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Abstract: Developing cost-effective, highly catalytic active, and stable electrocatalysts in alkaline
electrolytes is important for the development of highly efficient anion-exchange membrane water
electrolysis (AEMWE). To this end, metal oxides/hydroxides have attracted wide research interest
for efficient electrocatalysts in water splitting owing to their abundance and tunable electronic prop-
erties. It is very challenging to achieve an efficient overall catalytic performance based on single
metal oxide/hydroxide-based electrocatalysts due to low charge mobilities and limited stability.
This review is mainly focused on the advanced strategies to synthesize the multicomponent metal
oxide/hydroxide-based materials that include nanostructure engineering, heterointerface engineer-
ing, single-atom catalysts, and chemical modification. The state of the art of metal oxide/hydroxide-
based heterostructures with various architectures is extensively discussed. Finally, this review
provides the fundamental challenges and perspectives regarding the potential future direction of
multicomponent metal oxide/hydroxide-based electrocatalysts.

Keywords: alkaline water splitting; transition metal oxides; transition metal hydroxides; single-atom
catalysts; electrocatalysts

1. Introduction

Fossil fuels have been used as an energy source by humanity since the Industrial Rev-
olution, but the depletion of energy sources and environmental damage caused by carbon
dioxide emissions have made it essential to find new, clean, and sustainable energy sources.
Hydrogen, which boasts a high mass-to-ignition heat and produces no carbon dioxide
emissions, is considered one of the most promising sources of clean energy [1–6]. While
hydrocarbon reforming remains the primary method of hydrogen production, accounting
for 95% of industrial production, it emits carbon dioxide and is therefore known as “gray
hydrogen”. Electrochemical water splitting, which uses renewable energy to produce
hydrogen, is viewed as a more promising technology for “green hydrogen” production due
to its zero-carbon footprint, simplicity, and high energy efficiency [7–13].

Water electrolyzers, which split water to produce hydrogen, come in various forms
including proton exchange membrane (PEM) electrolyzers and alkaline anion exchange
membrane electrolyzers. PEM devices require the use of noble metal catalysts, such as Pt
and Ir, and are limited by their high cost and low durability in harsh environments [14–16].
On the other hand, earth-abundant non-precious metal catalysts, such as Ni, Co, and
Fe, have great potential for low-cost and large-scale hydrogen production when used
in alkaline anion exchange membrane electrolyzers [17–19]. In recent years, transition
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metal oxides/hydroxides have emerged as efficient and stable electrocatalysts due to their
high activity and stability [19–21]. Despite this, these catalysts face challenges such as
low electrical conductivity, limited intrinsic activity, and a limited number of active sites.
Multicomponent metal oxide/hydroxide electrocatalysts can overcome these limitations by
combining multiple active sites and synergistic effects, resulting in improved catalytic per-
formance. Researchers are exploring various methods to improve the catalytic properties
of oxide/hydroxide-based multicomponent electrocatalysts, including interface engineer-
ing [22–24], alloying [25–27], doping [28–31], single-atom catalysts [32–34], and the develop-
ment of phosphides [35,36], sulfides/selenides [37–39], and carbides/nitrides [40,41]. These
methods aim to enhance the electronic structure, increase conductivity, optimize surface
adsorbed species, and reduce energy barriers [42–46]. In particular, according to Sabatier’s
principle suggesting that a suitable adsorption Gibbs free energy should be optimized for
high catalytic activity, it is necessary to investigate multicomponent catalysts possessing
extraordinary surface adsorption that is hard to achieve in a single metal-based catalyst.
For example, single-atom catalysts enable the formation of a multicomponent catalyst to
use electronic interactions with the support matrix to create new geometric structures and
reduce the energy barriers of catalytic reactions [47–50]. The resulting multicomponent
oxide/hydroxide-based catalysts hold great promise for future applications due to their
improved reaction rates, structural/performance stability, and overall effectiveness.

Herein, we provide an overview of the surface reaction mechanism and recent progress
on multicomponent transition metal-based oxide/hydroxide electrocatalysts for alkaline
water splitting. First, we will introduce some basic reaction mechanisms of hydrogen
evolution reaction (HER) and oxygen evolution reaction (OER) in an alkaline media. Then,
the synthetic methods and characterization of the state-of-the-art electrocatalysts will be
presented. Finally, the challenges and perspectives will be discussed. This review would be
useful in the field of material science and chemistry for the construction and fabrication of
high-performance water-splitting catalysts.

2. Electrochemistry of Water Splitting in an Alkaline Environment

In conventional electrolysis, the efficiency of the process depends on the concentra-
tion of charge carriers, which are typically ions in the solution. An electrolysis system
and possible reaction pathways for water splitting are shown in Figure 1. Under acidic
conditions, the OER at the anode corresponds to the equation 2H2O→ O2 + 4H+ + 4e−.
The electrons flow through the external circuit, while the protons move across a membrane
to reach the cathode compartment. Then the protons combine with the electrons to form
hydrogen gas (H2) through the HER: 4H+ + 4e− → 2H2. At lower pH values, the kinetics
of the water reduction is faster than in alkaline media due to the high concentration of
protons (H+). However, at higher pH values, the concentration of hydroxide ions (OH−)
is higher, which achieves the fast water oxidation reaction at the anode [51]. To drive the
water-splitting reaction by overcoming the kinetic barriers of OER and HER, a minimum
thermodynamic potential of 1.23 V is required. The role of electrocatalysts is crucial to
reduce this overpotential as much as possible. Photo-electrochemical (PEC) water splitting
is an attractive process as it utilizes sunlight as an energy source and emits no CO2 [52]. Ad-
ditionally, the use of a material with a bandgap above 1.23 eV enables water splitting to be
achieved without requiring an external bias. However, the property of photocatalytic water
splitting is often limited by the bandgap of the photocatalytic material, which determines
its absorption spectrum and energy conversion efficiency [53]. In contrast, electrocatalytic
water splitting can be achieved using a variety of electrocatalysts, including metal oxides,
phosphides, and sulfides. While many materials can operate as electrocatalysts, the exact
mechanism by which they work is not fully understood for all materials. Thus, gaining a
deep understanding of the reaction mechanism and activity relationship of HER/OER is
essential in the development of efficient catalysts for electrochemical water splitting [54].
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Figure 1. Schematic of the electrochemical water splitting and related reaction kinetics.

2.1. Mechanism of HER in Alkaline Media

In an alkaline media, the hydrogen evolution reaction (HER) is harder to achieve
compared with acidic electrolytes due to the lower concentration of protons. The hydrogen
intermediates (denoted as H*) are mainly formed by the dissociation of water molecules
in alkaline media, whereas in acidic media, they are derived from hydrogen protons
(H+) [55,56]. This means that breaking the stronger covalent H–O–H bond in alkaline
media requires more energy compared with the dative covalent bond of the hydronium ion
(H3O+) in acidic electrolytes. The first step of the HER process, denoted as the Volmer step,
involves the adsorption of hydrogen intermediates on the surface of the electrocatalyst
(Equation (1)).

M + H2O + e− →M-H* + OH− (1)

There are two mechanisms for forming H2 through either the Volmer–Heyrovsky or
Volmer–Tafel step (Equations (2) and (3)).

H2O + M-H* + e− → H2 + OH− (2)

2 M-H* → 2 M + H2 (3)

A good HER catalyst must have low Gibbs free energy for H* adsorption and high
exchange current density with many active sites [54,57,58].

2.2. Mechanism of OER in Alkaline Media

There is a more complicated mechanism and slower kinetics in the OER process
compared with HER, which requires a four-electron transfer process [59–62]. In alkaline
media, two different pathways of O2 generation are possible: (i) the direct combining
of adsorbed oxygen (O*) at two M-O* species (from M-OH*) and (ii) the proton-coupled
electron transfer (from M-OOH*). The hydroxide anion (OH−) is adsorbed on the catalyst
surfaces to form M-OH*. M-OH* is converted to M-O* by coupling between H* and OH−.
Then, the combination of two M-O* species directly produces an O2 molecule and two free
M active sites. There is another pathway to generate O2 molecules by forming an M-OOH*

intermediate, which can be generated by combining M-O* and OH−. In this pathway, an
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additional proton-coupled electron transfer step requires the release of an O2 molecule and
the regeneration of the initial free active sites.

M + OH− →M−OH* + e− (4)

M−OH* + OH− →M−O* + H2O + e− (5)

2 M−O* → 2 M + O2 (6)

M−O* + OH* →M−OOH* + e− (7)

M−OOH* + OH− →M + O2 + H2O + e− (8)

The second pathway generally occurs in the OER process. Achieving the low reaction
Gibbs free energy between the catalyst surface and the OER intermediates (M-O* and
M-OOH*) is important to improve the OER performance [56].

2.3. Strategies for Catalysts Design in Alkaline Media

Non-noble metal-based oxides/hydroxides are attractive catalysts for water electrol-
ysis due to their abundance, low cost, adjustable structures, and stability [63–72]. How-
ever, their poor electrical conductivity and limited active sites hinder their electrocatalytic
performance. To overcome these limitations, various strategies have been applied to
oxide/hydroxide-based catalysts such as heterostructure engineering, doping, and anchor-
ing single atoms. Through these approaches, the number of active sites where the reaction
occurs increases, and the intrinsic conductivity of the catalysts can be improved [73–82].
The representative strategies to accomplish the advanced oxide/hydroxide-based catalysts
are proposed in Figure 2.
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2.3.1. Heterostructures

The heterostructure, defined as a composite structure consisting of two or more
different solid-state materials with interfacial interaction, has attracted attention in the field
of energy-related applications due to its unique interface that provides synergistic effects
such as enhanced electrochemical activity and structural stability [83–86]. As an example,
Zheng’s group designed a well-defined heterointerface between Pt and LiCoO2 [87]. The
synergistic effects at the Pt/LiCoO2 heterostructure interfaces enhance the Volmer step,
which is a rate-determining step in the alkaline hydrogen evolution reaction (HER), by
improving the capability of cleaving the HO–H bond. By optimizing the Pt–H bond affinity,
fast hydrogen evolution can be achieved. In conclusion, heterostructured electrocatalysts
are a promising strategy for improving intrinsic activity through the effective control of the
geometric and electronic structure of the active site through interface engineering [88–91].

2.3.2. Doping

Elemental doping has been considered an effective way to enhance the catalytic
performance of electrocatalysts. Heteroatom doping of foreign atomic structures can alter
the chemical and physical properties of electrocatalysts, resulting in improved intrinsic
catalytic activity [92–96]. The increased surface area and additional catalytic active sites
are achieved through enhanced local charge and spin density from the difference in the
electronegativity and atomic radii of the anion doping elements [97,98]. There is a wealth
of previous research that shows the ability of water molecule adsorption and desorption
on heteroatom-doped oxides/hydroxides [99–103]. The intrinsic OER performance can be
improved by incorporating metal cations into NiFeM (M=Co, Mn, Cr, Al, etc.) catalysts.
For example, Jiang’s group found that V cations contribute to the high OER activity of
NiFeOH by providing strong OOH* binding energy relative to O* species [98]. Van et al.
successfully designed La-doped NiFe LDH using a hydrothermal method [104]. The strong
electronic interactions between La and NiFe LDH elevate the Fe d-band level, increase
the number of catalytic active sites and oxygen vacancies, and result in excellent OER
activity. Therefore, heteroatom doping provides an ideal platform to modify various
physicochemical properties such as phase transformation, vacancies, defects, and electronic
band structures of oxide/hydroxide electrocatalysts [105–107].

2.3.3. SACs

Single-atom catalysts have recently attracted enormous research interest due to their
high atomic utilization efficiency, unconventional catalytic activity, and high selectivity
compared with their cluster and nanoparticle counterparts [108–116]. Depending on the
support matrix interacting with the metal single atoms, the distinct local electronic structure
and coordination environment of SACs can be achieved, enabling the strong activation of
the reactants. Hence, SACs are versatile for surface-active electrochemical reactions such as
HER, OER, oxygen reduction reaction (ORR), CO2 reduction reaction (CO2RR), nitrogen
reduction reaction (NRR), etc. [117–125]. In these reactions, SACs provide large amounts
of active sites where the reacting elements (H+, OH−, O2, CO2, and N2) participate. For
example, Wang et al. introduced highly dispersed Ir single atoms with a concentration
of about 3.6 wt% on an Ni2P catalyst for OER, and they showed 28-fold higher OER
efficiency compared with the most widely used IrO2 catalyst [126]. It was revealed that
Ir single atoms preferentially occupied Ni sites of Ni2P, and the reorganized Ir–O–P/Ni–
O–P bonding optimized the adsorption and desorption of the OER intermediate species.
Consequently, the multicomponent electrocatalysts achieved by single-atomic active sites
enable suppression of the intrinsic limits of metal oxide/hydroxide-derived materials by
enlarging catalytically active sites with high metal utilization efficiency.
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3. Multicomponent Oxide/Hydroxide-Based Electrocatalysts

Transition metal oxides/hydroxides, such as nickel oxide (NiO), cobalt oxide (CoO),
and iron oxide (Fe2O3), have been widely studied for their potential use in the alka-
line water-splitting reaction for hydrogen production [88,127–129]. These materials have
several key properties that make them attractive for water splitting. Transition metal
oxides/hydroxides showed high chemical stability in alkaline environments and excellent
catalytic activity toward both HER and OER [130–133]. It is also considered a relatively
low-cost catalytic material compared with novel metal ones. However, it has several limita-
tions for following reasons: (i) the poor long-term stability due to degradation and loss of
active sites in the redox process in OER, (ii) the limited stability under high overpotential
conditions, and (iii) the low efficiency and high energy consumption because of the high
overpotential required for the OER. Although the transition metal oxides/hydroxides show
promising potential for utilization in alkaline water splitting, further research is needed
to address the above limitations and improve their stability and efficiency for practical
applications [134,135]. In this section, we will provide several distinct strategies to improve
not only the catalytic performance in alkaline water splitting but also the long-term stability.

3.1. Transition Metal Oxides/Hydroxides

The advantages of heterostructure and single-atomic active sites can be simultane-
ously applied to the metal oxide catalysts. The heterointerface not only acts as the catalytic
site where water dissociation occurs but also provides favorable anchoring sites to single-
atomic metals. Zhou et al. fabricated Pt single-atom (PtSA)-NiO/Ni nanosheets on Ag
nanowires through a simple hydrothermal method, in which three-dimensional (3D) mor-
phology boosted the electric conductivity and abundant active sites’ accessible channels for
charge transfer [136]. The proposed HER process and water dissociation on PtSA-NiO/Ni
are illuminated in Figure 3a. The metallic Ni and O vacancies-modified NiO sites near
PtSA-NiO/Ni at the interfaces of NiO/Ni heterostructure preferred adsorption affinity
toward OH* and H*, respectively, which can be calculated by the energy barrier in the
Volmer step. The high-angle annular dark-field scanning transmission electron microscopy
(HAADF-STEM) image (Figure 3b) displays the immobilization of atomically dispersed
Pt atoms (bright spots) along with the interfaces of the NiO/Ni heterostructure. The most
of single Pt atoms are strongly anchored at the interfaces of the NiO/Ni heterostructure.
Although the emission of hydrogen bubbles during the PtSA electrodeposition process
can degrade the fabricated heterostructures, there are no obvious morphology changes
in PtSA-NiO/Ni nanosheets on Ag NWs compared with the original NiO/Ni surfaces,
indicating the enhanced catalytic activity as well as high stability via the more active sites’
high structural stability. In Figure 3c, the X-ray absorption near edge structure (XANES)
spectra of Pt L3-edge with each support are provided to reveal 5d occupancy of Pt since
the intensity of the white-line peak indicates the transfer of the Pt 2p3/2 core electron to
5d states. From the XANES spectra, it was confirmed that the charge loss of PtSA-NiO/Ni
is higher than that of PtSA-Ni and lower than that of PtSA-NiO, as displayed in Figure 3c.
From the calculated Pt oxidation states derived from the ∆XANES spectra, the average
valence states of Pt were +0.29, +0.73, and +1.23 for PtSA-Ni, PtSA-NiO/Ni, and PtSA-NiO,
respectively. Charge delocalizing from Pt to the bonded O atom and charge localizing from
the adjacent Ni atoms to Pt are displayed due to the different electronegativity of atoms
(3.44 for the O atom, 1.91 for Ni, and 2.28 for Pt). Consequently, an enhanced electric field
with a half-moon shaped area around the Pt site (Figure 3d) suggests that the NiO/Ni
heterostructure coupled with a Pt single atom could possess more free electrons to promote
the adsorbed H conversion for high H2 evolution reaction.
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Figure 3. (a) The mechanism of the PtSA-NiO/Ni network as an efficient catalyst toward large-scale
water electrolysis in alkaline media. (b) HAADF-STEM image of PtSA-NiO/Ni. (c) XANES spectra
and calculated Pt oxidation states derived from ∆XANES spectra of PtSA-NiO/Ni, PtSA-NiO, and
PtSA-Ni, with Pt foil given as a reference. (d) Computational models and localized electric field
distribution of a PtSA-NiO/Ni. (e) LSV curves of PtSA-NiO/Ni, PtSA-NiO, PtSA-Ni, NiO/Ni, and
Pt/C for HER. Reprinted (adapted) from reference [136], copyright (2021) Springer Nature.

The PtSA-NiO/Ni shows the best HER intrinsic activity compared with other reference
samples (Figure 3e), a significantly lower overpotential of 26 mV at 10 mA/cm2, which is
superior to even the commercial Pt/C catalyst (52 mV at 10 mA/cm2). As the advantage of
single-atom catalysts, they conducted the mass activity comparison of fabricated samples. The
normalized mass activity to the loaded Pt mass of the PtSA-NiO/Ni sample was 20.6 A/mg
at an overpotential of 100 mV, which is 2.4, 2.3, and 41.2 times greater than that of PtSA-NiO
(8.5 A/mg), PtSA-Ni (9.0 A/mg), and the commercial Pt/C catalyst (0.5 A/mg), respectively.
Furthermore, the PtSA-NiO/Ni catalyst exhibited a lower Tafel slope value, 27.07 mV/dec,
than the PtSA-NiO (37.54 mV/dec), PtSA-Ni (37.32 mV/dec), NiO/Ni (58.67 mV/dec), and
Pt/C catalysts (41.69 mV/dec). In the stability test, the PtSA-NiO/Ni catalysts showed high
durability with negligible degradation in cyclic tests over 5000 cycles and in chronopotentiom-
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etry for 30 h. These highly durable and efficient PtSA-based electrocatalysts could be achieved
by anchoring on highly stable NiO/Ni heterointerfaces. From these series of theoretical
and experimental results, the Pt SACs coupled with NiO/Ni heterointerfaces could boost
the HER catalytic activity in an alkaline environment, leading to a significant reduction in
cost. This work provides a facile way to design not only noble metal-base SACs but also the
heterostructures for efficient alkaline HER.

The doping of the proper amount of noble metal can improve the catalytic activity of
metal oxide catalysts. In particular, the Ru element possesses the capability to effectively
dissociate H2O into H+ and OH-, thereby allowing for optimal hydrogen production in an
alkaline condition through doping. Zhang and colleagues developed a three-dimensional
(3D) needle-like array of Ru-doped Ni/Co oxides (Ru-NiO/Co3O4) based on a carbon cloth
(CC) substrate via a three-step process [137]. First, Ni0.5Co0.5(OH)2 (NCO) nanoneedle
arrays were synthesized on the surface of CC through the hydrothermal method. By control-
ling the Ru concentration, various Ni0.5Co0.5(OH)2 structures were obtained for xRu-NCO
by Ru3+ immersion. Finally, they obtained Ru-NiO/Co3O4 nanoneedle structures after an
oxidation process at 400 ◦C in an N2 environment. The morphology of the as-prepared
electrocatalyst was characterized by a scanning electron microscope (SEM), as shown in
Figure 4a. The lamellar morphology of Co3O4 was almost broken and cracked because
the annealing treatment at high temperatures resulted in the collapse of the hydroxide
structure due to the removal of water molecules, but the Ni-added NCO could maintain
the needle-like array structure after oxidation. With the insertion of a high concentration
of Ni content, the needle structure of NiO/CC would be denser and shorter than NCO.
The staggered distribution of Co3O4 and NiO implies the creation of a large number of
interfaces and high-energy regions, which can modulate the overall electronic energy state
and expose a large number of active sites. The Ru 2% doped-NCO, which has the largest
geometrical area with dense and uniform needle-like arrays, facilitates a sufficient con-
tact area between the catalyst and the electrolyte, resulting in high-performance water
splitting. As displayed in Figure 4a, HAADF-STEM images clearly show the presence of
RuO2 particles with about 5 nm diameter inside needle-shaped NCOs. From the XPS O 1s
core level spectra, Ru 2% doped-NCO (529.8 eV) still has the lowest anion binding energy
compared with the other samples (Figure 4b) by constructing oxygen bonding between
Ru atoms and oxygen vacancies. Based on these measurements, Ru doping and the NCO
heterostructure system would exhibit higher catalytic activity by controlling the overall
electronic energy state of the catalyst, influencing faster charge transport kinetics. From
the Raman spectra, they confirmed that the heterogeneous structure of NCO and the Ru
doping induces more defects. Among the various xRu-NCO samples, the 2% Ru-NCO
electrocatalysts showed the best catalytic OER performance with the lowest overpotential
of 233 and 269 mV at a current density of 50 and 100 mA/cm2 due to the densest and
uniform morphology and proper distribution of RuO2 with 5 nm nanoparticles (Figure 4c).
For the Tafel slope, the smallest Tafel slope value of 59 mV/dec could be obtained by fast
OER kinetics originating from the fastest energy conversion and small activation energy to
conduct OER. Furthermore, the 2% Ru-NCO showed excellent durability in both the cyclic
test and chronopotentiometry measurement. There is a negligible potential shift in cyclic
LSV tests after 1000 cycles, and only a 1.8% decayed overpotential value could be observed
after 25 h of continuous operation. From the XRD and TEM analysis, the diffraction peak
and crystal structure have not been changed in 2% Ru-NCO electrocatalysts after OER
operation. They also investigated the HER and overall water-splitting performance of a
2% Ru-NCO electrocatalyst. It achieved a low overpotential of 51 and 138 mV at current
densities of 10 and 100 mA/cm2, which is superior to that of Pt/C (52 and 156 mV at
10 and 100 mA/cm2). In the stability test, the 2% Ru-NCO showed good durability in
the cyclic test over 10,000 cycles with negligible shifts and 3.4% decayed current density
after 25 h of continuous operation. By utilizing 2% Ru-NCO samples as both cathode
and anode in alkaline media (1 M KOH), the required potential to drive the overall water
splitting up to 50 and 100 mA/cm2 was 1.57 V and 1.64 V with highly stable operation
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properties over 25 h, as shown in Figure 4d. This improved catalytic activity and stability
of 2% Ru-NCO can be attributed to (i) a large number of active sites by uniformly dis-
persed nanostructures, (ii) low activation energy to generate NiO/Co3O4 heterointerfaces
and electronic energy state modulation by Ru doping, and (iii) tight bonding between
NiO/Co3O4 heterostructures and Ru dopants. This work highlights the effect of controlling
the heterogeneous structures and noble Ru metal doping on water-splitting performance
using metal oxide-based electrocatalysts.
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Figure 4. (a) (left) SEM and (middle) TEM images of 2% Ru-NCO with high magnification images.
The corresponding SAED pattern and histogram of particle size distribution are also presented.
(right) HR-TEM image of RuO2 particles with the corresponding SAED pattern of the selected area.
Elemental mapping images for Co, Ni, Ru, and O (below). (b) XPS patterns for Co3O4, NCO, 2%
Ru-NCO, and NiO in O 1 s core level spectra. (c) HER LSV curves of Co3O4, NiO, NCO, 0.02%
Ru-NCO, 0.2% Ru-NCO, 2% Ru-NCO, 4% Ru-NCO, and RuO2/CC in 1.0 M KOH. (d) LSV curves
of 2% Ru-NCO for HER and OER in a three-electrode configuration. Reprinted (adapted) from
reference [137], copyright (2022) Elsevier B.V.

Liu et al. approached two distinct strategies for synthesizing the Ce(OH)3-interfaced
NiFe-LDH (Ce@NiFe-LDH) and the homogeneously Ce-doped NiFe-LDH (CeNiFe-LDH) cat-
alysts on Ni foam substrate using a hydrothermal process as shown in Figures 4b and 5a [138].
From the SEM measurements, the vertically and densely grown Ce@NiFe-LDH and CeNiFe-
LDH could be observed with a similar nanosheet morphology of uniform thickness (~10 nm).
The numerous nanoparticles could be observed in Ce(OH)3 decorated on the surface of
NiFe-LDH, whereas a smooth surface with stacked nanosheet structures was observed in
the case of CeNiFe-LDH from the HR-SEM images. The average size of the decorated
nanoparticles was 7 nm without aggregation, and the (101) and (012) lattice planes could be
indexed to Ce(OH)3 and NiFe-LDH in SAED patterns, respectively, as shown in Figure 5b.
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HAADF-STEM images showed the corresponding element mapping of both samples. The
Ce atoms are found intensively in particle form in Ce@NiFe-LDH, but in the CeNiFe-LDH
nanosheets, they are spread over entirely. Furthermore, an additional peak revealed in
Ce@NiFe-LDH originated from the (101) facet of Ce(OH)3, indicating the coexistence of
Ce(OH)3 and NiFe-LDH nanosheets as shown in Figure 5c from the XRD spectra. Due to the
amorphous structure, both CeNiFe-LDH and NiFe-LDH exhibit no other crystalline phases,
demonstrating that metal atoms are homogeneously distributed in the crystal structure of
α-Ni(OH)2. They explained how the introduced Ce atoms could have enhanced the OER cat-
alytic activity in terms of electronic interplay using orbital occupation between the metal and
oxygen atoms, as shown in Figure 5d. The introduced Ce atoms in their structures could act
as electron-accepting sites. As a result, the electron-deficient d-orbitals of Ce3+ strengthen the
electron-accepting ability from O2− to Ce3+, resulting in changes in the electronic structure of
metal ions and influence of the OER catalytic activity in these trimetallic (oxy)hydroxides.
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Ce@NiFe-LDH and CeNiFe-LDH. The data for Ni(OH)2, NiFe-LDH, and Ce(OH)3 are shown for
comparison. (d) Schematics of the electronic interplay among Ni, Fe, Ce, and O in NiFe-LDH,
CeNiFe-LDH, and Ce@NiFe-LDH. (e) LSV curves. (f) The corresponding Tafel plots of Ce@NiFe-
LDH, CeNiFe-LDH, NiFe-LDH, and Ni(OH)2 for OER. Measured O2 yields at 0.3 V. (g) LSV curves of
Ce@NiFe-LDH before and after 48 h electrolysis. Reprinted (adapted) from reference [138], copyright
(2021) Wiley-VCH GmbH.
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Ce@NiFe-LDH achieved the best OER performance with low overpotentials of 205
and 257 mV at 10 and 100 mA/cm2, respectively, and CeNiFe-LDH also showed good
OER performances with an overpotential of 229 mV at 10 mA/cm2, as shown in Figure 5e.
The Tafel slopes of Ce@NiFe-LDH and CeFeNi-LDH are 40.1 and 37.9 mV/dec, which
can compare with that of NiFe-LDH nanosheets, originating from the increased carrier
concentration and conductivity due to the presence of Fe and Ce atoms (Figure 5f). From
the cyclic LSV measurement, excellent stability with negligible degradation could be
observed after 48 h of operation at 1.53 V, as shown in Figure 5g. They carried out the DFT
calculations to acquire the Gibbs free energies along the OER pathway at U = 1.23 V. In the
atomic model, the Ni sites of NiFe-LDH, CeNiFe-LDH, and Ce@NiFe-LDH (110) surfaces
were selected as the active regions on which the OH*, O*, and OOH* were preferentially
adsorbed. The RDS of CeNiFe-LDH was the step from OOH* to O2 (g), whereas those of
NiFe-LDH and Ce@NiFe-LDH were the step from OH* to O* due to the dissimilar surface
charge configuration. The energy barrier of Ce@NiFe-LDH (0.56 eV) was lower than those
of NiFe-LDH (0.92 eV) and CeNiFe-LDH (0.61 eV), implying that the thermodynamically
favorable catalytic reaction occurs most actively in Ce@NiFe-LDH. This work demonstrated
the facile route to increase the catalyst activity of NiFe LDHs by transition metal doping. By
the deep understanding of OER mechanisms, the lower energy barrier in Ce@NiFe-LDH
can provide not only the catalytic active sites but also stable OER performance.

Ru enables the effective dissociation of H2O into H+ and OH−, leading to the enhanced
catalytic activity of LDHs in alkaline conditions. In recent years, single-atomic Ru has
received much attention since it exhibits higher activity and atomic utilization efficiency
than Ru particles due to the unique oxidation state and coordinations. In this context,
incorporating single atoms of Ru into a binary CoV-layered double hydroxide (LDH)
porous nanosheet array allows the design of improved electrocatalysts. Zeng et al. reported
the electronic structure engineering of the binary CoV LDH porous nanosheet array with
a single atom of Ru [139]. The CoV and CoVRu LDH nanosheet array was fabricated
using a one-step hydrothermal method on Ni foam. A 3D interconnected hexagonal
nanosheet array (about 700 nm) was synthesized uniformly on Ni foam, as seen in SEM and
TEM images, as displayed in Figure 6a. The porous structure of the CoVRu LDH can be
demonstrated from the evolution of NH3 and CO2 gases during the hydrothermal process,
and the single atoms of Ru in their structure can be attributed to improved catalytic activity.
The interplanar spacing of 0.25 nm, indexed to the (012) plane of CoV LDH, shows that
the introduction of Ru does not affect the lattice spacing due to the similar ionic radius
of Ru3+ (68 pm), V3+ (64 pm), and Co2+ (65 pm), as shown in Figure 6a. The localized
electronic structures and atomic coordination of Ru atoms are revealed by XANES and X-ray
absorption fine structure (EXAFS). The Ru adsorption edge (Ru K-edge) of CoVRu LDH was
observed between Ru metal and RuO2, indicating a chemical valence state of Rux+ (0 < x < 4),
as shown in Figure 6b. The Fourier transform (FT) EXAFS curve of the Ru K-edge spectra of
RuCoV LDH shows that the local atomic coordination of Ru is mainly from Ru–O bonds, not
Ru–Ru or Ru–O–Ru bonds. These findings prove that isolated Ru single atoms form strong
electronic bonds with CoV LDHs through coordination with O atoms, as illustrated in
Figure 6c. The single Ru atom-anchored CoV LDH exhibited excellent HER catalytic activity
and high OER catalytic performance with low overpotentials of 28 mV at 10 mA/cm2 for
HER and 263 mV at 25 mA/cm2 for OER, as shown in Figure 6d. Furthermore, the CoVRu
LDH had a significantly low Tafel slope of 25.4 mV/dec for HER, much lower than CoV
LDH (109.3 mV/dec) and Ni foam (131.1 mV/dec), as depicted in Figure 6e. For OER, the
Tafel slope was 74.5 mV/dec, indicating faster kinetics than other samples. The durability
of the synthesized CoVRu LDH was evaluated with 2000 cycles for both HER and OER,
showing excellent stability and maintaining the initial performance without attenuation.
The overall water-splitting performance was evaluated using a CoVRu LDH || CoVRu
LDH coupled electrode, requiring only 1.52 V cell voltage to achieve a current density of
10 mA/cm2, compared with Pt/C||RuO2 (1.56 V) and CoV LDH||CoV LDH (1.79 V). The
favorable modulation of the electronic structure and local atomic coordination for the Ru
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single-atom-anchored CoV LDH electrocatalysts can be possible through DFT calculations
and XPS/XAS analysis. This work suggests that improved electrocatalytic activity of
Co-based LDH can be achieved by single-atom catalysts for electrochemical water splitting.

Figure 6. (a) SEM image (left) of hexagonal nanoplatelets of synthesized CoVRu LDH. STEM
elemental mapping images with Ru, Co, V, and O. HR-TEM and HAADF-STEM images with d-
spacing of 0.25 nm and atomically dispersed Ru sites, which are highlighted by red circles in CoVRu
LDH. (b) Normalized XANES spectra and (c) Fourier-transformed EXAFS spectra of Ru K-edge for
Ru metal, RuO2, and CoVRu LDH. (d) HER polarization curves and (e) calculated Tafel slope graph.
Reprinted (adapted) from reference [139], copyright (2023) Elsevier B.V.

3.2. Transition Metal Oxide-Based Derivatives

Transition metal oxide-based derivatives, such as transition metal phosphides, sul-
fides/selenides, and carbides/nitrides, are widely studied as catalysts for alkaline water
splitting [137,140–143]. They have advantages and disadvantages compared with tradi-
tional catalysts such as noble metals. Some of the advantages of these derivatives include
lower cost, higher stability, corrosion resistance, and environmental friendliness. They are
useful in a wide range of applications not only in electrocatalysis but also in energy storage
and electronic devices. The durability of metal oxide/hydroxide catalysts in alkaline water
splitting is an important factor in determining their potential for practical applications.
When the metal oxide/hydroxide catalysts are exposed to harsh conditions, including
high pH, high temperature, and corrosive electrolytes, they can be degraded over time.
To enhance the durability of metal oxide/hydroxide catalysts, several strategies can be
employed, such as protective coatings, the development of a more stable composition,
the optimization of the reaction conditions, and chemical modifications. Furthermore,
some disadvantages include lower efficiency, limited selectivity in catalytic reactions, and
the need for a proper synthesis method to achieve the desired properties. Despite these
disadvantages, metal oxide/hydroxide-based catalysts are still considered as one of the
promising catalysts to utilized water-splitting electrocatalysts. These catalysts are still an
active area of research, and further developments may lead to improved performance and
greater commercial viability [144,145]. In this section, we will introduce some strategies to
enhance the catalytic activity and durability of metal oxide/hydroxide-based catalysts via
chemical modification.
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3.2.1. Transition Metal Phosphides

Transition metal phosphides (TMPs) have gained significant attention in the fields of
catalysis and energy conversion due to their high catalytic activity, good thermal stability,
cost-effectiveness, unique electronic properties such as high carrier mobility and high opti-
cal absorption, and high surface area [146,147]. However, several disadvantages must be
addressed for the efficient use of TMPs as electrocatalysts, including poor stability in acidic
conditions, limited selectivity for oxygen evolution reaction (OER), a lack of understanding
of reaction mechanisms, and the cost ineffectiveness of the synthesis process [148–150].
In the following section, an example of designing a TMP-based electrocatalyst for overall
water splitting will be provided.

Yu et al. demonstrated the efficient hybrid Fe-CoP/Ni(OH)2 electrocatalysts, which
showed high catalytic activity in HER, OER, and overall water-splitting ability in the
alkaline environment [151]. The hybrid Fe-CoP/Ni(OH)2 array electrode was fabricated
through a coupled reaction, as shown in Figure 7a. Fe-CoP/Ni(OH)2 NW arrays with a few
micrometer lengths have grown on the NF substrate with a corn-shaped cluster through
hydrothermal synthesis. The porous Fe-CoP NW array was synthesized by the pyrolytic
phosphidation process; last, the ultrathin Ni(OH)2 nanosheet could be electrodeposited
on the outer surface of the Fe-CoP NWs. Their rational design facilitated easy access to
reactants in the solution and helped the electron transfer in their heterostructures. From
the TEM images in Figure 7b, the ultrathin Ni(OH)2 nanosheets grown on the surface
and apex of Fe-CoP NWs formed a heterostructure of individual clusters. The uniform
distribution of Co, Fe, and P atoms was observed in HADDF-STEM and EDS mapping
images, as shown in Figure 7a. The lattice fringe with 0.29 nm corresponding to the Fe-
CoP (011) facet was observed before and after Ni(OH)2 electrodeposition, indicating that
heterostructure formation between Fe-CoP NWs and Ni(OH)2 was performed without
structural degradation. The similar d-spacing of Fe-CoP and Ni(OH)2 facilitates forming
their intimate contacts, which are large interfacial regions. The theoretically calculated Fe-
CoP/Ni(OH)2 interface suggests significant charge accumulation in the interfacial region
due to strong charge redistribution. The electron density increases around the interfacial
Co region and depletes in the interfacial Ni region, and these electronic interactions will
help to strengthen the interaction of the reactants with the catalyst surface. LDOS (black
dotted line) filled with the Fe-CoP component means that it provides most of the catalytic
sites. In particular, the synergistic LDOS of the Fe-CoP/Ni(OH)2 hybrid was significantly
increased after incorporation with Ni(OH)2.

This efficient heterostructure clearly showed a substantially improved catalytic per-
formance in HER and OER characterization. The overpotential of Fe-CoP/Ni(OH)2 was
91 mV at 10 mA/cm2, and the Tafel slope was 48 mV/dec in HER using 1 M KOH elec-
trolytes, which is comparable to commercial Pt/C catalysts, as shown in Figures 6d and 7c.
Furthermore, the Fe-CoP/Ni(OH)2 hybrid electrode exhibited good durability cyclic tests
over 1000 cycles and 12 h of chronoamperometry with negligible current deterioration and
morphology changes. They conducted theoretical calculations to confirm the superiority
of the designed hybrid catalyst in HER. From the DFT calculations, the water adsorption
energy of the Fe-CoP/Ni(OH)2 hybrid surface (∆Gad) was calculated to be −0.65 eV, which
was a more negative value than that of the Fe-CoP surface (−0.5 eV), suggesting that the
water molecule was more energetically favorable to adsorb on the hybrid surface, as shown
in Figure 7e. Furthermore, in Figure 7f, the Fe-CoP/Ni(OH)2 hybrid catalyst exhibited
a significantly decreased adsorption of reactant (H2O) on the catalyst surface (∆G(H2O))
value compared with that of Fe-CoP catalyst, suggesting an effective role of Ni(OH)2 in
promoting the dissociation of H2O.

For the OER, the Fe-CoP/Ni(OH)2 also showed excellent electrochemical properties
with an overpotential of 206 mV at 10 mA/cm2 and a Tafel slope of 32 mV/dec, as shown in
Figures 6i and 7h, which is superior to the commercial OER catalyst RuO2. There are three
aspects that are expected to improve the OER catalytic activity of the Fe-CoP/Ni(OH)2:
(i) additional catalytic active sites from Ni(OH)2 nanosheets, (ii) fast charge transport due
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to electronic interaction between two different constituents, and (iii) lower energy barrier
to adsorb the H2O or intermediates from interfacial edge regions. To clarify the effect of the
heterostructure in OER activity, they conducted the DFT calculations with four intermediate
steps. From the Gibbs free energy diagram of the Fe-CoP/Ni(OH)2 hybrid surface, as shown
in Figure 7j, the lower ∆G(HOO* = 1.77 eV) can be observed compared with that of the
Fe-CoP ∆G(HOO* = 2.08 eV), indicating the energetically favorable adsorption of the HOO*

intermediate on the hybrid surface can occur. It greatly helps to accelerate the OER kinetics,
resulting in the promotion of the whole OER process. During the stability test, the hybrid
electrode could maintain 92% of its initial current density at 1.5 V after 12 h. By assembling
the hybrid catalysts as both cathode and anode, a two-electrode alkaline electrolyzer can be
demonstrated. It exhibited the low cell voltages of 1.52 V and 1.59 V to reach the current
densities of 10 and 50 mA/cm2, respectively, compared with the Pt/C||RuO2 system (1.55
and 1.66 V for 10 and 50 mA/cm2). These proposed hybrid catalysts shed light on the
possibility to improve catalysts based on earth-abundant and non-noble transition metals
for commercial water electrolysis by novel interfacial engineering.
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images of Fe-Co(OH)2, Fe-CoP, and Fe-CoP/Ni(OH)2 nanowires. (b) TEM image, HAADF-STEM
image, and EDS mapping images of the Fe-CoP/Ni(OH)2 hybrid nanowire. (c) The iR-corrected
LSV curves and (d) comparison of overpotential and Tafel slope at different electrodes for HER in
1 M KOH. (e) Comparison of calculated water adsorption energy (∆Gad) and (f) calculated Gibbs
free energy diagrams for alkaline HER at the bare Fe-CoP surface and the Fe-CoP/Ni(OH)2 hybrid
surface. (g) iR-corrected LSV curves, (h) Tafel plots, and (i) comparison of overpotential and Tafel
slope at different electrodes for OER in 1 M KOH. (j) Calculated Gibbs free energy diagrams of the
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(adapted) from reference [151], copyright (2021) Wiley-VCH GmbH.
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3.2.2. Transition Metal Sulfides and Selenides

Transition metal sulfides and selenides (TMSs) are a group of materials that have
gained significant attention due to their unique properties and potential applications in
fields such as catalysis, energy conversion and storage, and electronics [152,153]. They
have high catalytic activity, good conductivity, and high stability and are low cost, making
them an attractive alternative to noble metals. TMSs have good electrical conductivity and
thermal and chemical stability. However, they often have poor stability in common solvents
and can become less conductive at high temperatures or high humidity. The challenges
in using TMSs as an efficient water-splitting electrocatalyst include the need for a facile,
large-scale synthesis method with specific structures and morphologies, a better under-
standing of the mechanisms of TMSs in water splitting, and improved stability, especially
in alkaline conditions [154,155]. The following section will introduce two examples of
TMS-based electrocatalysts with improved catalytic performance and stability in alkaline
water splitting.

Zhang et al. presented an interface- and defect-rich cobalt-doped Ni3S2/MoS2 (Co-
NMS) hybridized nanosheet decorated on a hierarchical carbon framework with carbon
nanowire arrays (CA) supported on conducting carbon cloth (CC). The nanosheets were
prepared through a two-step process including the hydrothermal growth of the NiMoO4
phase and the chemical vulcanization of NiMoO4 at high temperatures. This two-step
reaction is crucial in obtaining heterogeneous rich interfaces and small-size discrete MoS2
and Ni3S2 interfaces. The hydrothermally grown Co-doped NiMoO4 is vertically aligned
on the carbon fiber with a height of 500 nm and thickness of around 50 nm. After the
vulcanization at 350 ◦C in Ar/H2 (95/5 vol%), the highly segregated NiMoO4 nanosheets
turned to Ni3S2/MoS2 heterointerfaces with hierarchical morphologies of nanosheets. They
employed the fin-tube-like hierarchical carbon framework (CA/CC) to increase anchoring
sites and to expose more surface sites, which can accelerate the mass transport (gas bubbles
and electrolyte and electron transfer processes), as shown in Figure 8a [156]. From the
chemical vapor vulcanization, the more reactive Ni atoms would be diffused out of NiMoO4
structures and react with sulfur to foam Ni3S2 particles. More particles could be precipitated
out and gradually aggregated into themselves to form large particles as a function of
the increase in vulcanization temperature. The aggregation of Ni3S2 particles not only
destroyed the structure of nanosheets but also constructed rich and tight heterogeneous
interfaces. As the vulcanization temperature increased, the diffraction peaks of MoS2 and
Ni3S2 in NMS/CC became sharper and stronger in the XRD, indicating the improvement
of the crystallinity of MoS2 and Ni3S2. The interlayer spacings of 0.63 nm and 0.28 nm
were observed as corresponding to the (002) plane of 2H-MoS2 and (110) crystal plane of
Ni3S2, indicating that the chemical vapor vulcanization process is suitable for generating
a uniform heterogeneous interface. The tight heterointerfaces between Ni3S2 and MoS2,
which are highlighted by the blue dotted line in Figure 8b, can provide bifunctional active
sites for the cleavage of water molecules to H+ and OH-. There are many lattice defects
such as dislocations, distortions, and discontinuous crystal fringes observed. These defect
sites also could play the role of additional catalytic active sites for water splitting.

In the electrochemical characteristics, they conducted a variety of measurements using
Ni3S2, MoS2, NMS, and Co-doped NMS electrocatalysts on CC and CA substrates to
investigate the effect of heterogeneous interface engineering, element doping, electrode
structure design, and morphology control. By the heterogeneous interface engineering, the
overpotential (η10) of the Ni3S2/MoS2 heterostructure exhibited 146 mV at 10 mA/cm2,
which was reduced by about 100 mV to those of one-component Ni3S2/CC (η10 = 253 mV)
and MoS2/CC (η10 = 237 mV). The Co-NMS/CC sample showed a lower overpotential
of 115 mV at 10 mA/cm2, and that of the Co-NMS/CA samples further decreased to
89 mV (Co-NMS/CA), which was attributed to the hierarchical carbon framework with
carbon nanowire arrays, as displayed in Figure 8c. The heterointerface engineering is
the most critical strategy among them, by the synergistic fast HER kinetics enabled by
two components, which are Ni3S2, which acts as a water dissociation promoter, and
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MoS2, which acts as a hydrogen adsorption active site. In the Tafel slope, as shown in
Figure 8d, the Ni3S2/CC sample exhibited a low Tafel slope value of 87 mV/dec, which
was a remarkably reduced value compared with those of MoS2/CC (146 mV/dec) and
Ni3S2/CC (191 mV/dec). The fastest HER kinetics in this study was observed in the Co-
NMS/CC sample (62 mV/dec), which meant the interface engineering could be the most
effective way to optimize the dynamic approach of HER in an alkaline solution with the
largest decrease in the Tafel slope. They compared the Co-NMS/CA electrodes with the
previously reported MoS2-based electrocatalysts in alkaline media, as shown in Figure 8e,
indicating that the proposed facile strategies are effective to improve the catalytic activity of
MoS2. Stability is another important factor to determine the efficiency of the electrocatalyst.
They conducted the cyclic test and chronopotentiometry measurement at various current
densities. There was a slight negative shift after 1000 CV cycles, but no obvious negative
voltage shifts were found in chronopotentiometry at 10, 50, and 100 mA/cm2 over 50 h.
This improved stability might come from the enhanced mass transport and electron transfer
processes by 3D hierarchical hole structures. Furthermore, the Co-NMS/CA electrode was
coupled with the NiFe LDH/CC anode to evaluate the overall water-splitting performance.
The cell potential of the NiFe LDH/CC||Co-NMS/CA system is only 1.66 V at a current
density of 10 mA/cm2, which is close to that of the NiFe LDH/CC||Pt plate system and
durably operated over 10 h in alkaline media. The proposed strategy is an effective way
to maximize the heterointerfaces for sulfide-based catalysts and is possibly applied to the
synthesis of other heterostructures for various research fields.
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Figure 8. (a) SEM images of bare CC, Co-NMS/CC, CA/CC, and Co-NMS/CA. (b) HRTEM image
of Co-NMS. (c) LSV curves of HER for various electrocatalyst samples and (d) corresponding Tafel
slopes. (e) Comparison of the overpotential at−10 mA/cm2 and Tafel slope on various representative
MoS2-based HER electrocatalysts in alkaline electrolyte. Reprinted (adapted) from reference [156],
copyright (2021) Wiley-VCH GmbH.

Liu et al. fabricated bimetallic NiFe-based heterostructure nanosheets, consisting of
both amorphous NiFe(OH)x and crystalline (Ni, Fe)Se2 to improve the OER performance
via heterointerface engineering [138]. The interface engineering modulates the electron
configuration of the catalysts, resulting in enhanced electron conductivity and favorable
free energies at the surface. In Figure 9a, the schematic illustration of the multistep syn-
thesis of NiFe(OH)x/(Ni, Fe)Se2 on carbon cloth is provided. NiFe-LDH nanosheets were
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synthesized by the hydrothermal method followed by selenization converting them into
(Ni, Fe)Se2/CC. Then, a core–shell structure of NiFe(OH)x/(Ni, Fe)Se2 was obtained via
electrodeposition. In Figure 9b, the SEM image shows the thinly flocculent NiFe(OH)x
layer coated on the surface of the (Ni, Fe)Se2 nanosheets. Figure 9f shows the clear lattice
fringe with an interplanar spacing of 0.265 corresponding to pyrite (Ni, Fe)Se2. In Figure 9e,
the heterostructured NiFe(OH)x/(Ni, Fe)Se2 electrocatalyst exhibits excellent electrochem-
ical OER performance with considerably low overpotentials of 180, 220, and 230 mV to
achieve the current densities of 10, 100, and 300 mA cm−2, which are much lower than
those of other electrocatalysts. Furthermore, the as-synthesized catalyst shows the Tafel
slope of 42 mV dec−1 in Figure 9f, indicating a highly fast surface kinetics. In Figure 9g,
compared with the commercial IrO2, RuO2, and recently reported OER electrocatalysts,
NiFe(OH)x/(Ni, Fe)Se2 shows the lowest overpotential and Tafel slope. The authors also
conducted the DFT calculation to understand the enhanced catalytic activity derived from
the heterointerface between NiFeOOH and (Ni, Fe)Se2. In Figure 9f, the (110) facet of
NiFeOOH and the (100) facet of (Ni, Fe)Se2 were selected considering a small interfacial
strain (0.54%). The differential charge densities described in Figure 9g show that the Ni at
the heterointerface has a higher chemical valence since the charge density of the Ni atom is
reduced, leading to highly enhanced catalytic activity. In addition, the Gibbs energy profiles
of both NiFeOOH and NiFeOOH/(Ni, Fe)Se2 suggest that the overpotential (0.98 V) in the
rate-determining step (*O→ *OOH) of the heterostructure is much lower than that (1.1 V)
in the rate-determining step (*OH→ *O) of NiFeOOH. This study not only suggested a
rational design of amorphous-crystalline bimetallic heterostructures but also revealed their
modified electronic coupling and their surface free energies.
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SEM images of (b) (Ni, Fe)Se2/CC, (c) NiFe(OH)x/(Ni, Fe)Se2/CC, and (d) HRTEM images of



Materials 2023, 16, 3280 18 of 26

NiFe(OH)x/(Ni, Fe)Se2/CC. (e) LSV curves and (f) Tafel plots of IrO2/CC, NiFe-LDH/CC,
(Ni, Fe)Se2/CC, NiFe(OH)x/CC, and NiFe(OH)x/(Ni, Fe)Se2/CC. (g) Overpotential required at
10 mA/cm2 (η10) and Tafel slope comparison of the catalysts in this work with other reported
high-performance OER electrocatalysts. Reprinted (adapted) from reference [138], copyright (2021)
Wiley-VCH GmbH.

3.2.3. Transition Metal Carbides and Nitrides

Transition metal carbides (TMCs) and nitrides (TMNs) are interstitial compounds
that embed carbon and nitrogen atoms into the interstitial sites of parent metals. These
materials are unique in that they possess a combination of metallic, covalent, and ionic
properties that make them ideal for various applications. They offer several beneficial
properties including high electrical conductivity, hardness, corrosion resistance, thermal
stability, and catalytic activity. These properties are advantageous for electrochemical water
splitting. Although several TMCs and TMNs have shown promising performances, it is
necessary to improve the limited surface area and difficulty in synthesis.

Yao et al. synthesized porous Cr-doped Co4N nanorods on carbon cloth and inves-
tigated their extraordinary electrocatalytic performance toward alkaline HER [157]. The
Cr-doped Co4N/CC nanorod arrays were synthesized by annealing hydrothermally grown
Cr-Co(OH)F with urea at 400 ◦C in N2 atmosphere. According to calculations with DFT
and experimental results, it has been found that Cr atoms serve as sites for increasing water
adsorption and dissociation and also modify the electronic structure of Co4N to enhance
the hydrogen-binding capabilities of Co atoms. This leads to an acceleration in the kinetics
of both the alkaline Volmer and Heyrovsky reactions. Interestingly, this approach can be
applied to other metals, such as Mo, Mn, and Fe.

Diao et al. successfully synthesized heterostructured W2N/WC electrocatalysts to
reveal the synergistic effect of the heterointerface between W2N and WC facilitating charge
transport and separation [158]. In this research, a facile solid-state synthesis method was
adapted to control the interface of the catalysts. Specifically, the porcelain boat containing
blue WO3 powder and dicyandiamide was heated under an Ar atmosphere at 800 ◦C. In
this condition, the W2N/WC heterostructure with abundant interfaces was obtained. Using
DFT calculations and XAFS analysis, it was revealed that the charge density rearrangement
occurred at the heterointerface, and C atoms near the interface accepted more electrons
from the W atoms, resulting in electron transfer from W2N to WC. The resultant W2N/WC
showed a high catalytic activity in both HER and OER with a low overpotential of 148.5
and 320 mV at 10 mA/cm2.

4. Conclusions and Outlook

Water electrolysis in alkaline conditions for AEMWE is considered the most suitable
and advantageous technique for generating hydrogen energy due to the cost-effective
electrocatalysts, high current density, and long-term stability. The efficacy of hydrogen
generation is significantly related to the productivity of the two half-cell reactions (OER
and HER) in water splitting. To minimize the overpotential required for each reaction and
operate for a long time, it is critical to design highly active and robust electrocatalysts.
In this respect, transition metal oxide/hydroxide-based derivatives have shown great
potential since they possess a large surface area, accessible surface atoms, and tunable
electronic structure. However, they have limitations in terms of low electrical conductivity
and intrinsic active sites.

In this review, we summarize the superiorities of multicomponent electrocatalysts
achieved by heterostructure engineering, doping, and single-atom catalysts. Heterostruc-
ture engineering induces the formation of defects and modulation of electronic configu-
rations, leading to enhanced charge transfer and lowered surface energy. Additionally,
heteroatom doping adjusts the physicochemical properties of oxide/hydroxide-based mate-
rials by modifying the morphology and acting as an electron-accepting site. Specifically, the
electronic structure of metal ions in metal hydroxides is affected by the electron-deficient
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d-orbitals of dopants, enhancing the catalytic activity of multicomponent hydroxides. Fi-
nally, the distinct local electronic structure and coordination environment of SACs, with
high atomic utilization efficiency, enables the activation of the reactants by modulating the
surface energy of single-atomic sites.

Until now, a variety of oxide/hydroxide derivatives have been developed and ap-
plied to HER and OER catalysts. Among them, we have covered transition metal oxides,
hydroxides, phosphides, sulfides, and selenides, to which heterostructure engineering,
doping, and SACs were applied. Many researchers have strengthened the potential of
oxide/hydroxide derivatives for practical utilization as electrocatalysts in the AEMWE
system. Despite significant progress, there are still some issues that must be addressed
for the further advance of oxide/hydroxide-based materials. We highlight three major
challenges that oxides/hydroxides face.

1. First, oxides exhibit high durability but relatively low activity due to their highly
crystalline phase and chemical stability. Hydroxides are a rising candidate with the
highest activity owing to their large electrochemically active surface area, but they still
suffer from low electrical conductivity. The main purposes of designing multicom-
ponents are to increase the intrinsic activity, expose more active sites, and accelerate
the electron and mass charge kinetics, improving conductivity and electrochemical
performances. Thus, the innovative design and synthesis of unique nanostructures
are still a great challenge in water splitting.

2. Second, the functional roles of the active sites in oxides/hydroxides structures are
not entirely clear. The nanostructured electrocatalysts undergo composition and
structural transformations during the reaction under water splitting. Therefore, a
deep understanding of the structural transformation is required to determine the real
active phases and sites. Gaining insight into the detailed mechanism and structural
transformation is critical for predicting the interaction between structure and active
sites for high electrical performance in alkaline media.

3. Finally, commercializing and simplifying the water-splitting system on a large scale
needs to be further investigated to be optimized. The development of bifunctional
electrocatalysis is the key factor that is active for both HER and OER reactions in
the same electrolytes. Transition metal oxides/hydroxides have been reported as
promising catalysts for the OER process by supporting appropriate bonding strength
with adsorbed oxygen intermediates in the water-splitting process, but some catalysts
are inactive in HER.

In summary, the use of oxide/hydroxide-based electrocatalysts for AEMWE has shown
great potential for hydrogen production. However, there are still challenges that need
to be addressed, including increasing intrinsic activity, understanding the role of active
sites, and developing bifunctional electrocatalysts for both HER and OER reactions. To
achieve these goals, innovative design and synthesis of unique nanostructures, a deeper
understanding of the structural transformations and interactions between the structure and
active sites, and the optimization of large-scale water-splitting systems are needed. Despite
the challenges, the use of oxide/hydroxide-based electrocatalysts remains a promising
avenue for sustainable and cost-effective hydrogen production.
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