the modulus of elasticity of concrete
when no load has been applied to it. This work proposes a complete generalization of the equations
based on scalar damage models, applicable to all types of concrete tested under uniaxial compression
with any constant rate of stress or strain, although in no case can it be considered a constitutive
model. We prefer to discuss an equation that models the shape of the stress–strain curve. Thus, the
shape of this curve is studied here in the same way a forensic scientist would, which is why we
could see this work as an autopsy carried out on the test specimen through the trace left in the plane
σ-ε by the straining process up until its inevitable outcome. That is to say, we believe in a purely
phenomenological approach. The results are compared with the data obtained experimentally by
analyzing test specimens made using various mixed portions of cement, water, and aggregates.

Keywords: concrete; modeling; elastic moduli; mechanical properties; characterization

1. Introduction

The search for a mathematical expression to represent the stress–strain evolution that
a concrete test specimen submitted to uniaxial compression stress undergoes is almost as
old as the concept of reinforced concrete as a building material itself. Since the pioneering
proposals of Bach [1] in 1897 and Ritter [2] in 1899 veritable dynasties of equations based on
three significant main approaches, which we will review briefly below, have been built up.

On the one hand, we find proposals centered around the 1956 equation by Smith and
Young [3], which was written as follows:

σ =
f ′c
ε0

exp
[

1− ε

ε0

]
(1)

where σ is the applied stress, f ′c is the maximum stress the test specimen reaches, ε0 is the
strain this test specimen undergoes at the point of maximum stress, and ε is the strain.

If we follow Yip [4] and develop Equation (1) as a power series, we obtain the following:

σ =
f ′c

ε
ε0

exp[1][
1 +

(
ε

ε0

)
+ 1

2

(
ε

ε0

)2
+ 1

6

(
ε

ε0

)3
+ · · ·

] (2)
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which is why, according to the findings of Yip, the proposals by Desayi and Krishnan [5],
Saenz [6] in 1964, and Alexander [7] in 1965 are the result of the truncation of a varying
number of terms of the denominator in Equation (2). In the same way, the proposals by
Tulin and Gerstle [8], Popovics [9] and Carreira and Chu [10] represent a generalization
of the aforementioned proposal by Desayi and Krishnan, which consists of truncating
all the terms in the denominator in Equation (2) except 1 + (ε/ε0)

2 and substituting the
quadratic exponent with another, n, which is more general and would vary according to
the characteristics of the concrete being tested. A subsequent generalization, to use his own
words, of this type of equation is represented by Tsai’s 1988 proposal [11], while, for their
part, Collins, Mitchell, and MacGregor, [12] or Tasnimi [13] use similar expressions to those
of Popovics or Saenz, but they modify the exponent depending on whether the function
models the ascending or descending branch of the stress–strain curve.

Elsewhere, the proposal formulated in 1971 in Sargin’s doctoral thesis [14] corresponds
to equations of the following type:

Y =
AX + BX2

1 + CX + DX2 (3)

where Y = σ/ f ′c , X = ε/ε0, and A, B, C, and D are material constants. Another series of
equations appears to be based on rational functions, among which the 1978 reinterpretation
by Wang, Shah, and Naaman [15] stands out, in which two equations, or rather, two variants
of the same equation are proposed, each different depending on whether they model the
ascending or descending portion of the curve. Indeed, the authors state that the accuracy
of Equation (3) improves greatly when A, B, C, and D take different values according
to whether they evaluate the ascending or descending branch of the curve, instead of
varying the denominator exponent. The various options of the Model Code [16], which in
1990 proposed a variant of Sargin’s general equation, are ascribed to this line, specifically,
the 1969 proposal by Sargin and Handa [17] for the ascending branch of the curve and
part of the descending branch, although this is declared valid only for concretes with a
characteristic strength that is under 80 MPa. The 1990 Model Code was partially reformed
in 1995 by CEB Bulletin no. 228 [18], in which (following the model proposed by Gysel
and Taerwe [19]), the validity interval of the equations was increased to 50 MPa ≤ f ′c ≤ 100
MPa. The same equation as the 1990 Model Code is proposed for the ascending branch
(now it is only valid up to the peak stress f ′c). The equation for the descending branch is
modified by means of the following expression:

σ =
f ′c

1 +
(

ε−ε0
η−1

)2 (4)

where η = ε0 + t, and the parameter t is determined experimentally for each characteristic
strength of the concrete. The 2010 Model Code returns to the equations in the 1990 code,
with the difference that their applicability is now widened to concretes with a characteristic
strength of 120 MPa and for the first time includes the damage model as a valid approach
to describe the non-linear triaxial behavior of concrete.

Finally, we will refer to the equations based on damage models. Originally proposed
by Kachanov [20] in 1956, subsequently modified by Rabotnov [21], and mainly developed
from the 1980s onwards [22–25], Continuous Damage Mechanics (CDM) has been widely
accepted to simulate the complex fundamental behavior of many materials used in engi-
neering. In particular, the models based on an internal damage variable represented by a
scalar function are characterized by their simplicity of implementation and versatility but
do not imply that the damage is isotropic since they can follow the weakest link failure
criterion. This damage variable reflects the material’s level of deterioration as it is stretched
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and transforms the real stresses into effective stresses, in such a way that a general equation
that relates stresses to strains can be written in the following form:

σ = Ψ(ε)[1−ω(ε)] (5)

where Ψ(ε) represents the response of the undamaged material and ω(ε) a scalar damage
function which varies between 0 (when the material has not been stressed yet) and 1
(when the collapse of this material occurs).

The proposals we mention below assume that the function ω(ε) corresponds to a
cumulative distribution function (CDF) for the probability of the damage occurring in
the particles of the material and differ from each other in terms of the type of statistical
distribution chosen to simulate the evolution of this damage according to the strain imposed
by the test. Specifically, the equation proposed by Shah and Winter [26] in 1966 is written
as follows:

σ = K1ε exp
[
−
(

K1ε− 2
K2

)m]
(6)

where K1, K2, and m are to be determined experimentally. From our point of view, this
article is of paramount importance, since the exponential formula (also used by Smith and
Young with slight differences and m = 1) is deduced in it for the first time, by means of
Weibull’s well-known statistical theory of the strength of materials [27,28]. Weibull’s theory
is potentially linked to the concepts proposed by Griffit [29] and Smekal [30]. Taylor [31–33]
suggests that weak zones in a material can contribute to its failure, whether they are
microcracks or dislocations in the atomic mesh. In the early 1930s, Orowan, Poliani, and
Taylor separately concluded that the plastic strain of ductile materials could be explained
by the theory of dislocations developed by Volterra in 1921. If we assume that these weak
zones will break as soon as they reach a volume subjected to σ stress and that there are n
weak zones per volume unit, and the σ stress is concentrated within a small volume dv,
then the probability of breakage for the volume element can be expressed as dP = ndv. If
there are N elements of volume dv, and the probability of breakage is P, then the probability
of survival can be calculated as S = 1 − P = (1 − dP)N = (1 − ndv)N, where resistance would
decrease due to the presence of numerous weak zones in the material, so

P = 1− (1− ndv)N (7)

The total volume subjected to stress wil be V = Ndv and

P = 1−
(

1− nV
N

)N
= 1−

(
1− nV

N

)(N/nV)nV
(8)

However, if N increases as dv decreases indefinitely until V becomes constant, the
following is obtained:

P = 1− lim
N

nV→∞

(
1− nV

N

)(N/nV)nV
= 1− e−nV (9)

In the latter part of his influential article, he asserts that Equation (9) is purely theo-
retical and lacks physical significance unless a function of the material,

∫
ω(ε)dv = nv, can

be experimentally determined. Such an expression may be deemed valid with a certain
degree of confidence for a particular material, as the results of experiments may reveal the
existence of a characteristic distribution function for each unique material. By utilizing
such experimental data, it becomes possible to derive the mathematical expression for
the function.

To this end, he selected a coordinate system that he deemed most suitable for com-
puting the distribution function corresponding to Equation (9), where the probability
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of fracture was P = 1− e−
∫

ω(ε)dv. At this juncture, he introduced his most renowned
proposition: the hefunction ω(ε) should be chosen as

ω(ε) =

(
ε− εa

ε0

)m
(10)

As Weibull heralded, this equation allows the data to be the ones that provide the
parameters of the distribution function.

On this basis, concrete could be thought of as a material composed of a very large
number of tiny structural units. The individual strength of each element could be deter-
mined by a breaking test, although if this test were repeated for each element, the value of
the breaking load would not always be exactly the same, but would present some dispersal
around a central mean value. Therefore, it would not be possible to indicate a precise
value for the breaking load for each element, although it would be possible to indicate
a definite breaking probability for each value σ of the applied stress. Shah and Winter’s
idea was to adopt the probability distribution function proposed by Weibull in 1939 for
the strength of elemental structural units, which concrete would be composed of, so that
as the latter is loaded, the weakest units would break first, while those with the greatest
strength would continue resisting, resulting in a redistribution of stresses and a process of
progressive breaking.

For their part, the series of three articles [34–36] that Blechman published between
1988 and 1989, stand out, more than for the equations proposed, for their theoretical consid-
erations of the process of concrete breaking in the uniaxial compression test. Specifically,
first of all, Blechman proceeds from the firm conviction that the attempt to find a simple,
single equation to model the complete stress–strain curve of concrete is a pointless exercise,
due to the fact that three essentially different states are assembled in it, namely, an initial
perfectly elastic phase up to a certain strain εa, another in which a growing phenomenon
of atrophy of the strength characteristics of the material is produced up to the strain at
the peak stress, ε0, and, lastly, the final phase where a process of macroscopic destruction
occurs, in which the concrete no longer accepts any increase in load. For this reason, he
divides the stress–strain curve into three sections. The first, governed by Hooke’s law up to
a certain strain value, the second would represent the aforementioned atrophy process of
the strength characteristics of concrete and which we can identify with an isotropic damage
model, whose distribution function would now be Lord Rayleigh’s probability density
function, and the third, modeled by a complex incremental algorithm. Blechman takes
as his starting point the basis that, while in the section between the elastic limit strain εa,
and the maximum limit strain ε0, the microcracks in the stressed granules do not affect
their macro-continuity or macro-rigidity, in the descending branch, the situation changes
drastically, resulting in the appearance and growth of macroscopic cracks (observable to
the naked eye), reducing the overall rigidity of the piece and, in short, producing a growing
destruction mechanism, governed fundamentally by the means of applying stress or strain
using the test machine. For this reason, he considers the concept of stress inapplicable in
this phase, replacing the stress–strain relationship with the strain–response relationship of
concrete, ruled by two macro-functions. These two macro-functions could only be obtained,
according to Blechman, by means of the iterative numerical algorithm that he presents in
the third article in the series.

Finally, it is worth noting the contributions of Ferretti et al. [37,38] in which an exper-
imental instead of a numerical approach is followed to identify the unified stress–strain
curve in uniaxial compression in which the failure rate (a concept that we will address later
in this work), both under load conditions of constant stress increase as of constant strain
rate increase, can increase, be constant, or decrease with strain.
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2. Materials and Methods
2.1. Generalized Extreme Value Distribution

In statistics, Extreme Value Theory analyses the conditions under which the extremes
of a random sample converge towards a non-degenerate limit distribution when the size
of the sample, n, tends towards infinite numbers of variables. The development of the
fundamental models of this theory is due to Fréchet [39], Fisher and Tippett [40], and
Gnedenko [41], among others. The Fisher–Tippett–Gnedenko theorem (also known as the
Fisher–Tippet theorem or the Extreme Value Theorem) is a general result of the Extreme
Value Theory, which led to the development of asymptotic distribution to model maxima
(or minima), called Generalized Extreme Value Distribution (GEVD). In Extreme Value
Theory, this theorem plays the same role as the Central Limit Theorem in the study of
means. It can be formulated as follows:

Let X1,n ≥ . . . ≥ Xi,n ≥ . . . ≥ Xn,n be a set of identically distributed, independent,
random variables with a common distribution function F, i.e., F(x) = P(Xi,n ≤ x), and let
Mn be the maximum of all of them, i.e., Mn = X1,n = max(X1,n ≥ . . . ≥ Xi,n ≥ . . . ≥ Xn,n),
which will have the following distribution function:

P(Mn ≤ x) = P(X1,n ≤ x; · · · ; Xi,n ≤ x; · · · ; Xn,n ≤ x) =
n

∏
i=1

P(Xi,n ≤ x) = F(x)

The Stability Postulate establishes that to obtain a non-degenerate limit distribution, it
is necessary to reduce the maximum by applying a linear transformation with coefficients
an ∈ R, bn > 0 which depend only on the size of the sample n, i.e.,

P
(

Mn − an

bn
≤ x

)
= Fn(an + bnx) = F(x) (11)

and it is said that F(x) is a max-stable distribution.
So, if the constants an ∈ R, bn > 0 exist, this means that

G(x) = lim
n→∞

P
(

Mn − an

bn
≤ x

)
(12)

where G(x) is a non-degenerate asymptotic distribution which represents the GEVD func-
tion and which belongs to some of the following families: Gumbel distribution [42], Fréchet
distribution, or Weibull distribution.

More accurately, it could be said that Gumbel, Fréchet, and Weibull distributions are
particular cases of a general asymptotic distribution called Generalized Extreme Value
Distribution, the CDF of which takes the following form:

G(x; a_n, b_n, ξ) = 1− exp

[
−
(

1 +
1
ξ

(
x− an

bn

))−ξ
]

(13)

Indeed, if we take ξ = 0 in Equation (13), the GEVD is not defined, but the limit is as follows:

lim
ξ→0

[
1 +

1
ξ

(
x− an

bn

)]−ξ

= exp
[
−
(

x− an

bn

)]
Then, the following is obtained:

GEVDI = 1− exp
[
− exp

[
−
(

x− an

bn

)]]
(14)

which is a type I GEVD or Gumbel distribution.
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Elsewhere, taking m = ξ, we obtain the following:

GEDVI I = 1− exp

[
−
(

x− xa

x0

)−m
]

(15)

which is Fréchet distribution with xa = an + mbn and x0 = mbn, which fulfill the Stability
Postulate (Equation (13)).

Lastly, this results in m = −ξ:

GEDVI I = 1− exp
[
−
(

x− xa

x0

)m]
(16)

which is the more usual expression of the Weibull distribution or type III GEVD.

2.2. Fractional Calculus
2.2.1. Introduction

Fractional calculus is a field of mathematical studies, which until now has been
relatively far-removed from the Strength of Materials, and which arises from the classical
definitions of differential and integral calculus operators in a similar way to how fractional
exponents are considered an extension of whole-number exponents.

Specifically, we will consider the meaning of the exponent as our primary school
teachers tell us to consider it. Exponents provide an abbreviated notation for what is a
repeated multiplication of a numeric value by itself. However, this physical definition
becomes confusing if we consider non-integer exponents before logarithms are introduced
in secondary school. While anyone can understand that x5 = x·x·x·x·x, i.e., the quantity
x multiplied by itself five times, how could we describe the actual meaning of x2.3? Or,
even worse, what is the physical meaning of the transcendental exponent xπ? It is not
easy to imagine what it would be to multiply something or a quantity by itself 2.3 times,
or π times and yet these expressions have a definite value for any value of x which is
verifiable by means of infinite developments in series or, as is more common nowadays,
using a calculator.

To illustrate our reasoning, we will use Figure 1. On the left, we represent the graph of
the functions f 1(x) = x5 and f 2(x) = x6. The fractional exponents appear as functions that
occupy the intermediate positions between f 1 and f 2. On the right side are represented the
first and second derivatives of f 1(x) = x5, i.e., f ′1(x) = dx5/dx = 5x4 and f ”1(x) = d2x5/dx2

= (d/dx) (dx5/dx) = d5x4/dx = 20x3.
Now, we could ask the following question: would it be possible to define other fractional-

order derivatives between 1 and 2 that occupy the intermediate positions between dx5/dx
and d2x5/dx2 in a similar way to how the fractional exponents between 5 and 6 are defined?

In the matter of the birthplace of the concept of fractional calculus, the majority of
authors say that it was first formulated in 1695 by Guillaume de l’Hôpital in a letter to Got-
tfried Wilhelm Leibniz in which he showed an interest in the meaning of Leibniz’ notation
dny/dxn (the most popular nowadays) for the derivative of order n ∈ N0 := {0, 1, 2, · · ·}.
What would happen if n = 1/2? (asked l’Hôpital). In his reply, dated 30 September 1695,
Leibniz answered l’Hôpital with the following: . . . This is an apparent paradox from which,
one day, useful consequences will be drawn.

In addition to the theory of differential, integral, and integrodifferential equations,
and the special functions of mathematical physics, as well as their extensions and general-
izations in one or more variables, some of the areas of the current application of fractional
calculus include the flow of fluids, rheology, the dynamic processes of porous structures
and self-similar objects (fractals), fuzzy transport theory, electrical networks, probability
and statistics, dynamic system control theory, viscoelasticity, corrosion electrochemistry,
physical chemistry, optics, signal-processing, etc.
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Figure 1. Analogy between exponents and fractional-order derivation. (The blue toned lines represent
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completely fill the plane with derivatives of fractional order in the same way that we do it with power
functions?).

2.2.2. Definition of Fractional-Order Integral

We take Cauchy’s formula as a starting point to calculate the iterated integral:

D−n f (x) =
x
· · ·

∫
f (x)dx =

1
(n− 1)!

∫ x

0
f (t)(x− t)ndt

The following constitutes a generalization of the notion of n! introduced by Euler by means
of the gamma function:

Γ(z) =
∫ ∞

0
tz−1 exp[−t]dt⇒ Γ(z) = (z− 1)!

where z is any complex number with Re(z) > 0. Liouville [43] arrived at the integral which
bears his name and generalized the natural number n to any number α with Re(α) > 0,
which gives rise to the first formal expression of a (non-integer) fractional-order integral:

D−α f (x) =
1

Γ(α)

∫ ∞

0

f (t)dt

(x− t)1−α
(17)

Later, Riemann, as a student, modified or generalized the Liouville integral, changing
the lower limit 0 to a and the upper limit x to b, giving way to the c integrals, which
constitute the definition we will use for fractional integration:

aD−α
x f (x) =

1
Γ(α)

∫ x

a

f (t)dt

(x− t)1−α
; (x > α; Re(α) > 0) (18)

xD−α
b f (x) =

1
Γ(α)

∫ b

x

f (t)dt

(x− t)1−α
; (x > b; Re(α) > 0) (19)

where aDx
−αf (x) and xDb

−αf (x) are called Riemann–Liouville fractional integrals on the left
and the right, respectively.

2.2.3. Fractional Calculus and Constitutive Models

We could say that the simplest constitutive models are Hooke’s law

σ(t) = Eε(t) (20)
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for perfectly and indefinitely elastic solids and the equation of Newtonian ideal fluids:

σ(t) = η
dε(t)

dt
(21)

where E and η are constants.
Equations (20) and (21) represent mathematical models for solid materials and ideal

fluids, respectively, and neither of them exists in nature. In fact, real materials combine
the behaviors of these two limited cases, remaining somewhere in the middle between the
ideal solids and fluids, if we order the materials regarding their consistency.

Figure 2 shows a schematization of both models. Hooke’s elastic element is shown as
a spring, while Newton’s viscous element is shown as a damper. In rheology, it is common
to work with these representations instead of writing the corresponding equations.
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Figure 2. Schemes for Hooke and Newton models.

Historically, the elements of Hooke and Newton were combined with the purpose of
giving the properties of both ideal materials to more realistic models. Two combinations
are possible: in series and in parallel. The Maxwell viscoelastic material model is obtained
from the series connection of the two basic elements, and the Voigt model is obtained from
the parallel connection. Both models are still quite far from the behavior of real materials.

The case of the Maxwell model (Figure 3) is elucidated by Equation (22).

dε

dt
=

1
E

dσ

dt
+

σ

η
(22)
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If σ is constant, then dε
dt is also constant, which means that if the stress is constant, the

strain increases to infinity, which does not correspond to any experimental observation.
In the case of the Voigt model (Figure 4), σ and ε are related by the following:

σ = Eε + η
dε

dt
(23)

It follows that if ε is constant, then σ is constant, so the Voigt model does not reflect the
experimentally observed stress relaxation phenomenon.
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At the next level of complexity, the disadvantages of the Maxwell and Voigt models
have improved. The series coupling of a viscoelastic Voigt element with an elastic Hooke
element provides us with the Kelvin model (Figure 5):

dσ

dt
+

E1 + E2

η
σ = E1

(
dε

dt
+

E2

η
ε

)
(24)

By connecting a Maxwell element with a parallel Hooke element, we obtain the Zener
model (Figure 6):

dσ

dt
+

E2

η
σ = (E1 + E2)

dε

dt
+

E1E2

η
ε (25)
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Both the Kelvin model and the Zener model provide a good qualitative description,
but are not considered satisfactory from the point of view quantitative [44,45]. For this
reason, further rheological models of more complex viscoelastic materials were developed,
consisting of the combination of several (sometimes many) Kelvin or Maxwell elements
combined with elastic elements of Hooke. These models imply an increasing complexity of
the expressions that relate stress and strain, in which linear combinations of the derivatives
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of any integer order of stress with respect to strain appear. In the most general case, we
arrive at a model in the following form:

n

∑
k=0

ak
dkσ

dtk =
m

∑
k=0

bk
dkε

dtk (26)

obtaining the best results when n = m (this property comes from the Kelvin and Zener
models, in which n = m = 1).

Using Equation (26) as the basic law of deformation of viscoelastic materials leads
to complicated differential equations and high derivative orders in the formulation and
resolution of applied problems, despite the fact that the resulting differential equations are
linear (due to the linearity of the basic law of deformation).

However, there is an alternative approach that, while preserving the linearity of the
models, provides better application levels.

Indeed, in 1947, Blair [46,47], noting that stress is proportional to the zero-order deriva-
tive of deformation in solids and proportional to the first derivative in fluids, proposed
intermediate materials for those the stress would be proportional to the intermediate order
(non-integer) derivative of the strain, that is,

σ(t) = E d0ε(t)
dt0 Hooke

σ(t) = K0Dα
t ε(t) Blair

σ(t) = η
dε(t)

dt Newton

(27)

where K and α would be constants dependent on the material (0 < α < 1).
At the same time, Gerasimov [48] suggests a similar generalization of the basic law

of the deformation, which can be written in terms of the fractional derivative of Rieman–
Liouville as

σ(t) = κ−∞Dα
t ε(t) (0 < α < 1) (28)

in which κ would play the role of the coefficient of generalized viscosity.
A third formulation of a generalization of the basic law of deformation can still be

mentioned, due to Slonimsky [49], who in 1961 proposed

ε(t) =
1
κ

0D−α
t σ(t) (29)

Under the conditions that, ε(0) = 0 and that the functions are equal to zero for t < 0, the
three Equations (27)–(29) are equivalent.

Besides these approximations, centered on fractional calculus, to linear viscoelasticity,
we will also cite two additional closely related approaches.

The above considerations can be considered as a transition from classical linear vis-
coelasticity based on integer-order models towards fractional-order models from the point
of view of the mathematical description of the deformation laws in terms of fractional
derivatives. However, fractional-order viscoelasticity models can also be derived from
the so-called law stress relaxation potential in real materials, first clearly formulated by
Nutting [50] in the following form:

ε = atασb (30)

where a, α, and b are the parameters of the model.
Taking b = 1 and setting C0 = 1/a, we see that for a constant strain (ε = const.), the

stress relaxation is described by the following potential relation:

ε(t) =
σ

c0
tα (31)
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As shown by Nonnenmacher [51], from Equation (30) or Equation (31), it follows that
the functions σ(t) and ε(t) satisfy the following fractional differential equations:

Dασ(t) =
Γ(1− α)t−α

Γ(1− 2α)
σ(t) (32)

Dαε(t) = Γ(1 + α)t−α (33)

This highlights the close relationship that exists between the representation of vis-
coelastic behavior by means of a power law and fractional derivatives.

3. Process of Generalization of Concrete Stress–Strain Equations
3.1. Introduction

To illustrate the generalization process that has led us to propose the equation we
present in this article, we will rely on the series of articles published by Yip et al. between
1995 and 1997 [52,53] in which they explain the proposal by Smith and Young (Equation (1))
by means of the isoenergy density theory and Weibull distribution. According to the isoen-
ergy density theory, the concrete could be modeled as a continuum which is elemental in
volume, composed of an arbitrarily large set of isoenergy elements, each of which is consid-
ered linearly elastic, i.e., obeying Hooke’s law, and which may be constituent elements of
any of the three phases of concrete, i.e., hardened particles of cement paste, mortar particles
(sand-cement), or gravel particles; that is, they can be located at any point in the concrete
mixture. The micro-fracturing of the micro-structural material within an isoenergy element
would represent the formation of micro-fissures in the concrete.

For the distribution function (developing the usual 1939 Weibull argument), they
choose their distribution function with no displacement parameter, obtaining

P = 1− exp
[
−
(

ε

ε0

)m]
Stating that the term (ε/ε0)m must depend on the energy density of the isosurface,

s, of a micro-fissure that spreads through the heart of the micro-structural material of an
isoenergy element and that s is a function of the square of the isostrain, e, they establish
that the value of m must be two and write the following:

P = 1− exp

[
−
(

e
e0

)2
]
= 1− exp

[
− s

s0

]
Considering that they obtained a straight line by representing y = ln ln (1/(1 − P))

against x = ln (ε)2 from the experimental results revealed by a compression test of a concrete
test specimen, this could be written as follows:

P = 1− exp
[
− ε

ε0

]
By applying the usual isotropic damage theory argument and remembering that it

had been submitted to the perfectly elastic behavior of the isoenergy elements, they arrive
at the following equation:

F = Kδ exp
[
− ε

ε0

]
⇔ σ = Eε exp

[
− ε

ε0

]
where F = σA, δ = εL, and E = K/AL, with A being the area of the transverse section and
L being the length of the test specimen, respectively. In order to arrive definitively at
Equation (1), it is enough to equate E to f ′c/ε0 and set a maximum of ε = ε0 for the function.
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To sum up, Yip rediscovers the 1956 Smith and Young equation while placing two
restrictions: the first consists of making the Weibull distribution exponent m equal to the
unit (thus restricting the great versatility of this distribution, without a doubt its most
remarkable quality) and the second, attributing perfectly elastic behavior to elemental
volume particles, which the materials would be composed of at the heart of Continuous
Medium Mechanics, thus obeying Hooke’s law.

We, on the other hand, will follow precisely the opposite path to that followed by Yip,
i.e., building the equation that models the stress–strain curves from generalizations.

3.2. First Generalization: Fractional Hooke’s Law

Any time that Hooke’s law can be expressed as

dσ

dε
= E (34)

we can (in light of the approaches of the different integral calculus reviewed before)
generalize the order of derivation of this differential equation (Equation (34)) and propose
a fractional Hooke’s law with non-integer orders of derivation:

0Dα
ε σ = K (35)

This is obtained by integrating the following:

σ =
K

αΓ(α)
εα (36)

Thus, we will use this Equation (36) to represent the behavior of the undamaged
material points.

3.3. Second Generalization: Exponent m

It appears that the theoretical discourse developed by Yip, based on isoenergy density
theory, was designed more to force its results to coincide with the Smith and Young equation
than to find an equation to model the largest number of stress–strain curves for the various
types of concrete given that, as we have commented, assigning a fixed value to the exponent
m = 1, means that Weibull distribution loses all its versatility.

Indeed, one of the reasons why Weibull distribution is so widely used is that it is able
to model processes in which the failure rate, h:

h(ε; εa, ε0, m) =
m
ε0

(
ε− εa

ε0

)m−1
(37)

1. Increases with the strain if m > 1.
2. Is constant with the strain if m = 1 (a hypothesis defended by Yip).
3. Decreases with the strain if m < 1.
For this reason, (in the initial approximation) we will adopt the Weibull distribu-

tion to represent the evolution of the damage to the materials as set out by this author
keeping its exponent m variable for each material and even, as we will see, for each
individual specimen.

3.4. Third Generalization: Generalized Extreme Value Distribution

We would be going counter to the necessary generalizing spirit of all science if, know-
ing that a mathematical expression is a particular case of another more general one, we
used the former in place of the latter to model a specific physical process using a formula.
Although in the initial attempts to propose an equation to model the stress–strain curves
for concrete, the use of Weibull distribution as a function of the damage seemed to fit the
experimental data quite well, the existence of a generalized distribution to include the
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majority of known continuous distributions, has led us to adopt it as a distribution function
of the damage at our proposal.

As an example of this, we will mention an article written by Basu et al. [54] which
appeared in 2009, in which the authors wondered if Weibull distribution is the most appro-
priate statistical distribution for brittle materials and, to attempt to answer the question,
they carried out various tests on different structural ceramic materials and on glass, con-
trasting the results with four statistical distributions, namely, Weibull distribution, normal
distribution, log-normal distribution, gamma distribution, and generalized exponential
distribution (due to Gupta and Kundu [55]). As a result of their analysis, they conclude
that in some cases, gamma or log-normal distribution, in contrast with Weibull or general-
ized exponential distribution, seem to describe the strength data measured experimentally
more appropriately.

However, as the Fisher–Tippett–Gnedenko theorem allows us to state, the distributions
used to compare the data in the article by Basu et al. are nothing more than particular
cases (limits) of Generalized Extreme Value Distribution. The form of limit distributions for
maxima drawn from samples whose initial distribution is F(x) is summarized in Table 1:

Table 1. Form of the limit distributions for maxima drawn from samples whose initial distribution is
F(x).

Initial Distribution
F(x)

Limit Distribution
for the Maxima G(x)

Exponential Type I GEVD (Gumbel)
Gamma Type I GEVD (Gumbel)
Normal Type I GEVD (Gumbel)

Log-normal Type I GEVD (Gumbel)
Pareto Type II GEVD (Fréchet)

Cauchy Type II GEVD (Fréchet)
Burr Type II GEVD (Fréchet)

Log-gamma Type II GEVD (Fréchet)
Uniform Type III GEVD (Weibull)

Beta Type III GEVD (Weibull)

3.5. Formulation of the Stress–Strain Equation: Restricted Form

A damage model based on an internal damage variable represented by a general
equation that relates stresses with strains can be expressed by Equation (5), so we propose
the following:

1. If we assume that the material is composed of a sufficiently large number of
sufficiently small (continuous medium) identical (homogeneous material) particles, then
ω (ε) can be considered a random variable with a probability distribution function given by
the Generalized Extreme Value distribution function (Equation (13)). Thus, Equation (5)
would now be written as follows:

σ = Ψ(ε) exp

[
−
(

1 +
1
ξ

(
ε− an

bn

))−ξ
]

(38)

2. Elsewhere, if the function Ψ(ε), which represents the behavior of the particles of the
material in the absence of damage, adopts the fractional form of Hooke’s law in Equation
(32), the equation we propose to model the stress–strain curves of concretes tested with
a constant rate of increase in stress up to the point immediately before breaking takes the
following form:

σ =
K

αΓ(α)
εα exp

[
−
(

1 +
1
ξ

(
ε− an

bn

))−ξ
]

(39)
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where Γ(α) is Euler’s gamma function and K, α, an, bn, and ξ are parameters with no formally
attributed physical meaning (for the moment), which are not all necessarily anything other
than zero and are to be determined experimentally.

3.6. Complete Stress–Strain Curves

In the previous section, we defined Equation (39) as an appropriate equation to model
the stress–strain curves for concretes tested with a constant rate of increase in stress up to
the point immediately before it breaks. So, what happens in the case of a constant rate of
increase in strain or beyond the breaking point? Does the equation cease to be valid?
What happens in the case of a constant rate of increase in strain beyond the stress peak
is (as Blechman suggested) that the test specimen breaks, if we understand by breaking a
process of instability in the machine–specimen system and a change in the stress–strain
properties of the material.

The stress–strain diagrams in use tend not to represent this fact, but generally only
show an asterisk or other symbol at the breaking point, and others simply leave the curve
hanging (Figure 7 (left)).
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However, if we show the complete process, the stress–strain diagram should look
similar to that in Figure 7 (right), in which the vertical section indicates the final or breaking
strain (εu), the breaking stress (σR), and the test’s completion, and our function should be
able to model this.

To attempt to model this fact that we have observed experimentally (since if we keep
the extensometers and the load cell sending data to the capture and storage system, we
obtain a representation similar to that in Figure 7 (right)), our thinking will be as follows:

Let us suppose that the test itself is also part of the straining process. Then, the
probability can be defined that the test is taking place without interruption. This will equal
one while the test specimen has not yet broken and zero following the break, or, seen in
another way, we can accept the probability that during the test, no instability has been
produced in the system. Then, taking into account the property shown by the kernel of
the GEVD through which, as |ξ| grows and converges on a potential barrier (Figure 8)
supported by the interval (2 εa − εu < εa < εu) with εa = au − ξubu and εu = ξubu, we can
express the probability that the test is being carried out without interruption by means of
the distribution function:

F(ε; au, bu, ξu) = exp

[
−
(

1 +
1
ξu

(
ε− au

bu

))−ξu
]

(40)
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where ξu is as big a number as the accuracy and sensitivity of the method used to detect
the breaking or instability phenomenon. Figure 8 shows this distribution function for the
following parameters: εa = 2, εu = 3, and ξu = −50.
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If we are completely sure that the test begins at ε = 0, then εa = 0, and we can write
the following:

F(ε; au, bu, ξu) = exp

[
−
(

1 +
(

ε

ξuεu

))−ξu
]

(41)

Therefore, a more general equation than Equation (39) can be written to model situa-
tions such as that in Figure 7 (right), in the form of

σ =
K

αΓ(α)
εα exp

[
−
(

1 +
1
ξ

(
ε− a

b

))−ξ
]

exp

[
−
(

1 +
1
ξu

(
ε− au

bu

))−ξu
]

in which some of the parameters that we had defined with no physical meaning begin to
acquire it. Specifically, if we single out εu = au − buξu = 0, au = buξu, εu = buξu, αu = 0, and
Ku = 0, we can write the following:

σ =
K

αΓ(α)
εα exp

[
−
(

1 +
1
ξ

(
ε− a

b

))−ξ
]

exp

[
−
(

ε

εu

)ξu
]

(42)

which is the equation we propose to model stress–strain curves for concretes from the
beginning of the test beyond any point of instability.

3.7. General Form of the Equation

As we commented, in the case of the constant rate of increase in strain, following
Blechman’s ideas, we find a more complex situation since shortly after the stress peak,
instability phenomena are produced in the machine–specimen system due to the macro-
scopic breaks in the specimens’ experiences. Thus, we have a system in which the material
appears to go through two or more phases, and the machine–specimen system appears
to experience one or several instability phenomena. Both the various phases the material
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appears to go through, and the possible instability episodes that can be modeled by means
of a more general expression of Equation (39) or Equation (40), namely,

σ =
n

∑
i=1

Kiε
αi

αiΓ(αi)
exp

− m

∑
j=1

(
1 +

1
ξ j

(
ε− aj

bj

))−ξ j
 (43)

where Ki ≥ 0, ai ∈ R, αi ≥ 0, bj > 0, and ξj < 0 are the parameters (of the materials, the shape
and size of the test specimens used to test them and of the temperature, the machines, and
test methods) that need to be determined experimentally. Additionally, n, m ∈ R represents
the number of phases or subehaviors which the materials present and the number of instability
processes or transitions which the test specimen goes through during the test, including
breaking. The field of application of the Equation (43) can be extended from before the test
starts until after it ends.

In Equation (43) it is possible to perform some algebraic manipulations and, using a
more engineering notation, also to express it as follows:

σ =
p

∑
i=1

Ciε
ni exp

[
−

q

∑
j=1

(
ε− εaj

ε0j

)mj
]

(44)

where now Ci = Ki/(αi Γ(αi)), ni = αi, εaj = aj − ξjbj, ε0j = ξjbj, mj = −ξj > 0, p = n and q = m.

4. Experimental Verification of the Results

We have carried out hundreds of tests to develop this work, for more than ten years, but
because in all cases the results have been equally satisfactory, as representative examples,
the curves for three generic types of concrete, with low (L1), medium (M1, M2), and high
(H1) resistance, have been included. The test specimens were made, cured, and tested at
the age of 28 days. The dosages used for the fabrication of the various concretes are shown
in Table 2.

Table 2. Design of the mixtures of the concretes tested.

Test
Specimen

CEM
(kg/m3) W/C CA (kg/m3) FA (kg/m3) SF (kg/m3) WR(kg/m3) f ′c (MPa)

L2 250 0.65 975.41 1056.46 - - 32.35
M1 375 0.44 925.76 995.71 4.69 - 56.18
M2 375 0.44 925.76 995.71 4.69 - 50.06
H2 500 0.23 907.80 982.26 25.00 12.5 105.78

CEM—Cement, W/C—Water/cement ratio, CA—Coarse aggregate, FA—Fine aggregate, SF—Silica fume,
WR—Water reducer/super plasticizer, f ′c—Maximum compressive strength.

4.1. Results for the Low-Strength Concrete Test Specimens

The fit of the proposed equation to the data experimentally obtained for test specimen
M1 (tested with a constant rate of increase in stress equal to 0.6 MPa·s−1) shows excellent
results (Figure 9) for the following equation:

σ = Kεn exp
[
−
(

ε

ε0

)m]
(45)

With K = 41,000 MPa, n = 0.9885, ε0 = 0.00282 and m = 2.325.
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Figure 9. Comparison between the experimental data for test specimen M1 (tested with a constant
rate of increase in stress) and the proposed equation.

The value of ε0 should not be confused with the deformation at which fracture occurs or
with the deformation at maximum stress. Equation (45) has a maximum when its derivative
is equal to zero, that is, when ε = ε0(n/m)1/m (not ε = ε0). According to the results found for
the best possible fit of the curve, the maximum would be ε = 0.00282 (0.9885/2.325)(1/2.325)

= 0.001952 ∼= 0.002, the value of the deformation at which the specimen broke.
The case of a constant rate of increase in strain (2·10−6 s−1) with which specimen

M2 was tested is, as we have shown, somewhat more complex, since a change-of-phase
phenomenon is produced after the stress peak, with the material subsequently evolving
towards a type of unstable creep.

Thus, we have two phases, which is why our equation will be composed of two terms
(one for each phase), and the last of them is weighed by an additional exponential, which
models the phase change.

The values which best adjust the proposed equations to the experimental data for test
specimen M2 are those shown in the following equation:

σ = C1εn1 exp
[
−
(

ε

ε01

)m1
]
+ C2εn2 exp

[
−
(

ε

ε02

)m2
]

exp
[
−
(

ε− εa

ε03

)m3
]

(46)

These are represented in Figure 10 with the following parameters:
Phase I: C1 = 25,220 Mpa, n1 = 0.9405, ε01 = 0.00253, m1 = 3.708.
Phase II: C2 = 17,470 Mpa, n2 = 0.00319, ε02 = 4.62 × 10−8, m2 = 0.169.
Phase change: εa = 0.3046, ε03 = 0.3015, m3 = 962.1.

4.2. Results for the Medium-Strength Concrete Test Specimens

The virtual accuracy obtained for all the cases of a constant rate of increase in stress
makes it unnecessary to show it for the rest of the types of concrete produced. We will
focus, therefore, on the tests with a constant rate of increase in strain.
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rate of increase in strain) and the proposed equation.

In the case of test specimen L2, tested with a constant strain increase rate of 6.74 × 10-6 s−1,
a practically vertical section of the curve is observed almost immediately after the stress
peak (Figure 11), probably due to the rise in the rate of increase in strain compared to the
test with specimen M2, which reveals the existence of an overall instability process which
is recovered close to the strain corresponding to 0.003. This fact can be modeled by means
of the following equation:

σ = C1εn1 exp
[
−
(

ε

ε01

)m1
]

exp
[
−
(

ε

ε02

)m2
]
+ C2εn2 exp

[
−
(

ε

ε03

)m3
]

exp
[
−
(

ε− εa

ε04

)m4
]

with the following parameters:
Phase I: C1 = 86,260 Mpa, n1 = 0.978, ε01 = 0.00541, m1 = 1.
Instability: ε02 = 0.000263, m2 = 19.31.
Phase II: C2 = 997.6 Mpa, n2 = 0.185, ε03 = 10−5, m3 = 0.209.
Phase change: εa = 0.00753, ε04 = 0.00664, m4 = 12.28.

4.3. Results for the High-Strength Concrete Test Specimens

In Figure 12, it can be observed that high-strength concretes typically present a more
linear ascending branch, with the descent from the stress immediately after the maximum
proving more pronounced.
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The final residual stress tail (which Blechman attributed to a confinement factor) proves
lower than in normal concretes.

The values found for the parameters which best adjust the proposed equation (Equation (44))
to the experimental results for test specimen H2 are the following:

Phase I: C1 = 33,920 Mpa, n1 = 0.9695, ε01 = 0.08598, m1 = 9.34.
Instability: ε02 = 9.068·10−5, m2 = 0.6623.
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Phase II: C2 = 2.041 × 106 Mpa, n2 = 1.036 × 10−10, ε03 = 0.003135, m3 = 19.64.
Phase change: εa = 0.01165, ε04 = 0.008511, m4 = 100.

5. Discussion

In the first place, as we have mentioned above, we wish to stress that this work does
not advocate a constitutive model.

On the other hand, the proposed equation encompasses the classical laws for materials
with infinite ideal resistance as limiting cases, including Hooke’s law, the perfectly plastic
behavior law, and the power law (Hollomon’s equation) or its variation (Ludwik’s law).

In particular, when setting p = 1, q = 1, C = eE, α = 1, and m = 0 in Equation (44), we
obtain σ = εE, which is none other than the famous Hooke’s law. Alternatively, if we fix
p = 1, q = 1, C = eσy, α = 0, and m = 0, we attain σ = σy, corresponding to the perfectly plastic
behavior law. Similarly, by setting p = 1, q = 1, C = eK, α = n, and m = 0, we arrive at σ = Kεn,
known as the power law or Hollomon’s equation.

Finally, when we let p = 2, q = 1, C1 = eσy, α1 = 0, m = 0, C2 = eK, and α2 = n, we obtain
σ = σy + Kεn, which is referred to as Ludwik’s law.

6. Conclusions

To conclude, we discuss the principal conclusions that the present research work reveals.
First of all, a fractional version of Hooke’s law is proposed, based on integral calculus,

which is why, far from being different, Hooke’s law (Equation (34)) and Bach’s equation
are nothing more than particular cases of the fractional differential equation proposed in
Equation (44).

Next, taking the assumptions of Continuous Damage Mechanics as the starting point
(Equation (5)), an equation is proposed that models the stress–strain evolution of materials
that present simple behavior, (Equation (36)). Classical laws in which the behavior is always
perfect and the strength of the material is infinite, namely, Hooke’s law, that of constant
creep stress, and the power law (Bach’s equation), are limited cases of this equation.

For those cases in which the material appears to go through two or more phases and
the machine–specimen system appears to experience one or several instability phenomena,
the stress–strain curves can be modeled using a more general expression (Equation (44)):

σ =
p

∑
i=1

Ciε
ni exp[−

q

∑
j=1

(
ε− εaj

ε0j
)

mj

] (47)

where Ci, ni, εaj, ε0j, and mj are the parameters (of the materials, the shape and size of the
test specimens used to test them and of the temperature, machines, and test methods) to
be determined experimentally, p and q are natural numbers and represents the number
of phases or sub-behaviors the material presents and the number of instability processes or
transitions the machine–specimen system goes through during the test, including breaking.

Trying to clarify the physical meaning of the proposed equation, let us take the well-
known example of the stress–strain curve of common construction steel. To put it briefly,
carbon steel is a binary alloy of Fe-C that typically contains less than 1% carbon, with
carbon content ranging between 0.008% and 2.11%. At room temperature, it exhibits a
stable structure consisting of grains of ferrite or Fe-α phase, with colonies of iron carbide
or cementite dispersed throughout. Cementite is an interstitial solute in iron and forms
solid solutions with ferrite, while Fe-α has a Centered Cubic Inside (CCI) structure with
very little Fe3C at the interstices of its grains. Carbon significantly affects the mechanical
properties of steel, with the Fe-α phase being relatively soft and ductile, and cementite
being hard and brittle. The characteristic stress–strain diagram of these steels, featuring
upper and lower yield points, a plastic plateau (with or without the Portevin–Le Chatelier
effect), and later hardening by strain, can be attributed to the interplay between these two
behaviors, as depicted in Figure 13.
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It appears as though the behavior of the system can be modeled in a way that does not
require modifying the proposed equation and without the need for separate expressions for
elastic and plastic strain, as is typically carried out in classical theory. The particles of the
weaker phase (cementite) appear to break under stress, following Weibull’s weakest link
theory, which allows for a sharp increase in stress on the stronger phase (ferrite) particles.
This causes instability in the machine-probe system, resulting in yield points and a plastic
plateau. Eventually, the stresses rearrange themselves, and the system becomes stable again,
with stress increasing once more, but now exhibiting plastic behavior that is more typical
of the ferrite phase. In light of this, it is worth asking whether it is possible to expand the
proposed equation in order to model this behavior in a way that does not require the use
of separate expressions for elastic and plastic strains. The answer to this question is yes,
as expected.

If we consider steel as a material composed of two phases, with behavior laws for their
particles, C1εn1 and C2εn2 , and damage probability distribution functions, ω1

(
ε; εa1 , ε01 , m1

)
and ω2(ε; εa2 , ε02 , m2), we can propose a stress–strain equation as follows:

σ = C1εn1 exp+εn2 exp
[
−
(

ε− εa2

ε02

)m2
]

In order to contrast the goodness of the equation, we compared it with the experimental
data taken from the article of Kato et al. [58], obtaining the provisional results shown in
Figure 14, where the behavior assigned by the equation for phase Fe-_ is represented in
red, the behavior for Fe3C is represented in green, and the total curve that resulted from
applying the proposed equation is represented in magenta. These were obtained for the
following values:
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K1 = 184,800 Mpa, _n1 = 1, εa1 = 0, ε01 = 0.002, m1 = 0.866 and K2 = 2330 Mpa,
_n2 = 0.4662, εa2 = 0, ε02 = 0.1696, m2 = 0.416.

Finally, we checked that Equation (44) models not only the stress–strain curves which
we designate as simple but also the curves for the concrete tested with a constant rate of
increase in stress, and those that present multiphase behavior, as well as those for concretes
tested with a constant rate of increase in strain over a wide range of characteristic strengths,
and all with an excellent level of accuracy.

Equation (44), to the best of our knowledge, is the equation that best fits the experimen-
tal data from uniaxial compression stress (mean)-strain (mean) tests of any type of concrete
tested under any rate of increase in stress or strain and it is continuous and derivable at
all its points, so valuable information can be extracted from it, such as the true value of
the modulus of elasticity at any point by means of a simple derivation process. On the
other hand, it allows for evaluating the failure rate to implement reliability coefficients,
calculate strain energies (through integration), and calculate any other information that
can be extracted by providing a continuous and differentiable curve at all points that fits as
much as we want to the experimental results. We have not found this last extreme in the
bibliography, to the best of our knowledge.
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