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Abstract: Mg-Zn co-dopedGaN powders via the nitridation of a Ga-Mg-Zn metallic solution at
1000 ◦C for 2 h in ammonia flow were obtained. XRD patterns for the Mg-Zn co-dopedGaN powders
showed a crystal size average of 46.88 nm. Scanning electron microscopy micrographs had an
irregular shape, with a ribbon-like structure and a length of 8.63 µm. Energy-dispersive spectroscopy
showed the incorporation of Zn (Lα 1.012 eV) and Mg (Kα 1.253 eV), while XPS measurements
showed the elemental contributions of magnesium and zinc as co-dopant elements quantified in
49.31 eV and 1019.49 eV, respectively. The photoluminescence spectrum showed a fundamental
emission located at 3.40 eV(364.70 nm), which was related to band-to-band transition, besides a
second emission found in a range from 2.80 eV to 2.90 eV (442.85–427.58 nm), which was related to
a characteristic of Mg-doped GaN and Zn-doped GaN powders. Furthermore, Raman scattering
demonstrated a shoulder at 648.05 cm−1, which could indicate the incorporation of the Mg and Zn
co-dopants atoms into the GaN structure. It is expected that one of the main applications of Mg-Zn
co-doped GaN powders is in obtaining thin films for SARS-CoV-2 biosensors.

Keywords: co-doped; GaN; nitridation; liquid metallic solution; semiconductors

1. Introduction

The semiconductor supply chain (SSC) is very important nowadays and is vital in
the industry’s demand, such as computers, communication, consumer, automotive, and
government. The SARS-CoV-2 pandemic had devastating effects on SSC, generating a
shortage in the semiconductor industry, besides increased prices in electronic devices [1].
Currently, the semiconductor industry is beginning to activate, where some of the materials
more affected have been the III-nitride compounds. Gallium nitride (GaN) is one of the
more important binary III-nitride compounds, with structural and optical properties, whose
characteristics are continuing to improve through research. The doping of the GaN is attrac-
tive owing to changes in the mobility of charge carriers. GaN has applications in full-color
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displays, GaN-based power devices, Schottky barrier diodes, light-emitting diodes, high-
electron-mobility transistors, piezoelectric MEMs, and solar cells [2–4]. Other applications
could be in laser devices for optical communications; medicine; and industry [5–9].

In recent years, the strategies of doping and of defect control have regained their
importance in semiconductor physics for researchers. Co-doping is an important strategy
used for tuning the dopant in electronic and magnetic properties, besides enhancing
dopant solubility, and increasing activation by lowering the ionization energy of acceptors
and donor, thus increasing the carrier’s mobility [10,11]. In P-type GaN, the Mg-H co-
doped is one of the best examples of fully compensated co-doping [11]. K.H. Ploog
investigated the Be-O co-dopedGaN with a strongly improved P-type conductivity at room
temperature due to the substantial enhancement of the hole-mobility [12]. On the other
hand, R.Y. Korotkov et al. investigated Mg-O co-dopedGaN, obtaining hole concentrations
de 2 × 1018 cm−3 at 295 K, with resistivity from 8 to 0.2 Ωcm [13]. In another work, H.
Pan et al. showed a novel application of photocatalytic activity in the visible light region
realized with Cr-O co-dopedGaN [14]. P-type GaN can be obtained by incorporating
divalent elements such as Zn, Be, and Mg, where the co-doping of two different dopants
could produce a low resistivity P-type GaN. K.S. Kim et al. showed the obtaining of Mg-Zn
co-dopedGaN grown by MOCVD, showing a P-type GaN with low electrical resistivity of
0.72 Ωcm and a high hole concentration of 8.5 × 1017 cm−3 [15,16]. In general, there is poor
research in the literature regarding the Mg-Zn co-dopedGaN material.

This investigation shows the synthesis of Mg-Zn co-dopedGaN powders via the nitri-
dation of the Ga-Mg-Zn metallic solution in ammonia flow at 1000 ◦C for 2 h, which could
have application in the deposit of thin films by RF magnetron sputtering using laboratory-
prepared targets. This is a way of contributing to research on the co-doping of GaN with
Mg-Zn. To compare the results obtained of Mg-Zn co-dopedGaN powders, undoped GaN
powders were obtained by the nitridation of metallic gallium, as was reported in our before
studies [17]. On the other hand, the characterizations X-ray diffraction patterns (XRD),
scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray photo-
electron spectroscopy (XPS), transmission electron microscopy (TEM), photoluminescence
(PL), and Raman scattering were carried out to know the structural and optical properties
of the Mg-Zn co-dopedGaN powders.

2. Materials and Methods

Mg-Zn co-dopedGaN powders were synthesized using metallic gallium (99.999%),
metallic magnesium, and metallic Zn as reagents. Moreover, as the source of nitrogen atoms,
ammonia (NH3) was used. To obtain the Mg-Zn co-dopedGaN, the powders were used
1.32 g of metallic gallium (19.02 mmol), 5.20 mg of metallic magnesium (0.21 mmol ∼= 0.4%),
and 7.80 mg of metallic zinc (0.12 mmol ∼= 0.6%). To obtain the undoped GaN powders,
3.37 g (48.41 mmol) of metallic gallium was used, following the process realized in our
before work [18]. The reaction formulated to obtain the Mg-Zn co-dopedGaN material is
the following [17]:

2Ga−Mg(l)− Zn(l) + 2NH3(g)→ 2GaN : MgZn(s) + 3H2(g) (1)

2.1. Mg-Zn Co-Doped GaN Powders

To begin the process of synthesis of Mg-Zn co-dopedGaN powders, the general prepa-
ration of the metallic solution was carried out according to the work of Gastellou et al. [18].
Once obtained, the metallic solution was introduced inside a chemical vapor deposition
furnace (CVD), whereupon the CVD system was purged, and later an N2 flow at 50 sccm
was opened and was allowed to flow into the atmosphere. After, to ensure the diffusion
of Zn atoms into the gallium of the Ga-Zn liquid solution, the temperature was increased
to 440 ◦C for 40 min [18,19]. On the other hand, to ensure the diffusion of Mg atoms into
the metallic gallium of the Ga-Mg-Zn metallic solution, the temperature was increased to
670 ◦C for 40 min (20 ◦C above the Mg melting point) [20,21]. Later, once the temperature
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had been stabilized at 670 ◦C and 40 min has passed, the N2 flow was closed, and an NH3
flow at 150 sccm was introduced inside the furnace. At this moment, the temperature of
the Ga-Mg-Zn metallic solution was increased to 900 ◦C for 40 min for its homogenization
process (first stage), and finally the Ga-Mg-Zn metallic solution was increased to 1000 ◦C
for 2 h for its nitridation process (second stage). After the nitridation process was finished,
the ammonia flow was closed; then, the temperature was decreased to room temperature
using an N2 flow at 150 sccm to cool the system. The synthesized material was taken out of
the furnace and ground to obtain M-Zn co-dopedGaN powders.

The synthesis does not require a cleaning process due to the fact the Mg atoms and Zn
atoms were defunded in the Ga metallic and transformed into the final material. The total
weight synthesized of Mg-Zn co-dopedGaN powders was 1.5661 g (9.02 mmol), which
indicates that there was a nitrogen incorporation of 233.10 mg (16.65 mmol). A diagram of
the synthesis process is shown in Figure 1, while Table 1 shows the parameters considered
in the synthesis of Mg-Zn co-dopedGaN powders.

Table 1. Parameters considered in the synthesis of Mg-Zn co-dopedGaN powders.

Ga
Weight

(g)

Mg
Weight

(mg)

Zn
Weight

(mg)

Zn
Homogenization

Temperature
(◦C)

Mg
Homogenization

Temperature
(◦C)

Nitridation
Temperature

(◦C)

Nitridation
Time

(h)

1.32 5.20 7.80 440 670 1000 2
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Figure 1. Diagram to obtain the Mg-Zn co-dopedGaN powders. 
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2.2. Characterizations

The Mg-Zn co-dopedGaN and undoped GaN powders were characterized by X-ray
diffraction (XRD) using a Philips X’PERT MPD equipment with a wavelength (Cu Kα)
of 1.5406 Å. The measurements of XRD patterns were realized with a range from 30◦

to 60◦. The surface morphology and the elemental analysis (SEM/EDS) of the Mg-Zn
co-dopedGaN, and of the undoped GaN powders, were obtained using JEOL JSM-7800F
Schottky Field Emission equipment. X-ray photo-electron spectroscopy (XPS) characteriza-
tions were carried out using an Escalab 250Xi Brochure equipment with an energy range
from 0 to 1400 eV for the Mg-Zn co-dopedGaN powders. Transmission electron microscopy
(TEM) was obtained using JEOL JEM-2010 equipment for the Mg-Zn co-dopedGaN and
the undoped GaN powders. Photoluminescence spectra (PL) were measured at room
temperature with an excitation wavelength of 325 nm (UV) and a power of 55 mW, us-
ing an IK series He–Cd LASER for the Mg-Zn co-dopedGaN, and undoped GaN pow-
ders. Finally, the Raman scattering characterizations for the Mg-Zn co-dopedGaN and
the undoped GaN powders were obtained using a Horiba Jobin Yvon HR-800 Micro
Raman spectrophotometer.

3. Results and Discussion
3.1. Structure

Figure 2 shows a comparison between the XRD patterns of the undoped GaN powders
(Figure 2a), and the Mg-Zn co-dopedGaN powders (Figure 2b). In Figure 2, all of the
peaks of both X-ray diffraction patterns were indexed in the ICDD pdf card: 00-050-0792.
The a peak was found at plane orientation (100), b at (002), c at (101), d at (102), and e at
(110). The lattice constants a = 3.1890 Å and c = 5.1855 Å were calculated for the hexagonal
structure, with a ratio c/a of 1.626 belonging to space group P63mc(186). Nitrides oxide
or pure metals were not detected, indicating the adequate diffusion of the co-dopants
of Mg-Zn into GaN powders. Moreover, Figure 2 shows that there is no a significant
difference between the diffraction patterns Figure 2a,b. Both diffraction patterns showed
narrowed peaks, which could indicate the presence of large crystals in both samples.
FWHM measurements were carried out for the X-ray diffraction pattern of Figure 2b; the
(100) plane orientation had 0.1634◦, 0.1708◦ for (002), 0.1786◦ for (101), 0.2130◦ for (102), and
0.2424◦ for (110). Table 2 shows the measurements for peak position, FWHM, crystal size,
and interplanar spacing for Figure 2a,b. Calculations of the displacement of the Figure 2b
in relation to Figure 2a based on Table 2 were carried out, finding a displacement to the
right. The a peak had a displacement of 0.0493◦, the b peak of 0.0527◦, the c peak of 0.0513◦,
the d peak of 0.0527◦, and the e peak of 0.0486◦. Using the ICCD PDF-4+ 2022 software
and the Debye-Scherrer [22], the crystal size had a value of 48.61 nm for the undoped GaN
powders and 46.88 nm for the Mg-Zn co-dopedGaN powders.

Table 2. Values calculated for peak position, FWHM, crystal size, and interplanar spacing for undoped
GaN and Mg-Zn co-dopedGaN powders.

Undoped GaN Powders Mg-Zn Co-Doped GaNPowders

Peak
Peak

Position
(Degree)

FWHM
(Degree)

Crystal
Size (nm)

Interplanar
Spacing

(Å)

Peak
Position
(Degree)

FWHM
(Degree)

Crystal Size
(nm)

Interplanar
Spacing

(Å)

a 32.3247 0.1697 50.8913 2.7672 32.3740 0.1634 52.8691 2.7631
b 34.4971 0.1615 53.7662 2.5978 34.5498 0.1708 50.8475 2.5939
c 36.7747 0.1742 50.1737 2.4419 36.8260 0.1786 48.9618 2.4386
d 48.0318 0.1956 46.4284 1.8926 48.0845 0.2130 42.6433 1.8907
e 57.7078 0.2266 41.7941 1.5962 57.7565 0.2424 39.0862 1.5949
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Figure 2. (a) XRD pattern of the undoped GaN powders; (b) XRD pattern of the Mg-Zn co-doped
GaN powders.

3.2. Electron Microscopy

Figure 3a shows the surface morphology of the undoped GaN, which demonstrated
hexagonal crystals for the micrograph at 2500×, whose values were 20.76 µm in width and
23.16 µm in length. Moreover, the micrograph at 5000× also showed hexagonal crystals
of different sizes with values of 6.28 µm in width and 7.80 in length. On the other hand,
Figure 3b showed the surface morphology of the Mg-Zn co-dopedGaN powders, which
had an irregular shape with a ribbon-like structure with an average length of 8.63 µm. The
surface morphology of the ribbon-like structure of the Figure 3b could be related to the Mg
and Zn incorporation via diffusion into the GaN. It is possible that during the formation
of the ribbon-like structure, oxygen or carbon interstitial atoms are desorbed of the GaN
structure, whereupon magnesium or zinc replace the vacancies; this way, the co-doping
with Mg and Zn into the GaN structure is carried out.

Figure 4a presents the energy dispersive spectroscopy (EDS) spectrum corresponding
to Figure 3a, which demonstrated the elemental contributions of gallium and nitrogen;
besides copper belonging to the sample holder, there are few traces of non-intentional
impurities of oxygen and carbon. Figure 4b shows the EDS spectrum corresponding
to Figure 3b, which showed the elemental contributions of gallium (Kα 9.241 eV and
Lα 1.098 eV), and nitrogen (Kα 0.392 eV). Figure 3b also showed few traces of oxygen
and carbon. It is important to mention that Figure 3b demonstrated the presence of zinc
(Lα 1.012 eV) and magnesium (Kα 1.253 eV), with atomic percentages of 0.60% and 0.32%,
respectively. Furthermore, the atomic percentages for gallium and nitrogen of Figure 3b
were 49.66% and 31.81%, respectively.
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Figure 4. (a) EDS spectrum of SEM image of Figure 3a for the undoped GaN powders, (b) EDS
spectrum of SEM image of Figure 3b for the Mg-Zn co-doped GaN powders.

Figure 5a shows the TEM micrograph of the sample of Mg-Zn co-dopedGaN powders,
which had values of 496.5 nm in width and 606.8 nm in length, for a magnification at
200 nm. Figure 5b shows the electron diffraction pattern for the undoped GaN powders,
which can be observed as a distribution uniform of GaN atoms. However, Figure 5c
showed the electron diffraction pattern for the Mg-Zn co-dopedGaN powders, where a
greater scattering of impurities or co-dopant atoms in the GaN sample was observed. This
scattering of impurities might indicate the incorporation of the diffusion of Mg and Zn
atoms into GaN, which agrees with the ribbon-like structure in Figure 3b and the EDS
spectrum in Figure 4b.
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Figure 5. (a) TEM micrograph of the sample of Mg-Zn co-doped GaN powders, (b) electron diffraction
pattern of the undoped GaN powders, and (c) electron diffraction pattern of the Mg-Zn co-doped
GaN powders.

3.3. X-ray Photo-Electron Spectroscopy

Figure 6 presents the XPS spectra of the Mg-Zn co-doped GaN powders. Figure 6a
presents the peaks for high energies of Ga 2P1/2 and Ga 2P3/2, with values of 1146.28 eV and
1119.76 eV, respectively. Figure 6b depicts the N 1s peak with an energy value of 399.29 eV.
Figure 6c shows the Zn 2P3/2 peak with an energy value of 1019.49 eV, whose binding
energy belongs to L3 level. Figure 6d depicts the Mg 2P3/2 peak with a binding energy
of 49.31 eV. It is important to mention that during the obtaining process of the Mg-Zn
co-doped GaN powders, it was attempted to reduce the presence of oxygen and carbon,
which can act as non-intentional impurities. However, Figure 6e shows the elemental
contribution of the O 1s peak with a binding energy of 532.72 eV, and the Figure 6f shows
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the presence of the elemental contribution of C 1s with a value of 285.68 eV, which could
affect the optical properties of Mg-Zn co-doped GaN.
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3.4. Photoluminescence

Figure 7 shows the PL spectrum of the undoped GaN powders (black curve) and
the PL spectrum of the Mg-Zn co-doped GaN powders (red curve). The a peak depicts
high emission located at 3.40 eV (364.70 nm) due to the band-to-band transition, which
corresponds to the ultraviolet emission for the hexagonal GaN. The b peak had an emission
band located at 3.34 eV (371.25 nm) corresponding to the undoped GaN powders, which
had been observed in samples with excitons bound to structural defects of GaN, perhaps
related to the high concentration of stacking faults [23]. The c peak corresponds to the
blue emission band located in a range from 2.80 eV to 2.90 eV (442.85–427.58 nm), which
is characteristic of magnesium-doped GaN and zinc-doped GaN [24,25]. Figure 8 shows
the decomposition of the c peak, where is possible to observe the emission of 2.90 eV
(g peak) related to magnesium-doped GaN. Furthermore, Figure 8 also shows the emission
of 2.80 eV (h peak) related to zinc-doped GaN. The d peak was located in a yellow emission
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band with an energy of 2.22 eV (558.14 nm) for the undoped GaN powders, which was
related to Ga vacancies (VGa) and the substitutional atoms of carbon or oxygen (Figure 3a),
indicating the obtaining of N-type GaN. On the other hand, the yellow emission band for
the Mg-Zn co-dopedGaN powders was null due to the P-type GaN samples [25]. The e
peak had an emission with energy located at 1.70 eV (729.41 nm). This red emission band
has been observed in heavily Mg-doped P-type GaN [23]. Finally, the f peak showed an
emission in the red part of the spectrum at 1.67 (742.51 nm), which has been observed in
Ga-lean samples. Figure 9a shows the yellow luminescence in undoped GaN powders,
while Figure 9b shows the violet-blue luminescence of the Mg-Zn co-doped GaN powders,
which were obtained with the excitation of a UV lamp “Blak-Ray UVL-56 (366 nm)”.
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Figure 9. (a) Yellow luminescence of the undoped GaN powders; (b) violet-blue luminescence of the
Mg-Zn co-dopedGaN powders.

3.5. Raman Scattering

Figure 10a shows the Raman spectrum for the undoped GaN powders (red curve),
and Figure 10b shows the Raman spectrum for the Mg-Zn co-doped GaN powders (black
curve). Both Raman spectra show the classical vibration modes A1(TO) and E2(high) for
the hexagonal GaN structure. However, the Raman spectrum for the Mg-Zn co-dopedGaN
powders also showed the vibration mode E2(low). The E2(high) vibration mode has a
similar frequency for the undoped GaN and Mg-Zn co-dopedGaN powders, with a value
of 557.38 cm−1. The vibration mode A1(TO) for undoped GaN powders had a frequency
of 525.34 cm−1, while the vibration mode A1(TO) for Mg-Zn co-dopedGaN powders was
521.15 cm−1, which depicts a slight shift to the left of 4.19 cm−1 for the Mg-Zn co-dopedGaN
powders compared to undoped GaN powders. This slight shift of the phononic vibration
mode could be related to the incorporation by the diffusion of magnesium and zinc co-
dopants atoms into GaN [24,25]. Furthermore, a shoulder was located at 648.05 cm−1

(Figure 10b), which also might be indicative of the incorporation of magnesium and zinc
co-dopants atoms into GaN powders.
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4. Conclusions

Mg-Zn co-doped GaN powders were obtained via nitridation of a metallic solution of
Ga-Mg-Zn at 1000 ◦C for two hours in ammonia flow. XRD diffraction patterns for Mg-Zn
co-doped Ga powders showed a crystal size average of 46.88 nm, with a shift towards
greater angles compared to undoped GaN powders. The SEM micrographs demonstrated
an irregular shape with a ribbon-like structure and an average length of 8.63 µm for
Mg-Zn co-doped GaN powders. EDS showed the presence of zinc (Lα 1.012 eV) and
magnesium (Kα 1.253 eV) as co-dopants atoms, while XPS characterization showed the
presence of elemental contributions of magnesium (49.31 eV) and zinc (1019.49 eV), which
agree with the EDS analysis. TEM micrographs showed a greater scattering of impurity
atoms for the Mg-Zn co-doped GaN powders compared to undoped GaN powders. The
photoluminescence spectrum for Mg-Zn co-doped GaN powders showed two fundamental
emissions: the first emission located at 3.40 eV(364.70 nm) related to band-to-band transition
for hexagonal GaN and a second emission located in a range from 2.80 eV to 2.90 eV
(442.85–427.58 nm), which are values characteristics of Mg-doped GaN and Zn-doped GaN
powders. Raman scattering demonstrated a shoulder at 648.05 cm−1, which could indicate
the incorporation of the Mg and Zn co-dopants atoms into the GaN structure.
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