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Abstract: The review summarizes the fabrication, microstructures, and sensor applications of highly
ordered electrospun nanofibers. In the traditional electrospinning process, electrospun nanofibers
usually have disordered or random microstructures due to the chaotic oscillation of the electrospin-
ning jet. Different electrospinning methods can be formed by introducing external forces, such as
magnetic, electric, or mechanical forces, and ordered nanofibers can be collected. The microstructures
of highly ordered nanofibers can be divided into three categories: uniaxially ordered nanofibers,
biaxially ordered nanofibers and ordered scaffolds. The three microstructures are each characterized
by being ordered in different dimensions. The regulation and control of the ordered microstruc-
tures can promote electrospun nanofibers’ mechanical and dielectric strength, surface area and
chemical properties. Highly ordered electrospun nanofibers have more comprehensive applications
than disordered nanofibers do in effect transistors, gas sensors, reinforced composite materials and
tissue engineering. This review also intensively summarizes the applications of highly ordered
nanofibers in the sensor field, such as pressure sensors, humidity sensors, strain sensors, gas sensors,
and biosensors.

Keywords: electrospun nanofibers; highly ordered; sensor application; fabrication; microstructure

1. Introduction

Nanomaterials have at least one dimension at the nanoscale. Nanomaterials consist
of zero-dimensional nanoparticles and quantum dots, one-dimensional nanofibers and
nanotubes, two-dimensional nanosheets and nanofilms, and a three-dimensional archi-
tecture [1–3]. Nanofibers have received particular attention for their many properties,
including their large surface area, porosity, ease of manufacture, good chemical, physical
and mechanical properties, flexibility, and possible control over morphology [4–8]. Up to
now, there have been various nanofiber fabrication technologies, such as drawing [9,10],
spinning [11], coating [12,13], printing [14,15], etc. Electrospinning is one of the most em-
ployed techniques in the current strategies for fabricating nanofibers [16–19]. On the other
hand, the nanostructure has high effect on the properties of nanomaterials. Well-controlled
and highly-ordered nanostructures could contribute to promoting the performance of
functional nanomaterials [20–22].

Figure 1 shows the various microstructures of electrospun nanofibers. Nanofibers
fabricated by electrospinning have small diameters, highly long lengths, large surfaces
per unit mass and small pore sizes. Nanofibers can be obtained in various forms, such
as uniaxially and biaxially ordered fibers [23], ribbon-like fibers [24], multi-hole fibers,
necklace-like fibers [25], reticular fibers, hollow fibers, coaxial fibers [26] and multi-channel
fibers [27,28]. In most cases, the microstructures of nanofibers fabricated by electrospinning
are disordered because of the chaotic oscillation of the electrospinning jet. However, highly
ordered nanofibers such as those in Figure 1a,b can be contained by improving the tradi-
tional electrospinning method. Depending on their differences in dimensionality, ordered
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nanofibers can be divided into three types. The first is uniaxially ordered, characterized
by a structure in which the fibers are ordered in one dimension. The second is biaxially
ordered, characterized by the ordered arrangement of fibers in two dimensions. The final
one is the ordered scaffold, which is ordered and neatly aligned in all three dimensions.
They also differ in their properties. Biaxially ordered fibers have the advantages of ordered
fibers in more dimensions than uniaxially ordered fibers. They also differ in their prop-
erties. Uniaxially ordered fibers have the best mechanical and electrical properties in the
fiber direction, while biaxially ordered fibers have more acceptable properties in both the
longitudinal and transverse directions [23]. Klabukov et al. [29] prepared a triple-layer
bile duct scaffold with an inner layer of polycaprolactone (PCL) and an outer layer of a
copolymer of D,L-lactide and glycolide or a copolymer of L-lactide and ε-caprolactone
using electrospinning. They found experimentally that the transverse and longitudinal
strength of the multi-layer tubular scaffold was comparable to that measured for decellu-
larized bile ducts. This demonstrates the unique property of electrospun scaffolds with
predictable mechanical properties.
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Figure 1. Various microstructures of electrospun nanofibers: (a) uniaxially ordered fiber, (b) biaxially
ordered fiber, (c) ribbon-like fiber, (d) multi-hole fiber, (e) necklace-like fiber, (f) reticular fiber,
(g) hollow fiber, (h) coaxial fiber, and (i) multi-channel fiber. Reproduced with permission from
ref. [28].

Different types of ordered fibers have their unique advantages in different fields.
Uniaxially ordered nanofibers are the most common and have many applications among
ordered nanofiber microstructures. Xia et al. [30] combined electrospinning and annealing
to prepare uniaxially ordered Ba0.8SR0.2TiO3 (BST) nanofiber arrays. The humidity sensor
made from this uniaxially ordered fiber array exhibited fast response recovery character-
istics at room temperature, which demonstrates the potential application of the sensor in
detecting environmental humidity. The biaxially ordered structure has a unique advantage
in air filtration. Cheng et al. [31] prepared electrospun nanofiber membranes with excellent
spinning performance, hydrophobicity and polyacrylonitrile (PAN) stability. They con-
structed disordered nanofiber membranes, standard-ordered nanofiber membranes and
cross-ordered nanofiber membranes, verifying that the ordered structure can significantly
reduce the pressure drop of fiber membranes while maintaining filtration efficiency. In
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the cross-ordered model, the staggered orientation of the pores not only facilitates airflow
but also traps particles more effectively, resulting in a high filtration efficiency of 63% and
an intermediate pressure drop of 65 Pa. In supercapacitor applications, the ordered large
mesopores formed by the cross-stacking of nanofibers facilitate ion transport and electrolyte
penetration and retention [32,33]. Ordered scaffolds can mimic specific morphologies of
collagen scaffolds in specific tissues. Alexander et al. [34] fabricated highly ordered colla-
gen nanofibers for scaffold production using direct-write electrospinning. Collagen single
fibers with high linearity and controlled fiber placement were obtained by adjusting the
acetic acid concentration, relative humidity and voltage. The results demonstrated that
the constructed ordered scaffolds could be applied to prepare electrospun pure collagen
scaffolds with a specific morphology. Zhang et al. [35] used melt electrospinning writ-
ing to fabricate spatially heterogeneous scaffolds with well-defined, non-uniform pore
properties and proposed a comprehensive analytical model to design and analyze spa-
tially heterogeneous scaffolds. The results demonstrate the potential applications of the
novel MEW heterogeneous scaffolds serve as multiplex biological platforms to study the
structure–function-biological cell performance.

The Increased orderliness of electrospun nanofibers will improve the fibers’ mechan-
ical strength, dielectric strength, surface area and chemical properties. Isaac et al. [36]
discovered improvements in mechanical and dielectric strength with nanofibers with an
increased degree of order. Improvements in molecular orientation [37] and system configu-
ration for improved performance due to fiber elongation around the rotating mandrel [38]
can affect mechanical and dielectric properties. Liu et al. [39] used electrochemical methods
to analyze dye adsorption on vertically ordered carbon nanofiber arrays coated with TiO2
nanoneedles in dye-sensitized solar cells. The experimental results show that vertically
ordered nanostructures have a surface roughness of 90.6, which can provide a larger effec-
tive surface area for dye adsorption. Liu et al. [40] spun PCL nanofibers onto polyglycolic
acid microfibers by the electrospinning method to obtain a core–shell fiber structure with
controllable surface morphology. They characterized the hydrophilicity of the synthesized
core–shell structure. The results show that the monoaxially ordered PCL nanofiber-coated
yarn had higher hydrophilicity due to the introduction of a layer of aligned PCL nanofiber
shells onto the polyglycolic acid yarn core.

There are some property differences between highly ordered nanofibers and poorly
ordered nanofibers. Cheng et al. [41] investigated the effect of matrix viscosity on the
arrangement of multi-walled carbon nanotubes and the physical properties of high-density
polyethylene/multi-walled carbon nanotube composite nanofibers prepared by co-extrusion
of nanolayers. The results show that the highly ordered density polyethylene/multi-walled
carbon nanotube composite nanofibers have higher decomposition temperatures and better
mechanical properties. However, because three-dimensional (3D) networks are easily
formed, poorly ordered nanofibers have higher electrical and thermal conductivity.

Nanofibers fabricated by electrospinning have been the ideal candidates for the energy
and environment [42], wound healing [43,44], drug delivery [45,46], wastewater treat-
ment [47], sensors [48] and air filtration [49] due to their high surface area-to-volume
ratios. Especially, highly ordered nanofibers are very useful when they are used in ap-
plications such as field effect transistors [50], gas sensors [51], reinforced composite ma-
terials [52] and tissue engineering. Lin et al. [50] fabricated ordered nanofiber using
poly(3-hexylthiophene)-graphene composite materials and produced field effect transistors.
The results show that the geometry of ordered nanofibers can reduce the aggregation of
graphene and thus improve carrier mobility. At the same time, the carrier mobility of field
effect transistors made of ordered nanofibers is an order of magnitude higher than that of
spin-coated-film field effect transistors. The mobility of ordered nanofibers’s field effect
transistors is 1.82 cm2 V−1 s−1, and the mobility of spin-coated-film field effect transistors
is 0.1 cm2 V−1 s−1. This result proves that ordered nanofibers can improve charge transfer
efficiency and thus improve electrical properties in electronic devices such as field effect
transistors. Wang et al. [51] spun highly ordered parallel nanofiber arrays of polyvinyl alco-
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hol (PVA) by electrospinning and produced a gas sensor to detect NO2. The experimental
results show that compared with the sensor made of disordered PVA nanofibers, the mini-
mum detection concentration of ordered nanofibers is reduced by one-third. Meanwhile,
the response and recovery time of the sensor with ordered nanofibers is 350 times and
130 times faster than those with disordered nanofibers, respectively. Ji et al. [52] prepared
PAN composite nanofiber sheets with high orientation by electrospinning and hot stretch-
ing. The tensile strength and modulus of ordered PAN nanofiber sheets are 320.7% and
204.5% of those of disordered nanofiber sheets. Shao et al. [53] prepared novel scaffolds
composed of multi-layer nanofiber fabrics by weaving nanofiber yarns with polylactic
acid (PLA) and quercous serrata silk protein. The yarns were prepared by electrospinning.
The results showed that the scaffolds had a high Young’s modulus and tensile strength,
which could reach 417.65 MPa and 180.36 MPa, respectively, and were two to four times
higher than those of non-woven fabrics under the same conditions. Therefore, the scaffold
has a bionic structure, excellent mechanical properties and good biocompatibility, and has
potential applications in bone tissue engineering.

Nanofibers can be easily functionalized to provide additional properties in various
fields. Figure 2 shows two methods of nanofibers functionalization. The first method is
direct incorporation. This method introduces the new molecule into the original solution
to prepare a new blended solution. Then, the combined solution is used as a precursor
to fabricate the modified nanofiber by electrospinning. The second method is surface
modification. In this method, the nanofiber is spun by electrospinning first. Then, the new
molecule is modified on the surface of the nanofiber to prepare modified nanofibers [54].
The direct incorporation method can make the new molecules more evenly distributed in
the fiber, while the surface modification method only allows the new molecules to stay on
the surface.
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Various compounds can be used for nanofiber modification, such as polymers, nanoparti-
cles, organic compounds and dyes, carbon nanomaterials and biomolecules [4]. Biomolecules
have a larger surface area and porous structure than microscale materials do. Therefore, the
capacity of biomolecule immobilization is increased, and biomolecules perform better than
sensors [55]. For nanofiber scaffolds, proper surface functionalization improves intercellular
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adhesion and proliferation [56]. Functionalized synthetic scaffolds are effective at improving
the physiological relevance of tissue-engineered grafts. Klabukov et al. [57] prepared flat
microfibrous PCL scaffolds by emulsion electrospinning and introduced the pCMV-VEGF-165
plasmid into the microfibers. The experimental results showed that the functionalization
of PCL by adding the pCMV-VEGF-165 plasmid improved vascularization within 33 days
after implantation.

Each of the two methods of nanofiber functionalization has its advantages and disad-
vantages. The experimental procedure is more straightforward for the direct incorporation
method, and the fibers are easier to prepare. The direct incorporation method enables
the homogeneous blending of organic polymeric and functional materials. However, this
method needs to overcome several factors in fabricating sensors, such as issues of ag-
gregation and stability over the time/temperature/experimental process, quenching of
fluorescence, and analyte diffusion into the nanofibers [4]. For the surface modification
method, because a large surface area enhances the interaction with the analyte, leading
to more sensitive detection, surface functionalization methods have better prospects for
sensing applications. Additionally, the functionalized materials are distributed on the
surface of the nanofibers. Nanofibers prepared by this method are able to achieve certain
special functions, such as hydrophobicity [58].

Although some of the literature has summarized nanostructures for sensor-related
applications, few articles specifically review highly ordered nanostructure arrays for sen-
sors. Highly ordered nanofibers are widely used in the field of sensors because of their
strong axial electron transport capacity and larger effective specific surface area. Here,
we aim to summarize a series of ordered nanostructured arrays and their applications
in various sensors. This review summarizes the current progress in electrospinning for
fabricating highly ordered nanofibers. The multiple electrospinning technologies and their
principles of forming highly ordered nanostructures are reviewed first, and then the sensor
applications of highly ordered nanofibers are introduced.

2. Electrospinning Methods for Forming Highly Ordered Nanofibers

Figure 3 shows the schematic diagram of typical electrospinning devices used to
fabricate normal nanofibers. A typical electrospinning device includes three units: a high-
voltage power supply, a propulsion unit, and a receiving unit. Among them, the propulsion
unit includes a plastic syringe and syringe pump. The receiving unit is usually a fixed metal
plate or rotating shaft [59]. The syringe is filled with a polymer solution or polymer melt.
When a static voltage of a dozen or even tens of kilovolts is applied to the needle connected
to the positive terminal and the collector connected to the negative terminal, a conical
droplet is formed at the needle. The conical droplet is called a “Taylor cone”. When the
applied voltage exceeds a critical value, the electrostatic field force on the polymer solution
becomes greater than the surface tension of the solution. The charged jet is then ejected
from the Taylor cone and collected on the negatively charged collector. The volatilization
of the polymer solvent and the solidification of the polymer melt are the leading causes
of instability in polymer jets. The charged jet is ejected in very fine fibers by the force of
the electric field. Jets move in a spiral and are deposited on the surface of the collector to
obtain nanofibers [55].

Many parameters need to be paid attention to in the process of electrospinning which
will affect the quality of nanofibers—for example, polymer molecular weight and solution
concentration, applied voltage, spinning distance and external environment. Changes in
temperature and humidity in the external environment are also significant. After spinning,
nanofibers are characterized in many ways. Their morphology is characterized by X-
ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron
microscopy (TEM). XRD is mainly used to test the degree of crystallization of the sample.
SEM is used to obtain the microscopic morphology of nanofibers, and TEM is used to
observe the microscopic morphology with a high resolution. Performance characterization
is mainly a test of mechanical properties and electrical properties.
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The approach to designing highly ordered nanofiber materials is to introduce ex-
ternal forces to counteract the bending jet’s instability. Highly ordered nanofibers can
be easily fabricated by improved electrospinning by introducing external forces, such
as magnetic [60], electric [23,61], and mechanical forces [62,63]. Additionally, some pa-
rameters in the electrostatic spinning process can also affect the alignment of the fiber.
Paskiabi et al. [64] quantitatively determined the effect of four electrostatic spinning param-
eters on PCL/polycaprolactone nanofiber alignment by the artificial neural network. The
results showed that concentration and working distance have little effect on fiber alignment,
while applied voltage and drum speed are the critical parameters for nanofiber alignment.
More highly ordered nanofibers will be obtained when the applied voltage or the drum
speed is increased. However, it is worth noting that to obtain the best nanofibers, as long as
one of the parameters is at its maximum value, the other should not be too large. It has also
been found that as the drum speed increases, the nanofiber’s alignment increases while its
average diameter decreases [65].

2.1. Directing Writing Melt Electrospinning with Controllable Platform

Currently, most of the polymer fibers produced by melt electrospinning technology
exist in the form of disorderly non-woven fabrics, which limits the application of elec-
trospinning technology in ordered structures. Li et al. [66] reviewed the application of
electrospinning technology in tissue engineering scaffolds and proposed that using elec-
trospinning and rapid prototyping technology to obtain tissue engineering scaffolds with
optimized orientation is a significant development direction of electrospinning technology.
Liu et al. [67] introduced the controllable forming platform to electrospinning technology
and explored the influence of process parameters such as nozzle moving speed, spinning
voltage and receiving distance on fiber deposition characteristics using a direct writing
melt electrospinning molding device. Still, the specific mechanism of action needed to be
studied more in-depth.

Chen et al. combined melt electrospinning technology with a 3D motion platform
and used a self-designed melt electrospinning controlled-forming experimental device
to conduct the direct writing melt electrospinning of PCL and obtained highly ordered
nanofibers. Figure 4 shows the schematic diagram of directing writing melt electrospinning
with the controllable platform, which mainly includes a screw, barrel, single-needle nozzle,
controllable receiving panel and battery lead plate. The motion control system uses me-
chanical force to control the movement of the single-needle nozzle in the X–Y plane. The
receiving plate can be raised and dropped to control the Z direction, which can quickly
realize the control of the spinning distance and the molding of the 3D-ordered structure.
Conventional melt electrospinning techniques are challenging to use to form highly ordered
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fibers. However, highly ordered nanofibers can be easily fabricated by combining melt
electrospinning technology with a 3D motion platform [68].

Materials 2023, 16, x FOR PEER REVIEW 7 of 31 
 

 

Chen et al. combined melt electrospinning technology with a 3D motion platform 

and used a self-designed melt electrospinning controlled-forming experimental device to 

conduct the direct writing melt electrospinning of PCL and obtained highly ordered nan-

ofibers. Figure 4 shows the schematic diagram of directing writing melt electrospinning 

with the controllable platform, which mainly includes a screw, barrel, single-needle noz-

zle, controllable receiving panel and battery lead plate. The motion control system uses 

mechanical force to control the movement of the single-needle nozzle in the X–Y plane. 

The receiving plate can be raised and dropped to control the Z direction, which can 

quickly realize the control of the spinning distance and the molding of the 3D-ordered 

structure. Conventional melt electrospinning techniques are challenging to use to form 

highly ordered fibers. However, highly ordered nanofibers can be easily fabricated by 

combining melt electrospinning technology with a 3D motion platform [68]. 

 

Figure 4. Schematic diagram of directing writing melt electrospinning with the controllable plat-

form. Created with BioRender.com. Accessed on 10 April 2023. 

Figure 5 shows SEM images of highly ordered PCL fibers fabricated by directing 

writing melt electrospinning with a controllable platform at different voltages and mov-

ing speeds. In attempting to focus the deposition of the electrospun nanofibers to obtain 

highly ordered nanofibers, a general study has been conducted [69]. When electrospin-

ning is used in the direct writing mode, the polymer jet does not undergo significant buck-

ling instabilities. At the same time, the nanofiber can be drawn by the controllable plat-

form or spinneret to obtain finer fibers. 

 

Figure 5. SEM images of highly ordered PCL fibers fabricated by directing writing melt electrospin-

ning with a controllable platform at different voltages and moving speeds: (a) 15 kV, 500 mm/min; 

(b) 20 kV, 700 mm/min; (c) 25 kV, 900 mm/min; (d) 30 kV, 1200 mm/min. Reproduced with permis-

sion from ref. [69]. 

Figure 4. Schematic diagram of directing writing melt electrospinning with the controllable platform.
Created with BioRender.com. Accessed on 10 April 2023.

Figure 5 shows SEM images of highly ordered PCL fibers fabricated by directing
writing melt electrospinning with a controllable platform at different voltages and moving
speeds. In attempting to focus the deposition of the electrospun nanofibers to obtain highly
ordered nanofibers, a general study has been conducted [69]. When electrospinning is
used in the direct writing mode, the polymer jet does not undergo significant buckling
instabilities. At the same time, the nanofiber can be drawn by the controllable platform or
spinneret to obtain finer fibers.
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sion from ref. [69].

Figure 6 shows the SEM images of a melt electrospun PCL scaffold with highly ordered
microstructures [70]. It indicates that melt electrospinning with a controllable platform or
spinneret has excellent potential to fabricate 3D-ordered and other-ordered microstructures.

Lee et al. built and used the melt electrospinning system to fabricate highly ordered
nanofibers. Figure 7g shows the schematic image of the melt electrospinning setup. The
melt electrospinning system comprises a metal wire with a high voltage, a heating chamber,
nozzle, heater, thermocouple vision system and substrate. Figure 7h shows the in situ image
of the electrospinning process. The constructed film is a narrow vertical wall fabricated by
polyether block amide melting. The Taylor cone formed by the tip of the spun fiber can be
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seen clearly from the magnified image. There are two velocities in the picture; one is the
velocity of the jet (VJ), and another is the velocity of the collecting substrate (Vc). Different
microstructures can be obtained by adjusting the speed of the two velocities [71].
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from IOP Publishing Ltd., copyright 2018.

The different structures of the spun fiber under different velocities are shown in
Figure 7. To obtain highly ordered nanofiber, VC should be faster than VJ. When VJ is faster
than VC, the redundant polymer will deposit the narrow vertical wall, and it will cause a
disordered structure.

It has been found that for direct writing melt electrospinning technology, the effect
of increasing voltage on fiber diameter is not apparent due to the short receiving distance
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and the short action time of the electric field in fiber elongation refining. In the direct
writing melt electrospinning process, the matching nozzle’s moving velocity and jet falling
velocity are the key to the orderly deposition of fibers. With the increase in the receiving
distance, the whipping section of the jet is introduced, and the fiber order worsens. The
fiber deposition morphology is the best when the receiving distance is 3 mm. The falling
velocity of the jet increases with an increase in voltage. However, when the voltage is too
high, the jet whips too much under the action of the electric field force, and the ordered
fiber cannot be obtained.

2.2. Magnetic-Field-Assisted Electrospinning

Electrospinning itself is an uncontrollable technology. Due to the influence of various
factors in the spinning process, jet whipping is intense and unstable, so the nanofibers
prepared by ordinary electrospinning are mostly randomly arranged non-woven fibers.
Magnetic field-assisted electrospinning has attracted much attention because of its ability
to produce large-area-oriented fibers.

Wang et al. [60] used magnetic field-assisted electrospinning to prepare TiO2 nanofibers/
nanotubes, ordered semiconductor materials, and studied their photocatalytic performance.
Due to the introduction of the magnetic field, the band gap of TiO2 nanomaterials was
reduced, and the contact with organic pollutants was more adequate, thus improving photo-
catalytic performance. The schematic diagram of a magnetic field-assisted electrospinning
device for forming highly ordered nanofibers is shown in Figure 8e. This method uses a
magnet’s polarity to control the electric field’s distribution in an electrospinning system.
The experimental results show that the bending instability of the charged liquid jet can be
effectively controlled by placing magnets on both sides of the fiber formation path, thus
producing highly ordered nanofibers.
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Figure 8. SEM images of (a) disordered TiO2 nanofibers, (b) ordered TiO2 nanofibers, (c) disordered
TiO2 nanotubes and (d) ordered TiO2 nanotubes. Reprinted from ref. [60] with permission from
Elsevier Ltd. and Techna Group S.r.l., copyright 2019. (e) Schematic diagram of magnetic-field-
assisted electrospinning device for forming highly ordered nanofibers. Created with BioRender.com.
Accessed on 10 April 2023.

The prepared nanofibers of various structures were observed using SEM. In Figure 8a,c,
the nanofibers and the nanotubes look disordered and smooth. The samples are highly
ordered in Figure 8b,d because of the addition of a magnetic field. The highly ordered nano-
materials have a fewer smooth surfaces and longer lengths than the disordered nanomaterials
do. These particular surface morphologies can provide more active sites. According to the
above results, it can be concluded that the technique of preparing ordered TiO2 nanomate-
rials by magnetic-field-assisted electrospinning is mature and is expected to be extended to
other materials.
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2.3. Electrospinning with Parallel Electrode Method

The two main ways to obtain highly ordered nanofibers are used to improve the
collection apparatus. One way is to use a rotating collector, which is grounded [51,52],
and another is to use the parallel electrode method [72–75]. The parallel electrode method
fabricates ordered nanofibers using two stationary and separated conducting electrodes.
The parallelly placed auxiliary electrodes can generate a symmetrical auxiliary electric
field that can dampen the bending instability of the electrospinning jet perpendicular to
the direction of alignment to enable aligned deposition. When the nanofibers fall, they
are subjected to an electric force from the parallel electrodes. Additionally, then, they are
collected between the two electrodes. Nevertheless, the degree of order of the nanofibers
decreases with an increase in the spinning time in the parallel electrode method.

An improved parallel electrode method was reported to solve this problem. This
method is based on the original device but adds two parallel copper rings between the
parallel electrodes and the needles. These two copper rings are positively charged and
connected to the high-voltage device. The new method improves the diameter distribution
of the nanofibers and increases their highest degree of order. The schematic diagram of
this improved parallel electrode method device for forming highly ordered nanofibers is
shown in Figure 9a. The device contains one syringe with one needle, two copper rings,
two high-voltage generators and one parallel-electrode collector. The right high-voltage
generator in Figure 9a is an applied-voltage generator. The positive electrode of the applied-
voltage generator is connected to the needle, and the negative electrode is connected to
the parallel-electrode collector. The high-voltage generator on the left in Figure 9a is a
ring-voltage generator. The positive electrode of the ring-voltage generator is connected to
two copper rings through the copper wire [61].
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Figure 9. (a) Schematic diagram of improved parallel electrode method device for forming highly
ordered nanofibers. SEM image (b) and diameter distribution (c) of the highly ordered nanofibers
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They adjusted the distance from 2 to 8 cm between the two copper rings to obtain
the highest degree of order for the nanofibers. The SEM image (Figure 9b) and diameter
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distribution (Figure 9c) of the highly ordered nanofibers are provided when the distance
between two copper rings is 6 cm. In this condition, the nanofiber has the most uni-
form diameter distribution and highest degree of order, which could be up to 82%. The
results show that this improved parallel electrode method can produce highly ordered
electrospun nanofibers.

Su et al. [23] improved the traditional electrospinning setup to obtain highly ordered
nanofibers. Figure 10a,b shows the photograph and schematic diagram of the electrospin-
ning setup with parallel electrodes, respectively. They added a pair of parallel auxiliary
electrodes and improved the speed of the rotating drum collector. In traditional electro-
spinning, the polymer jet usually exhibits bending instabilities because of the repulsive
forces between the charges carried within the jet. Therefore, the nanofiber fabricated by
traditional electrospinning is mostly disordered and has limited applications.
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Figure 10. Photograph (a) and schematic diagram (b) of the electrospinning setup with parallel
electrodes. SEM images of polyethylene oxide-electrospun nanofibers with different microstructures
(c) disordered nanofiber, (d) uniaxially ordered nanofiber with low density, (e) uniaxially ordered
nanofiber with high density, and (f) biaxially ordered nanofiber. Reprinted from ref. [23] with
permission from Elsevier Ltd., copyright 2012.

Disordered nanofibers fabricated by an improved electrospinning setup are shown in
Figure 10c. Uniaxially ordered nanofibers with different densities and biaxially ordered
nanofibers with different hole sizes can be fabricated by adjusting parameters, such as spin-
ning time, the movement speed and the distance of the platform. Uniaxially ordered fibers
with different fiber densities are shown in Figure 10d,e. Figure 10f shows a biaxially ordered
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nanofiber with a hole size of 1 µm. Mechanical and electrical property tests were conducted
to explore the impact of different structures of nanofibers on their properties. Tensile tests
were conducted on the nanofibers under different load levels. Their tensile strength and
modulus are obtained by analyzing their stress–strain curves. The results show that the
strength of biaxially ordered nanofibers is much higher than that of disordered nanofibers
but slightly lower than that of uniaxial ordered nanofibers. The orderly arrangement of
nanofibers is conducive to forming conductive paths. Uniaxially ordered nanofibers have
the highest electrical conductivity, followed by biaxially ordered nanofibers, and finally by
disordered nanofibers.

2.4. Electrospinning with Parallel Double Thin Plate Collector

Conventional electrospinning can be used to easily fabricate 2D-ordered nanofibrous
structures with finite thickness, but 3D-ordered fibrous scaffolds cannot. Mi et al. developed
a novel electrospinning device to generate 3D-electrospun fibrous scaffolds with highly
ordered nanofibers and controllable thickness. Figure 11a shows the schematic drawing
of the fiber-collecting equipment. The fiber-collecti ng equipment contains a syringe with
a needle, two parallel plates, a high-voltage power supply, a motor box and a bracket.
The clamps fixed two parallel plates to the rotating shaft, and the fibers were collected
between the two thin plates. Figure 11b shows the schematic drawing of the fiber removal
equipment. The fiber removal equipment includes a motor box, grounded wire, square
block and bracket. The motor box supplied power for the square block to move back and
forth between the two parallel plates at a fixed speed. All components of the equipment,
including the fiber-collecting and removal equipment, are shown in Figure 11c. In this
condition, highly ordered nanofibers can be quickly and completely removed and put into
the square block [76].
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Figure 11. Schematic drawing of (a) fiber-collecting equipment; (b) removal equipment; and (c) all
components of the electrospinning equipment. Reprinted from ref. [76] with permission from Elsevier
BV, copyright 2015.

Figure 12a shows the possible distribution of nanofibers in the fiber-collecting equip-
ment. The fibers perpendicular to two parallel plates are ordered fibers, and they were
named a. Other randomly aligned fibers are disordered fibers, and they were named b. The
angle between a and b is α. The fiber alignment degree was analyzed through the degree of
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deviation of the fibers from the standard angle. Figure 12b shows the SEM image of highly
ordered PVA nanofibers. The sample in the picture has the best alignment degree, 76%
of the fibers in the picture are oriented within approximately ±5%, and their diameter is
224 ± 50 nm. The results indicate that this electrospinning equipment is a powerful tool for
fabricating controllable 3D structures.
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2.5. Electrospinning with Conductive Substrate Collector

Because of the bending instability of the high-charge electric jet, the electrospun fibers
are deposited on the surface of the collector (conductive substrate) in the form of disordered
chaos. For a long time, it has been hard to collect these highly ordered nanofibers directly.
Li et al. [77] invented a method that fabricates highly ordered nanofibers and facilitates
deposition or transfers to a solid substrate surface for device fabrication. The schematic
diagram of the electrospinning device is shown in Figure 13A. The device consists of a
power supply, a needle and a collector. The collector comprises two conductive silicon
strips with a void gap between them. By adjusting the width of this gap, various nanofibers
with different lengths from hundreds of micrometers to several centimeters can be ob-
tained. Figure 13B shows the optical micrograph of highly ordered poly(vinylpyrrolidone)
nanofibers fabricated by this electrospinning device. As seen in Figure 13B, the fibers
are orderly arranged in the gap, and their direction is perpendicular to the substrate. In
contrast, the fibers deposited on the substrate surface are disordered. After electrospinning,
the nanofibers can be conveniently transferred to another substrate surface by vertically
moving the substrate. By moving the collector, the position and direction of the interme-
diate fibers can be easily controlled. In this way, the fibers can be spun into a multi-layer
structure layer by layer, with different fibers having different orientations.

Figure 13C shows an SEM image of a 2 × 2 array of crossbar junctions of poly
(vinylpyrrolidone) nanofibers. By adjusting the collection time, the density between
each layer of nanofibers can be more or less controlled. At the same time, people can
deposit a nanofiber in the gap and then transfer it to the patterned electrode to obtain
single fiber-based equipment and manufacturing. Compared with other methods, this
technology has the advantages of simplicity, versatility and directness [77].

Highly ordered Ba0.8Sr0.2TiO3 nanofibers were fabricated by special electrospinning
with calcination. Figure 14a shows the schematic image of the electrospinning device for
one humidity sensor. The unique feature of this device is the collector. The collector is
assembled by mounting two aluminum electrodes on an insulating substrate. Figure 14b
shows SEM diagrams of highly ordered BaχSr1−χTiO3 nanofibers before calcination at
800 ◦C. Before calcination, the nanofiber is smooth and united of a diameter between
300~500 nm. Figure 14c shows SEM diagrams of highly ordered BaχSr1−χTiO3 nanofibers
after calcination at 800 ◦C. After calcination, the surface of the nanofiber became rough, and
the average diameter of the BaχSr1−χTiO3 nanofibers reduced to about 100 nm. This shrink-
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age arises from the evaporation of volatile organic compounds that form Ba0.8Sr0.2TiO3
nanofibers at high temperatures [30].
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Created with BioRender.com. Accessed on 10 April 2023. (B) Optical micrograph of highly ordered
poly(vinylpyrrolidone) nanofibers fabricated by the electrospinning device. (C) SEM image of a
2 × 2 array of poly(vinylpyrrolidone) nanofibers crossbar junctions. Reprinted from ref. [77] with
permission from WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, copyright 2004.
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Figure 14. (a) The schematic image of the electrospinning device for one humidity sensor. SEM
diagrams of highly ordered BaχSr1−χTiO3 nanofibers (b) before and (c) after annealing at 800 ◦C for
2 h. Reprinted from ref. [30] with permission from Elsevier BV, copyright 2012.

This new electrospinning method is improved by separating the traditional collector
electrodes. It enables the simple generation of uniaxially oriented nanofibers with various
compositions and properties. Additionally, it is possible to stack aligned nanofibers into
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multi-layer films with a well-defined hierarchical structure. This novel electrospinning
technique will have potential applications in fabricating nanofiber structures, devices,
and systems.

2.6. Electrospinning with Rotating Drums

Various electrospinning collectors, such as rotating drums, wheels, or parallel plates,
are used to obtain the desired nanofiber orientations. Electrospinning with a rotating
disc that can increase the tensile properties of a single electrospun nanofiber has been
reported [78].

Zhu et al. first demonstrated a method for fabricating permanently polar L-polylactic
acid (PLLA) polymer nanofibers on a comb electrode along the ordered nanofiber axis. This
method is achieved in one step. Figure 15a shows the images of the electrospinning device
for highly ordered piezoelectric PLLA nanofibers. The electrospun solution comprised
0.3 g of PLLA powder and 3 mL of a dichloromethane solvent. The prepared comb
electrodes were fixed on the rotating collector to collect PLLA nanofibers. The disk rotates
at 1800 revolutions per minute (rpm). The nozzle and collector are 10 cm apart. The applied
force comes from injecting a high direct electric field into the PLLA nanofiber polymer
solution. The entire dipole component along the main carbon chain can be arranged by
electrospinning along the nanofiber direction. Figure 15b,c shows the SEM images of
highly ordered PLLA nanofibers at different magnifications. The nanofibers range between
100 nm and 2 µm in diameter [62].
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Figure 15. (a) Images of the electrospinning device for highly ordered piezoelectric PLLA nanofibers.
SEM images of highly ordered PLLA nanofibers (b) 50 µm and (c) 5 µm in diameter. Reprinted from
ref. [62] with permission from Springer Science Business Media New York, copyright 2017.

Electrospun nanofibers’ mechanical properties are determined by the polymer’s molec-
ular orientation and the fibers’ physical orientation. Polymer jets under the effect of an
electrostatic field have high molecular orientation due to the high elongation strain and
shear force [36]. As a result, electrospun nanofibers have higher strength than conven-
tional fibers do. Additionally, the physical orientation of electrospun fibers affects the fiber
strength [79]. In the physical orientation direction, the mechanical strength of nanofibers
is higher.
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Electrospinning with rotating drums is a relatively easy way to obtain ordered nanofibers.
However, to obtain more highly aligned nanofibers, the speed of the drum needs to be
appropriate. The drum surface’s linear velocity should match the solvent’s evaporation rate
so that the fibers are deposited and adsorbed on the drum surface. Randomly oriented fibers
are obtained on the drum at a speed that is less than the fiber pickup speed. In contrast, the
fiber pickup speed can cause the fibers to break at higher speeds, and continuous fibers cannot
be collected.

2.7. Conjugate Electrospinning

Fan et al. successfully prepared one-dimensional heterogeneous nanofibers with
tri-functionality of fluorescence, superparamagnetism and electrical conductivity by the
conjugate electrospinning technique. The fibers were made up of polyaniline (PANI), PAN,
benzoic acid (BA) and phen(1,10-phenanthroline). The results show that heterogeneous
nanofiber yarns possess a larger length-to-diameter ratio and a more uniform diameter than
the homogeneous nanofiber yarns do. At the same time, the nanofibers in heterogeneous
yarns have a higher degree of orientation. Figure 16e shows a schematic drawing of the
conjugate electrospinning equipment. Spinning solution A and spinning solution B are
injected into two syringes fitted with spinnerets. The left spinneret is connected to a
positively charged high-voltage power supply with a copper wire. In contrast, the front
spinneret on the right is connected to a negatively charged high-voltage power supply with
a copper wire. Two plastic syringes are placed symmetrically on either side of the electrical
machine. The copper funnel is connected to a grounded electrical machine that can control
the rotation speed. The applied voltage is adjusted to ±15 kV or so. The distance from the
spinneret’s top to the copper funnel’s side is 10 cm. The collection device, located beneath
a copper funnel, consists of a rotating motor and a metal rod. The lower edge of the funnel
should be 18 cm away from the collecting device. PAN-based continuous nanofibers were
fabricated at a relative humidity of 20 ± 5% and a temperature of 20 ± 5 ◦C [63].
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Figure 16. (a) SEM image of heterogeneous [Fe3O4/PANI/PAN]//[Eu (BA)3phen/PAN] nanofibers.
(b) Diameter distribution histogram of heterogeneous [Fe3O4/PANI/PAN]//[Eu (BA)3phen/PAN]
nanofibers. (c) SEM image of homogeneous [Fe3O4/PANI/Eu (BA)3phen/PAN] nanofibers. (d) Diameter
distribution histogram of homogeneous [Fe3O4/PANI/Eu (BA)3phen/PAN] nanofibers. (e) Schematic
drawing of the conjugate electrospinning equipment. Reproduced with permission from ref. [63].

Figure 16a, b shows the SEM image and diameter distribution histogram of hetero-
geneous [Fe3O4/PANI/PAN]//[Eu(BA)3phen/PAN] nanofibers, respectively. As seen in
Figure 16a, under high-magnification SEM, the nanofibers have a high degree of orientation
and some aggregation of Fe3O4 nanoparticles on the surface. As seen in Figure 16b, the
average diameter of the nanofibers is 508 ± 8 nm. Figure 16c,d shows the SEM image
and diameter distribution histogram of homogeneous [Fe3O4/PANI/Eu(BA)3phen/PAN]
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nanofibers, respectively. As seen in Figure 16c, the homogeneous nanofibers also have a
high degree of orientation and the Fe3O4 nanoparticles are distributed on each nanofiber.
As seen in Figure 16d, the average diameter of the nanofibers is 329 ± 2 nm.

In summary, the conjugate electrospinning method can successfully produce heteroge-
neous nanofibers. Although the heterogeneous nanofiber yarns are twisted, the nanofiber
yarns possess a high degree of alignment and orientation. Additionally, nanofiber yarns
have great potential in the field of gas sensors.

2.8. Other Electrospinning Methods

In addition to improving the collection device, highly ordered nanofibers can be
obtained by a modified method of preparing bundles such as using multi-filament yarn.
Esrafilzadeh et al. studied the crystallization sequence and mechanical properties of
PAN nanofibers by electrospinning and post-processing. To maintain the tension of the
nanofibers during post-processing, an improved method of preparing nanofiber bundles,
such as by using multi-filament yarn, was used to successfully control the arrangement and
linear density of nanofiber bundles. With the increase in the diameter of nanofibers, the
orientation of nanofibers improves obviously. Figure 17A shows the SEM images of highly
ordered PAN nanofiber bundles of a diameter of 240 nm, and Figure 17B shows those of a
diameter of 470 nm. The figure shows some tangles in the nanofibers with fine diameters
but not in the nanofibers with coarse diameters [80].
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copyright 2008.

Li et al. [81] prepared a cellulose nanocrystal–poly(lactic acid) nanocomposite random
fiber mat and ordered-fiber yarn by emulsion electrospinning. They prepared disordered
and ordered fiber mats with drum and disk electrospinning devices. The purpose of
emulsion electrospinning is to prepare nanofibers with core–shell structure. The nanofibers
prepared by this method can improve the encapsulation efficiency of bioactive compounds
to achieve targeted drug delivery.

Electrospinning technology contains both far-field electrospinning and near-field elec-
trospinning abilities. Near-field electrospinning is also called near-field direct writing
technology or electrofluidic printing technology. The near-field direct-write electrospinning
process works on the principle that highly ordered nanofibers can be prepared with the aid
of precision motion control when the spacing between the collection device and the nozzle
is controlled in the range from 0.5 to 5 mm [82]. Mai et al. [83] prepared PCL/CO/UA
composite fibers with highly ordered structures by 3D near-field electrospinning. Cell
proliferation experiments showed that both the PCL/CO/UA composite fibers and the
post-crosslinking PCL/CO/UA composite fibers were non-cytotoxic and promoted cell pro-
liferation and adhesion. This indicates the potential application of PCL/CO/UA composite
fibers fabricated by near-field electrospinning in biomedical settings.
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3. Sensor Application of Highly Ordered Electrospinning Nanofibers

Generally, the receptor and the signal transducer form the sensor are indispensable.
Both are instrumental in contributing to the ultimate performance of the sensor and in
broadening its field of application. There are two major performance indicators for the
sensors: detection performance and signal conduction performance. Both are influenced
by the performance of the nano additives in the system. The detection performance of the
sensor is also referred to as receptor performance. The key performance metrics of highly
ordered nanofibers are different for different sensor applications. Generally speaking, the
degree of order of a nanofiber affects the electron transfer efficiency and thus determines
the sensor’s performance. At the same time, the addition of different materials to the
fiber directly affects its electrochemical performance. In some special cases, such as in
pressure sensors, the diameter of the fiber also affects the sensitivity of the sensor [71]. An
excellent sensor should have high selectivity, a low detection limit and a short response
time. An electrochemical sensor with excellent performance should satisfy the following
three points. First, it should have high selectivity for detectors, i.e., it should be able to
accurately distinguish detectors from non-detectors. Second, an excellent electrochemical
sensor should have low detection limits. We want it to be able to detect even low levels of
detectors. Finally, a good sensor should be able to obtain the detection result as soon as
possible, i.e., it should have a short response time [55].

3.1. Pressure Sensor

Melt electrospinning was reported to produce a thin film made of polyether block
amide. A thin film for resistive pressure sensors can be obtained by arranging the spun
cylindrical fibers in an orderly manner into a narrow vertical wall. The polystyrene
sulfonate 3,4-ethylene dioxythiophenetrodes in the film are coated with poly(3,4-ethylene
dioxythiophene) polystyrene sulfonate. When pressure is applied to the sensor, the contact
area between the electrode and the film changes, this change produces a sensitive current
response, and a range of pressure changes can be detected [71].

Figure 18a shows a schematic drawing of the working principle of the pressure sensor.
The green part represents the periodically ordered electrospun elastic fibers, the blue part
represents the poly (3,4-ethylene dioxythiophene) polystyrene sulfonate-coated conducting
layer, and the dark gray part represents the counter electrodes. Figure 18b shows the simpli-
fied pressure sensor model, and Figure 18c shows the schematic diagram of an equivalent
electrical circuit for the sensor. They assume that coated resistive thin film behaves like an
Ohmic conductor, and that the contact area affects its electrical resistance. The reduced
thickness determines the contact area, which depends on the applied pressure. Figure 18d
shows the multi-touch interface with 36 pixels of the pressure sensor. The proposed sensor
can be integrated into the touch interface of a mobile device (e.g., smartphone).

Figure 19a shows the scanning ion microscopy (SIM) image of highly ordered polyether
block amide nanofibers. The cylindrical microstructure presents a periodically ordered
array and has uniform diameter distribution. Figure 19b shows the magnified SIM image
of highly ordered polyether block amide nanofibers. Each electrospun nanofiber is closely
connected and forms well-adhered interfaces. The diameter of each nanofiber is d, and the
distance between the two nanofibers is λ. The highest point of each nanofiber is named
‘mountain’, and the lowest point between the two nanofibers is named ‘valley’.

Figure 19c shows the current response under the 200 Pa s−1 loading sweep rate con-
dition. The sensor still has high sensitivity and repeatability after 2500 measurements.
Figure 19d shows the pressure sensor’s reversible loading and unloading behaviors un-
der different peak pressures. In Figure 19d, the blue dashed line represents the applied
pressure—the applied pressure has four different peak pressures, which are 1, 5, 20 and
40 kPa. The black line above the blue dash line represents the temporal response of the
pressure sensor with the coating layer, and the black line under the blue dash line rep-
resents it without the coating layer. Comparing the two lines, we can conclude that the
sensor’s sensitivity with the coated film is drastically increased. Figure 19e shows the
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variations of the electrical resistance under various applied pressures. The reciprocal slope
can calculate the different equivalent electrical resistance values of the sensor at different
applied pressures.
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Publishing Ltd., copyright 2018.
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Figure 19. (a) SIM image and (b) magnified SIM image of highly ordered polyether block amide
nanofibers. (c) Current response under the condition of a 200 Pa s−1 loading sweep rate. (d) Reversible
loading and unloading behaviors of the pressure sensor under different peak pressures. (e) Different
values of resistance at different applied pressures. Reprinted from ref. [71] with permission from IOP
Publishing Ltd., copyright 2018.
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This work demonstrates the potential application of this microstructure in pressure-
sensing platforms. The ordered and compressible cylindrical microstructure is expected to
be applied to flexible electronic products and wearable devices in the future.

In the past decade or so, researchers have made tremendous progress in the sensitivity,
response time, and detection limits of pressure sensors. However, piezoelectric pressure
sensors with electrospun nanofibers still face some challenges. (1) poor biocompatibility—
among the current piezoelectric polymers, polyvinylidene fluoride (PVDF) and its copolymers
have the highest piezoelectric performance, but their solvents are all environmentally haz-
ardous; (2) Poor wear resistance—the wear resistance of electrospun nanofiber-based pressure
sensors has not been well-focused and -characterized, though it is an important factor af-
fecting the durability of wearable devices; (3) an immature electrospinning technique—the
current electrospinning technology is not yet able to mass-produce nanofibers to prepare
wearable devices.

Fortunately, electrospinning technology has made great progress in the past 20 years.
The development of needleless electrospinning has significantly increased spinning material
rates and yields. Near-field electrospinning enables the fabrication of neatly aligned fiber
bundles and the construction of novel three-dimensional structures. It is expected that with
the development of electrospinning technology, a new textile industry can be formed in the
future to realize self-powered human health monitoring.

3.2. Humidity Sensor

Xia et al. used electrospinning combined with electrical fabricated BST nanofiber
arrays. Figure 20a,b shows the schematic drawing of electron transmission in disordered
and highly ordered nanofibers. There are two routes for carrier transmission in fibrous
materials. In disordered nanofibers, electrons are mainly transported axially along the fiber.
In ordered nanofibers, electrons are mainly transported both axially and radially. Addition-
ally, due to the radial quantum confinement effect, the carriers are mainly transported in
the direction of the fiber axis. Figure 20c shows the collector device used to collect highly
ordered BST fibers. The collector comprises two pieces of Al and a polymethyl methacrylate
(PMMA) substrate. The gap between the two pieces of Al is 15 mm. Figure 20d shows the
schematic diagram of the humidity sensor [30].
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Figure 20. Schematic drawing of electron transmission in (a) disordered and (b) highly ordered
nanofibers. (c) Collector device used to collect highly ordered BST fibers. (d) Schematic diagram of
the humidity sensor. (e) Response–recovery properties of humidity sensors based on ordered and
disordered fibers. (f) Humidity hysteresis characteristics using the ordered and disordered fibers.
Reprinted from ref. [30] with permission from Elsevier BV, copyright 2012.



Materials 2023, 16, 3310 21 of 30

As seen in Figure 20e, the recovery time of the two materials is almost the same. Still,
the response time of the ordered nanofiber is about 4.5 s faster than that of the disordered
nanofiber. As shown in Figure 20f, the humidity hysteresis of the two fibers is the same.
In conclusion, the response properties of ordered fibers were improved, but the recovery
properties were almost unchanged compared with disordered fibers. The reason is that the
ordered nanofiber array has more vital axial electron transport ability than the disordered
nanofiber array does. Therefore, uniaxial aligned BST nanofibers have great application
potential in preparing efficient humidity sensors.

This work has successfully synthesized uniaxially aligned BST nanofiber arrays. Al-
though the response performance of ordered fibers is better than that of disordered fibers,
there is no significant change in their recovery performance. Special attention needs to
be paid to improving their recovery performance to manufacture more efficient humidity
sensors. Because the synthetic-array humidity sensor shows rapid response and recovery
at room temperature, the sensor is expected to be used to detect indoor humidity.

In addition to testing indoor environmental humidity, humidity sensors have broad ap-
plication prospects in the production of flexible wearable devices. Zhou et al. [84] prepared
ultra-flexible ionic fiber membranes using electrospinning technology. The membrane has
both pressure- and humidity-sensing characteristics and can detect pressure and humidity
simultaneously without them interfering with each other. Such multi-functional sensors
have been successfully fabricated into smart bracelets and masks for pulse, skin mois-
ture and breathing monitoring, which shows that humidity sensors also have potential
applications in healthcare.

3.3. Strain Sensor

Zhu et al. [62] fabricated ordered, porous, piezoelectric PLLA nanofibers on comb
electrodes via electrospinning. During direct current electrospinning, the electric dipole
components on the central carbon chains of PLLA nanofibers can be polarized along
the orientation direction. Figure 21a,b shows the simplified sensor with highly ordered
nanofibers for human joints and tests. Periodic positive and negative accelerations with
bending deformation are applied to the prototype for a periodic reciprocating motion, as
shown in Figure 21c.

Figure 21d, e shows the SEM images of highly ordered PLLA nanofibers on different
scales. PLLA nanofibers can be aligned along a direction because the electric dipole
component along the main carbon chain can be polarized along the alignment direction.
Figure 21f illustrates the relationship between the peak short-circuit current, open-circuit
voltage and deformation angle (θ). Because the peak short-circuit current and open-circuit
voltage have good linearity, the prototype can be used as a strain sensor. Figure 21g
shows the open-circuit voltage after measuring it 2800 times. There is no decline after
the long-term continuous operation, and the PLLA nanofiber prototype is reliable and
durable [62].

In this work, ordered, porous, piezoelectric electrospun PLLA fibers were fabricated
and strain sensors were prepared. The sensor is expected to be applied to the collection
of energy generated during the movement of human joints. However, its maximum peak
power is only 19.5 nW, which is far from that required for practical applications.

Many studies are conducted on preparing nanofibers and making strain sensors
using electrospinning. Various materials with high flexibility and electrical properties are
used, among which polymeric nanomaterials are the most promising. Electrostatically
spun P(VDF-TrFE(Tri fluoroethylene)) nanofiber mats for 3D stress sensors have excellent
sensitivity even at 0.1 Pa. Additionally, the aligned electrostatically spun core–shell P(VDF-
TrFE) nanofibers are nearly 40 times more sensitive than thin-film PVDF-based stress
sensors. PVDF and PVDF copolymer nanofibers produced by electrostatic spinning are
expected to be the most promising materials for flexible tactile sensing applications.
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Figure 21. Simplified sensor with highly ordered nanofibers used for (a) the knee in the relaxed
state and (b) the knee in the bent state. (c) Bending deformation during the test. SEM image of
highly ordered PLLA nanofibers of diameters of (d) 50 µm and (e) 5 µm. (f) Relationship between
peak short-circuit current, open-circuit voltage and deformation angle (θ). (g) Relationship between
open-circuit voltage and measurement times. Reprinted from ref. [62] with permission from Springer
Science Business Media New York, copyright 2017.

3.4. Gas Sensor

Wang et al. used an electrospun receiving board with an inclined gap and fabricated
highly ordered PVA parallel nanofiber arrays. Then, they evaporated copper phthalo-
cyanine (CuPc) on the PVA parallel nanofiber arrays to obtain a 3D CuPc organic field
effect transistor sensor [51]. Figure 22a,b, respectively, shows the SEM and atomic force
microscope (AFM) images of PVA parallel nanofiber arrays under the spinning times of
20 s and 5 s. The PVA parallel nanofiber arrays were aligned almost evenly on the substrates
made of SiO2/Si, confirming that this receiving board could fabricate highly ordered PVA
nanofibers. Figure 22c,d, respectively, shows the SEM and AFM diagrams of the CuPc/PVA
parallel nanofiber arrays under a spinning time of 20 s. The CuPc crystal needles were
acquired by evaporating the CuPc films on the PVA parallel nanofiber arrays. The results
show that the films on the highly ordered PVA parallel nanofiber arrays and the SiO2
substrate worked together to form the 3D CuPc films.

Figure 23a shows the current–voltage curves of the CuPc/PVA parallel nanofiber
arrays and the CuPc sensor. The illustration in the lower right-hand corner shows the
logarithmic relationship between current and voltage. Figure 23a shows that the upper
bound of the current values that can be measured is 1 × 10−13 A. The conductivity (slope) of
the CuPc/PVA parallel nanofiber arrays sensor is lower than the conductivity of the single
CuPc sensor. The reason for this may be that the CuPc/PVA sensor has thinner sensing
films than the single CuPc sensor does under the same conditions. Figure 23b,c shows the
typical dynamic responses of CuPc/PVA parallel nanofiber arrays sensor and of the single
CuPc sensor. The initial sensor resistors of CuPc/PVA parallel nanofiber array sensors are
1.96 × 1010 Ω, and those of single CuPc sensors are 7.07 × 109 Ω. The concentration of
NO2 is changed from 1 ppm to 25 ppm, and the dotted line in the figure represents the
baseline. As can be seen from the figures, the resistance of all sensors changed distinctly
when the NO2 concentration was 1 ppm. Nevertheless, the recovery time of a single CuPc
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sensor is longer than that of a CuPc/PVA parallel nanofiber array sensor. At the same
time, the recovery rate of a CuPc/PVA parallel nanofiber array sensor is much better than
that of a single CuPc sensor. Figure 23d shows the relationship for CuPc/PVA parallel
nanofiber arrays between the NO2 concentration and its responses. The results indicate
that CuPc/PVA parallel nanofiber array sensors can detect the presence or absence of NO2
within a short time. It has a fast response/recovery property.
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Figure 24 shows the AFM and schematic diagrams of CuPc/PVA parallel nanofiber
arrays and single CuPc films. While the oxidizing NO2 is in contact with the surface
of the CuPc films, the NO2 molecules are immediately absorbed on the film’s surface.
Additionally, then, the NO2 molecules capture free electrons on the surface of 3D CuPc
films with highly ordered PVA parallel nanofiber arrays and single CuPc films. Compared
with single CuPc films, the 3D structure of CuPc films with highly ordered PVA parallel
nanofiber arrays contact more NO2 molecules in various angles and directions. There-
fore, the highly ordered PVA parallel nanofiber array sensor has broader concentration
detection abilities.
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Figure 24. (a) AFM image (top) and lateral diagrammatic drawing of NO2 adsorption–desorption
(bottom) of CuPc/PVA parallel nanofiber array films. (b) AFM image (top) and lateral diagrammatic
drawing of NO2 adsorption–desorption (bottom) of single CuPc films. Reprinted from ref. [51] with
permission from Elsevier BV, copyright 2021.

In this work, highly ordered PVA parallel nanofiber arrays were spun, and sensors
were prepared. The sensor can detect 0.3 ppm of NO2 gas and is expected to expand to the
real-time detection of other gases.

Based on the environmental pollution caused by various types of gases and people’s
requirements for quality of life, the future direction of research on gas sensors can be
carried out in terms of the following aspects: (1) the development of gas sensors with
excellent selectivity, ultra-high response, low detection limits and fast response times;
(2) the combination of electrospinning with post-processing techniques such as chemical
deposition or sputtering, which will result in nanomaterials with enhanced catalytic activity
and attractive sensing properties; (3) The development of sensors that can provide good
gas-sensitive properties at room temperature, as the optimum operating temperature of gas
sensors is generally too high, and there is a risk of explosion in explosive environments.

3.5. Biosensor

Carbon nanotubes have the advantages of large specific surface areas and high elec-
tron transfer rates, which make them construct high-power biosensors. Nevertheless, van
der Waals forces make carbon nanotubes aggregate easily and generate electrical resis-
tance. Simply incorporating carbon nanotubes into electrodes directly cannot maximize
its advantages. A technique was reported to obtain highly ordered carbon nanofibers to
maximize their intrinsic conductive and structural properties. Figure 25a,c shows the SEM
images of poly(ethylene-co-vinyl acetate)/carbon nanotube fibers collected by still and
rotated collectors, respectively. A rotated collector can collect highly ordered nanofibers
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at 1000 rpm; the collector can still obtain disordered nanofibers at 0 rpm. Figure 25b,d
shows the SEM images of poly(ethylene-co-vinyl acetate)/carbon nanotube fibers after
combustion. Comparing the two images, it can be concluded that carbon nanotubes in the
carbon nanotube-poly(ethylene-co-vinyl acetate) core–sheath nanofibers could be oriented
by spinning the collector during electrospinning [85].
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Figure 25. SEM images of PEVA/CNT fibers fabricated by (a) a still collector before combustion,
(b) a still collector after combustion, a (c) rotated collector before combustion, and a (d) rotated
collector after combustion. (e) Cyclic voltammograms of a Au/carbon nanotube/1—pyrenebutyric
acid N—hydroxy succinimide ester/pyrroloquinoline quinone—dependent glucose dehydrogenase
electrode and a bare Au electrode. (f) Impedance measurements with the Au/ordered carbon
nanotube and Au/disordered carbon nanotube electrodes. Reprinted from ref. [85] with permission
from Elsevier BV, copyright 2020.

Figure 25e shows the cyclic voltammograms of Au/carbon nanotube/1-pyrenebutyric
acid N-hydroxy succinimide ester/pyrroloquinoline quinone-dependent glucose dehy-
drogenase electrodes and bare Au electrode. From Figure 25e, we can know that the
typical pyrroloquinoline quinone-dependent glucose dehydrogenase catalyzed oxida-
tion current is significantly increased because of the addition of the glucose substrate.
Figure 25f shows the impedance measurements with the Au/ordered carbon nanotube and
Au/disordered carbon nanotube electrodes. The semi-circles refer to the charge transfer
resistance of the particles. The radius of particles on the highly ordered carbon nanotube
electrode (1000 rpm) is smaller than that on the unaligned carbon nanotube electrode
(0 rpm). The results indicate that the highly ordered carbon nanotube electrode has a higher
electron transfer efficiency on the electrode interface than it does on the unaligned carbon
nanotube electrode.

In this work, pyrroloquinoline quinone-dependent glucose dehydrogenase highly
ordered and disordered CNT nanofibers were prepared and made into electrodes. CV and
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impedance measurements show that ordered carbon nanotube electrodes perform better
than random carbon nanotube electrodes do. This is expected to be valuable for building
high-powered biological devices, such as biosensors and biofuel cells.

In the future, biosensors made using electrospun fibers may be developed in the
following directions: (1) The diversification of functions. Biosensors will combine more
functions in one. (2) The achievement of easy portability. Biosensors will be made more
wearable and comfortable. (3) The achievement of intelligent and networked devices.
Biosensors will connect with more smart devices and collect and analyze data in time.

4. Conclusions and Perspectives

This review overviews the highly ordered electrospun nanofibers in three aspects.
Firstly, different electrospinning methods for forming highly ordered nanofibers re summa-
rized. Electrospinning was modified to stabilize the polymer jet by introducing magnetic
fields, controllable platforms and needles, and parallel electrodes. The improved collection
devices can obtain highly ordered nanofibers. Secondly, different microstructures of highly
ordered nanofibers are summarized and compared. Nanofibers are one-dimensional nano-
materials, but they can be arranged to form uniaxially ordered filaments, biaxially crossed
and ordered nanofiber webs, and 3D-ordered scaffolds. Finally, different applications of
highly ordered nanofibers in the field of sensors are summarized. Different nanofibers have
attracted extensive attention because of their high specific surface area and reactive activity.
Highly ordered nanofibers have been shown to have superior mechanical and dielectric
strength compared to disordered nanofibers, which could expand their applications in
the sensor field, such as in pressure sensors, humidity sensors, strain sensors, gas sensors
and biosensors.

Although many methods have been developed to fabricate highly ordered nanofibers,
the preparation process still has some challenges and limitations: (1) Improvement of
nanofiber production efficiency. Improvements in electrospinning equipment are needed
to facilitate the transition from laboratory to industry. (2) Batch quality assurance. Fiber
quality is greatly affected by environmental factors, and the change in temperature and
humidity will bring different fiber quality. (3) The reduction of production cost. Including
material and labor cost reduction. How to develop cheaper and more efficient production
materials? (4) The limitations of characterization methods for nanomaterials. For example,
SEM is commonly used to characterize the surface morphology of nanofibers. However,
due to the electron beam secondary imaging principle of SEM, the surface morphology is
easily incorrectly reflected. (5) The establishment of recognized characterization methods.
For example, no recognized characterization method has been established for the strength
and modulus of nanofibers.
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