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Abstract: The results presented in this paper on the appropriateness of using of blast furnace slag
(BFS) in the composition of roads make an original contribution to the development of sustainable
materials with the aim to reduce the carbon footprint and the consumption of natural resources.
The novelty of this work consists of determining the optimal percentage of BSF in road concrete,
in order to: increase mechanical resistances, reduce contractions in the hardening process, and
ensure increased corrosion resistances, even superior to classic cement-based mixtures. Thus, the
physical-mechanical characteristics and the microstructure of some road concretes were studied in
the laboratory for three different recipes. We kept the same amount of ground granulated blast
furnace slag (GGBS) as a substitute for Portland cement, respectively three percentages of 20%,
40%, 60% air-cooled blast furnace slag (ACBFS) and crushed as sand substitute from now on called
S54/20, S54/40, S54/60. Drying shrinkage, mechanical resistances, carbonation-induced corrosion,
microstructure characterization of hardened concretes, and degree of crystallinity by SEM and XRD
measurements were analyzed after a longer curing period of 150/480 days. The obtained results
on the three BSF mixtures indicated a reduction of drying shrinkage and implicitly increased the
tensile resistance by bending to 150 days well above the level of the blank composition. The degree of
crystallinity and the content of the majority phases of the mineralogical compounds, albites, quartz,
and tobermorite out of the three BSF samples justifies the increase in the compressive strengths at the
age of 480 days in comparison with the test samples. Scanning electron microscope (SEM) and X-ray
diffraction measurements showed the highest compactness and lowest portlandite crystal content for
the S54/20 slag composite. Future research concerns are the realization of experimental sections in
situ, the study of the influence of BFS on the elasticity module of road concrete, and the opportunity
to use other green materials that can contribute to the reduction of the carbon footprint, keeping the
physical and mechanical properties of road concrete at a high level.

Keywords: concrete shrinkage; mechanical resistances; carbonation; concrete microstructure; ground
granulated blast furnace slag (GGBS); air cooled blast furnace slag (ACBFS); cement concrete roads

1. Introduction

The construction industry has developed numerous measures to reduce the green-
house gas emissions associated with cement production [1,2]. Moreover, the hydraulic
cement manufacturing process is responsible for approximately 7–9% of global carbon
dioxide emissions, on par with emissions from fuel combustion [3–5]. There are several
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materials resulting as byproducts or industrial waste that can be used as multi-component
binders in cement mixtures to minimize the carbon footprint [3,6–14]. Using industrial
byproducts such as GGBS from blast furnace iron ore extraction as a substitute for cement
can reduce greenhouse gas (GHG) emissions by 47.5% [15,16]. The global environmental
emission factor for producing of one ton of GGBS is 0.143 t CO2-e/ton, well below the value
of 0.91 t CO2-e/ton for cement, which includes the cement transporter to the plants for the
concrete mixture preparation [17]. Globally, slag production (GGBS) is almost 530 million
tons, of which only 65% is absorbed by the construction industry [18,19]. Research has
been carried out on the influence of GGBS on the performance of some types of concrete
and mortar [3,20,21]. The research done in the study [22] shows that the use of an optimal
combination of microsilica (MS) and GGBS can improve the resistance characteristics of
concretes compared to the individual use of these additional cementitious materials. The
experimental investigations within the paper [23] show that geopolymer concrete with
GGBS as the main binder and substitution of slag powder with 20% micronized biomass
silica (MBS) made from rice husk without Portland cement achieved optimal resistance and
durability performance. The effects on the durability characteristics of waste glass-derived
nanopowder (WGBNP) with the inclusion of fly ash (FA) and ground blast furnace slag
(GBFS), evaluated on alkali-activated mortars (AAM), led to improved durability perfor-
mances through reduced drying shrinkage and increased resistance to sulfuric acid, wear,
and freeze-thaw cycles [24]. According to other research, the optimal dosage for replacing
cement with GGBS is limited to max. 20%, because the resistances decreased significantly
above this level compared to the reference concrete, due to low workability and increased
porosity [15,25].

The impact of GGBS mixed with cement develops properties in fresh and hardened
concrete, such as workability, reduced bleeding of fresh concrete, and hydration heat,
increases long-term resistance, and increased resistance to corrosion, porosity, and low
permeability [26–29]. The study [3] shows an increase in the workability of concrete up to a
40% substitution level with GGBS. Increased consistency is due to better particle dispersion
(GGBS) [30]. More cement paste minimizes internal friction between concrete compo-
nents by filling the micro-spaces in the concrete aggregate, resulting in more workable
concrete [25]. Developing tensile strength, the main characteristic of road concrete, requires
the careful establishment of design parameters for any structural element that requires
crack control [31]. An important clue for determining the cracking resistance of concrete
results from the evolution of shrinkage and the maximum level of shrinkage. The drier
the air and the higher the temperature, the stronger the shrinkage [32]. Materials such as
cement, water, and aggregates significantly influence concrete shrinkage. Cement leads to
increased drying shrinkage by increasing dosage, tricalcium aluminate C3A component, gel
component, alkali content of cement, deficiency, and excess of gypsum influence shrinkage
curing [33]. The volume contraction of the cement paste represents approx. 1% of the abso-
lute volume of dry cement [33,34]. Currently, the shrinkage has a value below 0.6 mm/m;
this can be exceeded in concretes rich in binders [35]. Some authors appreciate the evolu-
tion of concrete shrinkage as follows: after 1/2 month 5% is recorded, after 3 months 60%,
and after a year 75% of its maximum value [32]. The increase in the A/C ratio leads to
an increase in concrete shrinkage, because the number of concrete pores also increases.
Increasing the amount of aggregates reduces shrinkage due to their nature, rigidity, and
granularity [36]. An increased concentration of CO2 and a humidity greater than 50%
causes an increase in shrinkage to a value more than double. Carbon dioxide decalcifies
and dehydrates hydrosilicates of the C2S type [35]. Increasing CO2 concentrations in the
external environment also increases the carbonation rate for permeable concretes [37]. The
carbonation phenomenon lowers the pH value from the typical values (12–13) to less than
9 in the pore solution and destroys the passivity of the reinforcing bars embedded in the
concrete, triggering the corrosion process [38–40].

Another significant impact on the environment is the consumption of aggregates since
they represent the largest share of the mass and volume of concrete. It is estimated that



Materials 2023, 16, 3332 3 of 21

worldwide demand for construction aggregates is over 10 billion tons annually [41,42].
Much research explores the durability of concrete containing recycled aggregates (RAC)
from building demolition [43,44], from road asphalt pavements (RAP) [45–47], quarry sand
(QS) [48], or ecological mortars in which natural aggregates have been replaced by glass
waste [49].

A sustainable source for substituting natural aggregates in road concrete is air-cooled
crushed blast furnace slag (ACBFS) [50,51]. There are research studies related to the use
of blast furnace slag as a substitute for natural aggregates in asphalt mixtures leading to
these conclusions [52]. The Japanese Guide using blast furnace slag aggregates for concrete
structures recommends using fine aggregates mixed with natural fine aggregates at a ratio
between 20 and 60% [53]. In our country, since 2003, the characteristics of blast furnace
slag aggregates used for concrete have been covered by the SR EN 12620 standard [54].
These byproducts from the steel industry can be used in road concrete mixes, but require
proper evaluation to ensure that their properties do not adversely affect fresh and hardened
concrete [55]. Applying reusable artificial materials and new technologies will positively
impact on the environment by protecting non-renewable materials and reducing production
costs [56,57].

The objective of this study is to continue investigations into the physical and me-
chanical characteristics of road concrete compositions with blast furnace slag made in
previous works [58,59], to establish the optimal percentages of BSF to improve the quality
of durability in concrete road production. It is known that cements containing blast furnace
slag are characterized by a slower hydration rate, lower hydration heat, higher resistance
after longer hardening periods, and greater resistance to chemical aggression [60]. The
curing mechanism specific to concretes containing SCMs, such as GGBS, makes it possible
to measure reference mechanical resistances after the age of 56 days [32]. Most concrete
research with GGBS monitors curing times at 56 days [25] and 90 days [3] and fewer up to
360 days [61]. The relative humidity of the environment has a great influence on the size of
the contraction. Thus, for a relative humidity of 100%, contraction decreases with age, while
for a relative humidity of 50–70% (specific to road concretes that are kept in the air), the
contraction can increase up to 20 years [32]. Variations in drying contraction influence the
development over time of mechanical resistances (stretch and compression) and durability
such as carbonation depth. This study aims to examine the influence of powdered blast
furnace slag (GGBS) on the road concretes, analyzing the evolution of contraction and
long-term resistance, 150/480 days. More than most previous research, road concrete
compositions added fine aggregates (ACBFS) made of blast furnace slag. Consequently,
tests were carried out on the samples made in the laboratory to evaluate some physical
and mechanical properties (shrinkage on drying, tensile strength by bending at 150 days,
and compressive strength at 480 days), durability (corrosion from carbonation at 150 and
480 days old), and microstructural properties (X-ray diffraction and SEM scanning electron
microscopy at 480 days old). Mechanical resistance values obtained were reported at the
reference age of 28 days.

2. Materials and Methods
2.1. Materials

As binder, CEM I 42.5R cement acquired from Holcim Romania was used according to
SR EN 197-1 [62] and GGBS from local sources, Galati Steel Mill (in Romanian). The 28-day
activity index of granulated slag, amounting to 0.95, was taken from the manufacturer’s
tests. By grinding BSF to a size smaller than 63 µm, slag activation by grinding fineness
was pursued [63–65]. The GGBS powder recorded after grinding a specific surface area of
3775 cm2/g lower than that of Portland cement of 4385 cm2/g. The GGBS characteristics
were analyzed according to the system (CaO-SiO2-Al2O3-MgO), in compliance with SR EN
15167:1 [66], from the XRF spectral analysis by the manufacturer. The requirements of this
standard require that the sum of the masses of CaO + MgO + SiO2 be greater than 2/3 and
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the mass ratio (CaO + MgO)/(SiO2) > 1. The values recorded in Table 1 show that these
requirements are met.

Table 1. Oxidative analysis of granulated slag (GGBS).

GGBS SiO2 Al2O3 MnO MgO CaO Fe2O3 Na2O K2O

(%) 36.70 9.50 0.23 8.70 42.00 0.55 0.28 0.53

The aggregate (ACBFS) crushed to a size of 0/4 mm was produced by the Galati
Steel Mill. XRD measurements performed on the aggregates (ACBFS) in the paper [58]
indicated the percentage of 100% crystalline phase, the danger of disaggregation being
removed [35]. The fineness modulus (Mf), evaluated in Table 2, resulting as the sum of the
total percentages retained on the site series, placed the aggregates (ACBFS) in the category
of large-grained sands with values between 2.4 and 4.0 and fine natural aggregate (NA) in
the category of sand with medium grains having Mf between 1.5 and 2.8, in compliance
with SR EN 12620 [54]. The water absorption coefficient WA24 for natural fine aggregates
and ACBFS brought to the condition SS with the saturated surface and to the condition
SSD with the dry saturated surface recorded the values in Table 2.

Table 2. Fineness modulus (Mf) and water absorption coefficient (WA24) of aggregates of size
0/4 mm [59].

Aggregate
Mixture Mf WA24 (SS) WA24 (SSD)

100% (NA) 2.72 20% (water saturated) 2% (after 4 days air cooled)
100% (ACBFS) 3.15 30% (water saturated) 2% (after 8 days air cooled)

The selection of natural aggregates and the granulometric curve of the total mixture
was in accordance with the requirements of the national standard NE 014 [67]. River sand
(0/4), crushed river gravel (4/8), and crushed quarry screening were used for sorting
(8/16) and (16/25) acquired from local sources (Balastiera Beclănut, and Bologa quarry).
When preparing the concrete, the superplasticizer additive Master-Glenium SKY 527,
(SP MG-SKY 527) and the air trainer additive Master Air 9060 (MA 9060) were added,
having characteristics in compliance with SR EN 934-2 [68]. The additives (Ad) used were
acquired from the Master Builders Solutions Romania group. The water was taken from
the supply system of the city of Cluj-Napoca, the characteristics being in compliance with
SR EN 1008 [69].

2.2. Concrete Mixtures

Five mixtures were made, of which the first two compositions were made with con-
ventional materials, with Portland cement, CEM I 42.5R, and natural aggregates. In three
mixtures, GGBS and the ACBFS aggregates were added. A quantity of 54 kg/m3 of slag
(GGBS) was used as an addition in the percentage of 15% of the mass of cement in the
control composition S360, as a substitute in the percentage of 13% of the mass of cement in
the control composition S414. The sand (NA) was substituted in percentages of 20%, 40%,
and 60% with crushed aggregates (ACBFS) with a size of 0/4 mm.

The amounts of materials per m3 are summarized in Table 3, and the abbreviations for
mixtures are symbolically noted as follows.

In the preparation of slag concretes, the added water content and additives were
helped to achieve consistency within the range 20–40 mm, workability being an important
feature of road concretes.
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Table 3. Quantities of materials per m3.

Mixtures (kg/m3) S360 S414 S54/20 S54/40 S54/60

Cement 360 414 360 360 360
(GGBS) - - 54 54 54

Total binder (l) 360 414 414 414 414
Water (w) 166.47 174.39 172.91 181.23 167.64

w/l 0.46 0.42 0.42 0.44 0.41
(NA_0/4 mm) 607 594 478 355 240

(ACBFS_0/4 mm) - - 119 237 359
(CA_4/25 mm) 1290 1261 1269 1256 1275

(SP MG-SKY 527) 3.60 4.14 4.39 4.55 4.97
(MA 9060), 1.80 2.07 2.07 2.07 2.07

The design parameters of road concrete classified in the BcR 5.0 class followed the
requirements set out in NE 014 [67], presented in Table 4, and the obtained results are
presented in detail in the paper [59].

Table 4. The design parameters of road concrete composites in compliance with NE 014.

Cement Dosage (w/l) Consistency Occluded
Air Content

fcm
28 Days

fcfm
28 Days

min. 360 kg/m3 max. 0.45 (30 ± 10) mm (3.5 ± 0.5)% min. 50 MPa min. 5.5 MPa

2.3. Methods
2.3.1. The Drying Shrinkage of Road Concretes with Blast Furnace Slag

The shrinkage of hardened concrete was measured in compliance with SR 2833 [70],
with the help of the Huggenberger deformer, the landmarks being located at a distance of
250.50 mm. The shrinkage measurement was carried out on prisms with dimensions of
150 × 150 × 600 mm3. The samples were kept in water until the age of 7 days, then in air
until the age of 150 days at a humidity of 65 ± 5% and a temperature of 20 ± 2 ◦C, as in
Figure 1a,b. The initial reading was taken at 7 days, followed by further readings at 14, 28,
42, 56, 90, and 150 days. At each test age, the shrinkage was calculated as the arithmetic
mean of the values obtained on three samples on three test tubes, applying (Equation (1)):

εci =
δ0 − δi

l

(mm
m

)
, (1)

In which:

εci—shrinkage of the hardened concrete, in mm/m;
δ0—initial reading at 7 days old (standard) with deformer, in mm;
δi—reading at the age of i days, with deformer, in mm;
l—distance between landmarks, in mm.

2.3.2. Tensile Strengths by Bending, Compression, and Carbonatation

The determination of mechanical resistances was carried out on three prism test tubes,
with dimensions of 150 × 150 × 600 mm3, respectively on three cubes with a side of 150 mm
for each composite. The prismatic samples for determining the bending tensile strength in
compliance with SR EN 12390-5 [71] were the same as those monitored for drying shrinkage
evaluation up to the age of 150 days, images in Figure 1c. The compressive strengths
were determined in compliance with SR EN 12390-3 [72], after a longer curing period,
at the age of 480 days, images Figure 1d. The evolution of the mechanical resistances
was compared to those at the reference age of 28 days, found in the paper [59]. The
determination of the resistance to carbonation at 150/480 days was performed on the
freshly crushed faces of the three cubes and prisms remaining after the mechanical tests
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from each composite. According to the methodology of SR CR 12793 [73], they were sprayed
with 1% phenolphthalein solution to measure the depth of the carbonation layer dk (mm).
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Figure 1. (a,b) Pictures of drying shrinkage measurement; (c) Images after the bending tensile test of
the 150 × 150 × 600 mm prism; (d) Images after the compression test on the 150 mm cube.

2.3.3. Characterization of the Microstructure of Road Concrete

The XRD patterns were recorded using a D8 Advance diffractometer (Bruker, Karl-
sruhe, Germany) with Ni-filtered CuK α1 radiation of λ = 1.54060 Å wavelength, operating
at 40 kV and 40 mA, at room temperature. The degree of crystallinity was determined
as the ratio between the area of diffraction peaks and the total area of diffraction peaks
and halos.

SEM-EDX scanning electron microscope measurements were performed on small
samples at the age of 480 days. The SEM-EDX analysis was performed at room tempera-
ture using a scanning electronic microscope (VEGAS 3 SBU, Tescan, Brno-Kohoutovice,
Czech Republic) with a Quantax EDX XFlash (Bruker, Karlsruhe, Germany) detector. Sam-
ples of ~4 mm2 were mounted with carbon tape on an SEM stub. For each composite,
XRD-SEM-EDX measurements were performed on a single sample.

3. Results
3.1. The Drying Shrinkage of Road Concretes with Blast Furnace Slag

In the same conservation conditions (7 days in the humid environment and the rest in
the air with controlled humidity), Table 5 shows the values of the contraction upon curing
(ε) up to the age of 150 days.

Table 5. Curing shrinkage of road concretes up to the age of 480 days.

Curing Shrinkage S 360 S 414 S 54/20 S 54/40 S 54/60

ε (mm/m)—14 days 0.039 0.057 0.040 0.057 0.051
ε (mm/m)—28 days 0.065 0.112 0.064 0.104 0.076
ε (mm/m)—42 days 0.083 0.134 0.083 0.125 0.092
ε (mm/m)—56 days 0.097 0.150 0.098 0.141 0.105
ε (mm/m)—90 days 0.104 0.161 0.106 0.154 0.114
ε (mm/m)—120 days 0.110 0.172 0.113 0.165 0.122
ε (mm/m)—150 days 0.116 0.178 0.121 0.174 0.129

3.2. Tensile Strengths by Bending and Compression

Tensile flexural strengths at 150 days, compression at 480 days, standard deviation
(SD), and coefficient of variation (CoV) of mechanical strengths are given in Table 6.
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Table 6. Tensile flexural strengths at 150 days, compression at 480 days, standard deviation (SD), and
coefficient of variation (CoV) of mechanical strengths.

Mixture S 360 S 414 S 54/20 S 54/40 S 54/60

fcfm 150 days (MPa) 6.06 5.77 6.57 5.78 6.31
SD-fcfm (MPa) 0.33 0.35 0.19 0.28 0.29
CoV-fcfm (%) 0.05 0.06 0.03 0.05 0.05

fcm 480 days (MPa) 72.5 80.97 83.44 81.56 87.00
SD-fcm (MPa) 2.94 4.65 4.27 1.10 4.48
CoV-fcm (%) 0.04 0.06 0.05 0.01 0.05

3.3. Corrosion Resistances from Carbonation

Figure 2a presents photo images of fragments from prisms tested at the age of 150 days.
In Figure 2b, fragments from cubes were tested at the age of 480 days after one hour of
spraying with phenolphthalein solution in a concentration of 1%.

Materials 2023, 16, x FOR PEER REVIEW 7 of 21 
 

 

Table 6. Tensile flexural strengths at 150 days, compression at 480 days, standard deviation (SD), 
and coefficient of variation (CoV) of mechanical strengths. 

Mixture S 360 S 414 S 54/20 S 54/40 S 54/60 
fcfm 150 days (MPa) 6.06 5.77 6.57 5.78 6.31 

SD-fcfm (MPa) 0.33 0.35 0.19 0.28 0.29 
CoV-fcfm (%) 0.05 0.06 0.03 0.05 0.05 

fcm 480 days (MPa) 72.5 80.97 83.44 81.56 87.00 
SD-fcm (MPa) 2.94 4.65 4.27 1.10 4.48 
CoV-fcm (%) 0.04 0.06 0.05 0.01 0.05 

3.3. Corrosion Resistances from Carbonation 
Figure 2a presents photo images of fragments from prisms tested at the age of 150 

days. In Figure 2b, fragments from cubes were tested at the age of 480 days after one hour 
of spraying with phenolphthalein solution in a concentration of 1%. 

 
(a) 

   
(b) 

Figure 2. Samples after one hour of spraying with 1% phenolphthalein solution; (a) Fragments from 
prisms tested at the age of 150 days; (b) Fragments from cubes tested at the age of 480 days. 

3.4. Characterization of the Microstructure of Road Concrete 
3.4.1. X-ray Diffraction 

The XRD diffraction patterns of the samples S360, S414, S54/20, S54/40, and S54/60 
are presented in Figure 3. 

 
20 30 40 50 60 70 80

In
te

ns
ity

 (a
.u

.)

2 theta (o)

● ● ●●

● Quartz
♦ Portlandite

♦ ♦ ♦ ♦▲ ▲■■■ ■ ●●● ■○ (a)

(b)

(c)

(d)

■ ▲

(e)

○

▲ C-S-H

●
♦

○ Ettringite
■ Albite

● ●●

Figure 2. Samples after one hour of spraying with 1% phenolphthalein solution; (a) Fragments from
prisms tested at the age of 150 days; (b) Fragments from cubes tested at the age of 480 days.

3.4. Characterization of the Microstructure of Road Concrete
3.4.1. X-ray Diffraction

The XRD diffraction patterns of the samples S360, S414, S54/20, S54/40, and S54/60
are presented in Figure 3.

XRD patterns showed the existence of quartz (SiO2), portlandite (Ca(OH)2), ettringite
(Ca6Al2(SO4)3(OH)12·26H2O), calcium silicate hydrate (CaSiO3·H2O), and albite
(NaAlSi3O8). The RIR (Reference Intensity Ratio) method was used for the quantitative
phase analysis of the samples investigated at 480 days (Table 7).
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Figure 3. Diffraction patterns of the samples (a) S360; (b) S414; (c) S54/20; (d) S54/40; (e) S54/60.

Table 7. Quantitative analysis results obtained by the RIR method (%) of the samples investigated at
480 days.

Sample S 360 S 414 S 54/20 S 54/40 S 54/60

Degree of crystallinity (%) 77 75 69 74 71
Amorphous phase (%) 23 25 31 26 29

Albite (Ab) ++ ++ +++ +++ +++
Quartz +++ +++ +++ ++ +++

Tobermorites (C-S-H) ++ ++ +++ + +++
Portlandite (CH) + + + + +

Ettringite (C-A-S-H) + + + + +
+++ major phase (>20%), ++ minor phase (5–10%), + phases in traces (<5%).

3.4.2. SEM-EDX Scanning Electron Microscopy Measurements

SEM investigations, at sizes from 20 µm to 500 µm, resulted in the surface topography
for the compositions S360, S414, S54/20, S54/40 and S54/60, aged 480 days. Table 8 shows
the pore size measured on the studied samples.

Table 8. Pore size was measured on the studied samples from the compositions S360, S414, S54/20,
S54/40, and S54/60.

Sample Pore Identification
Code

Pore Radius
(µm)

Pore Diameter
(µm)

Distance Identification
Code Qi (Ci-Ci+n) Distance (µm)

S360 C1 2.61 5.22 Q1 (C1–C2) 7.95
C2 1.75 3.51

S414 C1 13.69 23.79
C2 11.05 22.10 Q1 (C1–C3) 288.16
C3 22.76 45.51 Q2 (C2–C4) 44.47
C4 6.58 13.17 Q3 (C1–C2) 77.69
C5 10.11 20.21 Q4 (C5–C6) 203.85
C6 6.74 13.48

S54/20 C1 8.09 16.19 Q1 (C1–C2) 380.79
C2 6.44 12.89

S54/40 C1 31.41 62.83 - -
S54/60 C1 6.60 13.20 Q1 (C1–C2) 76.22

C2 4.67 9.34 Q2 (C1–C3) 28.77
C3 6.52 13.05

EDX was used to map the surface of the measured samples, the results for the concen-
tration of the identified elements are presented in Table 9.
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Table 9. Element concentrations (%) in S360, S414, S54/20, S54/40, and S54/60 obtained by mapping
the sample surface.

Mixture O Ca Si Al Ca/Si

S360 53.30 22.37 21.92 2.41 0.42
S414 50.83 4.45 30.44 9.07 0.15

S54/20 54.18 28.54 14.54 2.74 1.96
S54/40 55.57 21.68 19.31 3.44 1.12
S54/60 68.79 27.02 2.10 2.10 12.86

4. Discussion
4.1. The Drying Shrinkage of Road Concretes with Blast Furnace Slag

The highest shrinkage value was recorded for the S414 composite, 0.178 mm/m, which
represents 63.33% of the maximum shrinkage value, respectively 0.283 mm/m, below the
allowed value of 0.6 mm/m according to the principle presented in the paper [32,35],
Figure 4a,b. The lowest shrinkage corresponds to the composite S360 in the amount of
0.116 mm/m. This result is justified by a reduced dosage of cement 360 kg/m3 compared
to the dosage of 414 kg/m3 used for the rest of the composites. It is observed, for all
composites, that the shrinkage value decreases with the decrease of the water content in
the mixtures, recorded in Table 3.
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Figure 4. (a) Drying shrinkage at 28 and 150 days; (b) Evolution of drying shrinkage up to 150 days.

Reducing the amount of cement by substitution with GGBS reduced shrinkage in slag
composites. Moreover, from the pozzolanic reaction of GGBS with calcium hydroxide (CH),
a lower drying shrinkage value resulted in samples with GGBS compared to the control
mixture with the same binder dosage [12]. Increasing the amount of water while reducing
the volume of aggregates in the S54/40 composite increased the shrinkage value compared
to the S54/20 and S54/60 composites. The shrinkage mitigation of S54/20, S54/40, and
S54/60 composites compared to S414 can be justified by the grinding fineness of GGBS
with the specific surface (3775 cm2/g) lower than the specific surface of Portland cement
(4385 cm2/g). Finer ground cements react more energetically with water and develop
greater shrinkage after setting through stronger hydration and greater increase in the
amount of gels [32].

The slag aggregates (ACBFS) also influenced the concrete shrinkage through grain
size, porosity, and angularity greater than fine sand (NA) [74]. The ACBFS aggregates
have larger grains than (NA) and higher porosity. After 24 h of immersion in water, the
absorption coefficient was 10% higher in ACBFS aggregates compared to NA, the results in
Table 2. Due to the crushing process, the angularity is higher in ACBFS aggregates than
in NA. The larger grain size, shape, and porosity of ACBFS aggregates compared to NA
lead to higher water absorption, in agreement with NA [75]. To avoid early shrinkage
and reduction of freeze-thaw resistance, the slag aggregates must be brought to the SSD, a
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saturated state with the dry surface at the time of concrete preparation, as well as the use
of a water-reducing admixture and an air-entraining admixture [76], conditions met in the
laboratory for the compositions in this experiment.

4.2. Tensile Strengths by Bending and Compression

The tensile strength results show acceptable values between 3 and 6% for CoV and
deviations between 0.19 and 0.35 MPa, of max. 6.06% for SD. For the compressive strengths,
the coefficient of variation (CoV) of 4.65 MPa and the standard deviation (SD) of 0.6% with
the highest value was recorded for the control composite S414. It can be appreciated that
the dispersion of the results in Table 6 has a reasonable quality in a range from 1 to 6%,
below the allowed limit of 15%, indicated in the paper [77].

Figure 5a presents the diagram of the tensile strengths at the age of 150 days and
the evolution coefficients related to the reference resistances at 28 days. There is a more
pronounced growth in the control composite S360 (1.23) and the composite with the furnace
slag S54/20 (1.19) compared to the rest of the composites, in which the ratio was within
the range 1.10–1.11. The decrease in tensile strength of the composite S414 (5.77 MPa)
and S54/40 (5.78 MPa) has been largely influenced by the increase of shrinkage, caused
by the superficial microcracking that develops especially at high cement dosages [32]. In
Figure 5b, it is observed in the composites with high dosage of cement 414 kg/m3 a decrease
in tensile strength with the increase of contraction, the function of the power between the
two features registered a very good correlation coefficient (R2 = 0.98), confirming results
also found in the paper [78]. Substitution (NA) with aggregate ACBFS led to increased
tensile strength in the composite S54/20 (6.57 MPa) and S54/60 (6.31 MPa). The use of
aggregate (ACBFS) increased adhesion to cement paste and tensile strength, because the
asperities of the crushed aggregate surface are greater than those of NA [76].
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Figure 5. (a) The tensile strengths at 150 days and evolution coefficients from 28 to 150 days; (b) the
relationship between contraction and tensile strength at 150 days; (c) compression strength at 480 days
and evolution coefficients from 28 to 480 days.

Figure 5c presents the compression resistance diagram and evolution coefficients
related to the reference resistances at 28 days. The highest compression resistance is
observed for composite S54/60, closer for S54/20, and lower for S54/40, but the values
registered are above the level of the control composites S360 and S414, at the age of
480 days. As expected, the evolution coefficients of mechanical resistances at the age of 480
are higher than those at 150 days compared to the reference attempts at 28 days. According
to other studies, compression resistances have improved considerably after the age of
56 and 90 days of hardening for the concrete that contained GGBS. The improvement of
compression resistances is attributed to the pozzolanic reaction of GGBS, which continues
gradually compared to hydration (OPC) [79–81].
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4.3. Corrosion Resistances in Carbonation

The photo images in Figure 2a,b show that the samples were not affected by the
carbonation up to the age of 480 days, as the color of the indicator solution (red-purple)
remained uniform throughout the surface of the cement stone, from the inner region to the
outer edges of the samples. These results suggest that the diffusion of carbon dioxide has
not occurred in the cement matrix, a phenomenon prevented by the compactness of the
concrete cement stone [37,82].

4.4. Characterization of the Microstructure of Road Concrete
4.4.1. X-ray Diffraction

Albite (Ab) is a component of the plagioclase feldspar family, which is often present in
the siliceous mineral aggregates that make up concrete [83] and in cement-based mortars
containing recycled fine aggregates [84]. Ab is the major crystalline component for compos-
ites with blast furnace slag S54/20, S54/40, and S54/60, while for the control samples S360
and S414, quartz (SiO2) becomes the main crystalline phase. The C-S-H product, which
influences the increase of mechanical resistance and impermeability [76,85], registers a
high frequency for the S54/20 and S54/60 composites, a reduced frequency for the control
(S360 and S414) compositions, and a low frequency for the S54/40 composite (Table 7).
This evolution is consistent with the mechanical resistance results presented above. The
CH product does not influence the mechanical resistances, but the addition of SCM in the
cement paste can form additional C-S-H [86]. The ettringite (C-A-S-H) affects concrete
structures due to the formation of secondary ettringite, which is expansive within the
material [87]. After a longer curing period, the products (CH and C-A-S-H) display lower
frequency. It is known that the presence of the amorphous phase leads to the development
of a high pozzolanic activity [88]. The amorphous phase presented as the difference from
the crystalline phase suggests the highest pozzolanic activity in the composites S54/20 and
S54/60, followed by S54/40, all being above the level of control samples S414, a possible
explanation being the addition of GGBS (Figure 6a). The slag (GGBS) reacts slowly in
the presence of water but becomes reactive in the presence of calcium hydroxide (CH)
in the pore solution of hydrated Portland cement [76]. For the same cement dosage, the
compressive strengths increase with the decrease of the crystalline phase according to a
second-order polynomial relationship, having a very good correlation coefficient (R2 = 0.96)
(Figure 6b).
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Figure 6. (a) The crystalline and amorphous phase content at 480 days of age: (b) Relationship
between compressive strength and crystalline phase of S414, S54/20, S54/40, S54/60 samples at
480 days.

4.4.2. Measurements with Electronic Microscopy with SEM-EDX Scanning

The topography, pore size, and morphology of S360, S414, S54/20, S54/40, and
S54/60 samples at advanced age (480 days) were studied by SEM-EDX and are shown
in Figure 7. For a more complex characterization of the pore structure, some authors use



Materials 2023, 16, 3332 12 of 21

methods such as mercury intrusion porosimetry (MIP) and fractal dimensions [89–91]. Still,
for this work, the SEM technique was used because it provides information about the
surface structure and several information about the porosity of the sample up to the mini-
mum size at which one can be identified. As can be observed, their surfaces are irregular
and inhomogeneous with large pores characteristic of air holes (>several µm) [92]. The
presence of several characteristic mineral phases can be observed. Figure 7a–e show higher
magnification images of examined samples, giving more information about the structure
on the surface of the sample. S360 (Figure 7a) has large pores filled with ettringite needles
and calcium hydroxide platelets [93,94]. With increasing Portland cement content, S414,
the presence of well-defined portlandite crystals [94] can be observed at high magnification.
In the case of S54/20 and S54/40, the addition of slag leads to a decrease of portlandite
crystals, on the surface of which only small crystals can be observed. For S54/60, the den-
dritic growth of CaCO3 [94] can be observed in addition to the calcium hydroxide platelets.
SEM analysis is consistent with XRD patterns showing maximum peaks for portlandite at
S360 and S54/60.
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Figure 7. SEM images of (a) S360; (b) S414; (c) S54/20; (d) S54/40; (e) S54/60.

Knowing that the pore radius and spacing demonstrate the samples’ compactness, a
comparison was made using the data in Table 8 and Figure 8a–e. The smaller pore radius
(characteristic of air holes) is for samples S360 and S54/60 which show the highest content
of portlandite crystals. The highest spacing between pores was obtained for S54/20, which
shows the lowest content of portlandite crystals. The results indicate a correlation between
the samples’ compactness and the portlandite crystals’ content. Portlandite being the most
soluble constituent, it is the easiest to wash with water, it affects the cement stone through
corrosion. The presence of a higher portlandite content in S360 and S54/60 results in
smaller pores located at smaller a distance between them and thus a higher pore density.
A lower quantity of portlandite content is observed in S54/20 which has higher pores at
higher distance between them.
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For all samples except S414, the predominant element besides oxygen is calcium. The
results obtained for S414 indicate an inhomogeneity of the sample, with areas with many



Materials 2023, 16, 3332 17 of 21

portlandite crystals and areas with small amounts of calcium, with the formation of silicon
structures.

The ratio Ca/Si shows different variation:

• for S360 and S414, the values are below a value of 0.66 [95,96]. This indicates the
formation of other silicate phases in the samples.

• for S54/20 and S54/40, the values are in the interval of values indicating the presence
of different forms of C-S-H in the samples [95,96];

• for S54/60, the value of 12.86 indicates the presence of a majority of calcium-based
structures.

5. Conclusions

In this paper, the performance of road concretes with GGBS and ACBFS were evaluated
in the long term up to the age of 150 and 480 days. The results obtained from the evaluation
of the contraction and the tensile strength at the age of 150 days, of the compression,
carbonation, and microstructure characterization by the degree of crystallinity and the
mineralogical composition at the age of 480 days lead to the following conclusions.

Up to the age of 480 days, the road concrete composites were not affected by carbona-
tion corrosion.

XRD-SEM-EDX analysis suggests the lowest content of portlandite crystals for the
S54/20 composite.

Very good compactness and low portlandite content result in the best corrosion resis-
tance for the S54/20 blend.

The compressive strengths recorded the highest values for the compositions S54/20,
S54/40, and S54/60.

The reaction products of the tobermorite group (C-S-H) as well as albite and quartz
content were the main phases for the S54/20 and S54/60 composites with obtained the best
mechanical strengths.

The reduction of the water-to-binding ratio as well as the grinding fineness of the GGBS
powder diminishes the contractions in the slag mixtures compared to the control samples.

The reduction of hardening contractions positively influenced the tensile strength by
bending to the composites S54/20 and S54/60 compared to the control composite S414.

Using crushed aggregate (ACBFS) with higher asperities than sand led to increased ten-
sile strengths in S54/20 and S54/60 composites due to higher adhesion to the cement paste.

For the S54/20 and S360 composites, due to the decrease of contractions in the hard-
ening process, there were the largest increases in bending tensile strengths at 150 days
compared to 28 days.

For the same dosage of binder, the value of shrinkage during hardening decreased by
32.02% in the S54/20 composite and by 27.53% in the S54/60 composite compared to the
control mixture S414 at the age of 150 days.

For the control composites, the main phase was quartz, while for the S54/40 composite
it was albite. The addition of GGBS indicated a change in the morphology of the cement
paste, favoring the formation of hydration product (C-S-H) for S54/20, S54/40, and calcium-
based structures for S54/60.

The results presented in this paper contribute favorably to the opportunity and neces-
sity of using road concrete containing blast furnace slag.

Future research should focus on the realizing of experimental concrete sectors with
blast furnace slag subject to monitoring under the combined effect of temperature variations,
traffic and chemical actions.

Last but not least, it is necessary to study the variation of the elasticity module in the
case of slag road concretes as well as the opportunity to use other green materials that can
reduce the carbon footprint, while maintaining the physical and mechanical properties at a
high level.
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