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Abstract: The thermal warpage of a server-computer-used DIMM socket-PCB assembly after the
solder reflow process is studied experimentally, theoretically, and numerically, especially along the
socket lines and over the entire assembly. Strain gauge and shadow moiré are used for determining
the coefficients of thermal expansion of the PCB and DIMM sockets and for measuring the thermal
warpages of the socket-PCB assembly, respectively, while a newly proposed theory and a finite ele-
ment method (FEM) simulation are used to calculate the thermal warpage of the socket-PCB assembly
in order to understand its thermo-mechanical behavior and then further identify some important
parameters. The results show that the theoretical solution validated by the FEM simulation provides
the mechanics with the critical parameters. In addition, the cylindrical-like thermal deformation and
warpage, measured by the moiré experiment, are also consistent with the theory and FEM simulation.
Moreover, the results of the thermal warpage of the socket-PCB assembly from the strain gauge
suggest a warpage dependence on the cooling rate during the solder reflow process, due to the
nature of the creep behavior in the solder material. Finally, the thermal warpages of the socket-PCB
assemblies after the solder reflow processes are provided through a validated FEM simulation for
future designs and verification.

Keywords: thermal warpage; DIMM socket; printed circuit board; strain gauge; shadow moiré; finite
element method

1. Introduction

The thermally induced warpages of integrated-circuit (IC) package- or component-PCB
(printed circuit board) assemblies after the solder reflow processes, due to the mismatch of
the coefficients of thermal expansion (CTEs) of those packages or components with the PCB,
create problems in the later-on assembly and the solder joint reliability under in-service
thermal cycling [1]. Therefore, measurement and analysis approaches to this problem are
of importance and needed in order to provide further control and reduction in the thermal
warpage of the package- or component-PCB assembly after the reflow processes. Reliable
and easy-to-use strain gauges [2] have been used in measuring the mechanical strains on
PCBs and packages [3] and on the CPU assembly [4], as well as the thermally induced
curvatures and warpages of the PCB [5], flip-chip, and 2.5 D IC packages [6]. Additionally,
a shadow moiré method [7–9] for measuring the full-field out-of-plane deformations of
the specimens has been also used for the PBGA packages under thermal loading [10–12].
Both well-developed experimental methods will be applied in this study as well. The
configuration and detailed geometry of a dual in-line memory module (DIMM) socket-PCB
assembly used in a server computer system is shown for this study in Figure 1, including a
socket for the DIMM in Figure 1a with 288 Cu pins, a socket-PCB assembly with 24 DIMM
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sockets in Figure 1b representing the full-assembly specimen of interest, and a solder joint
of a Cu pin for the DIMM socket on the PCB in Figure 1c. Excessive thermal warpage of
the DIMM socket-PCB assembly after the solder reflow processes could generate assembly
and reliability problems. The problems include the difficulty of a latch engagement and
the shift of contact points with gold fingers in the DIMM socket, and a later-on installation
with a flat metal plate on the full socket-PCB assembly during structural reinforcement.
Therefore, the thermal warpage of the DIMM socket-PCB assembly along the socket lines
and over the entire assembly after the solder reflow process will be thoroughly investigated
experimentally, theoretically, and numerically in this study.
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2. Methodologies

The methods used in this study include experimental measurements and theoretical
and finite element analyses. In the experimental measurements, strain gauge and shadow
moiré were used for determining the CTEs of the PCB and DIMM socket as well as for
measuring thermal warpages of the socket-PCB assembly, respectively, while theoretical
and finite element analyses were used to calculate the thermal warpage of the socket-PCB
assembly and further identify important parameters in order to understand its thermo-
mechanical behavior. These methods will be briefly illustrated in this section.

2.1. CTE and Thermal Deformation Measurement by Stain Gauges

The typical strain gauge measurement [2] at elevated temperatures can be given as

εa = εt +
(γg + γw)

Sg
∆T (1)

where εa is an apparent strain which is directly obtained from a strain gauge measurement
system, εt is a true strain which is an actual strain on the measured point of the specimen,
Sg is a gauge factor, ∆T is thermal loading, and γg and γw are the temperature coefficients
of resistivity of gauge grid metal material and connected lead wire, respectively.

For measuring the thermal strains of the PCB during the heating and cooling processes,
back-to-back strain gauges were adhered at a specific position on both the top and bottom
surfaces of the PCB. The apparent strains on the top and bottom surfaces (εa,top and εa,bot)
of the PCB can be described individually in terms of the true strains on the top and bottom
surfaces (εt,top and εt,bot) as

εa,top = εt,top +
(γg + γw)

Sg
∆T (2)

εa,bot = εt,bot +
(γg + γw)

Sg
∆T (3)

The strain data at various temperatures can be further converted into the bending
strains (εb) and bending curvatures (k) of the PCB by Equations (4) and (5), respectively.

εb = (εa,bot − εa,top)/2 = (εt,bot − εt,top)/2 (4)

k = 2εb/t = (εt,bot − εt,top)/t (5)

where t is the PCB thickness. Then, the out-of-plane displacement (deformation) w of the
PCB under different temperatures can be further determined by Equation (6) with a given
curvature k and distance x from the center.

w = kx2/2 (6)

As for the CTE measurement of the DIMM socket, the thermally induced strains across
the thickness of the socket shown in Figure 2 consist of free thermal strain εα from thermal
expansion and pure bending strains (εb and ε’b) from the curvatures in the x- and y-axis
(kx and ky).



Materials 2023, 16, 3233 4 of 23Materials 2023, 15, x FOR PEER REVIEW 4 of 26 
 

 

 
Figure 2. Strain distributions across the thickness of the DIMM socket under thermal loading. 

If the strain gauge is attached on the front surface in the neutral axis, the strain (εG3, 
Front) obtained from such gauge can be written as 

'
,3 0 bFrontG εεε α ++=  (7)

Similarly, the strain (εG3, Backt) obtained from the back surface gauge is 

'
,3 0 bBackG εεε α −+=  (8)

The free thermal strain εα can be determined by  

2
,3,3 BackGFrontG εε

εα
+

=  (9)

Thus, the CTE (α) for the socket is obtained as  

TΔ
Δ= αεα  (10)

If ordinary strain gauges (not more expensive thermal gauges) are used in the CTE 
measurement of materials (such as the PCB and DIMM socket in this study), the temper-
ature effect on gauge grid metal material and connected lead wire should be taken into 
account according to Equation (1). The approach used here was to adopt the concept of a 
compensation CTE (αcomp) by testing one known CTE material. A quartz (SiO2) plate with 
α = 0.5 ppm/°C was tested using front and back strain gauges, shown in Figure 3. The 
average strain is plotted against the temperature. The line slope of average strain is the 
apparent CTE of −5.72 ppm/°C, but the CTE of quartz is actually 0.5 ppm/°C. Therefore, 
the compensation CTE (αcomp) obtained from our gauge system is 6.22 ppm/°C. 
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If the strain gauge is attached on the front surface in the neutral axis, the strain
(εG3, Front) obtained from such gauge can be written as

εG3,Front = 0 + εα + ε′b (7)

Similarly, the strain (εG3, Backt) obtained from the back surface gauge is

εG3,Back = 0 + εα − ε′b (8)

The free thermal strain εα can be determined by

εα =
εG3,Front + εG3,Back

2
(9)

Thus, the CTE (α) for the socket is obtained as

α =
∆εα

∆T
(10)

If ordinary strain gauges (not more expensive thermal gauges) are used in the CTE
measurement of materials (such as the PCB and DIMM socket in this study), the temper-
ature effect on gauge grid metal material and connected lead wire should be taken into
account according to Equation (1). The approach used here was to adopt the concept of a
compensation CTE (αcomp) by testing one known CTE material. A quartz (SiO2) plate with
α = 0.5 ppm/◦C was tested using front and back strain gauges, shown in Figure 3. The
average strain is plotted against the temperature. The line slope of average strain is the
apparent CTE of −5.72 ppm/◦C, but the CTE of quartz is actually 0.5 ppm/◦C. Therefore,
the compensation CTE (αcomp) obtained from our gauge system is 6.22 ppm/◦C.
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2.2. Shadow Moiré Measurements

Model PS600 provided by Akromatrix, one of the commercial shadow moiré systems,
is shown in Figure 4a and was used in this study. The principle of the out-of-plane defor-
mation measurement in the system is schematically shown in Figure 4b by illuminating the
light through a mechanical grating on the surface of the specimen. The camera is for cap-
turing the moiré fringe contours, while the movement of the stage driven by a servomotor
is for phase shafting in order to enhance the spatial resolution of the measurement. This
system features a spatial resolution of 2.5µm at s temperature range from 0 to 300 ◦C, with
a heating rate of 2 ◦C/s and cooling rate of 1 ◦C/s. Two kinds of test samples, the bare PCB
and a socket-PCB assembly with 6 sockets, shown in Figure 5a,b, respectively, were tested
in the moiré system by measuring the surfaces of their PCBs.
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Figure 5. Configurations of the test specimens: (a) the bare PCB and (b) a socket-PCB assembly with
6 sockets (a local assembly).

2.3. Theoretical Analysis and FEM Simulation

For the theoretical analysis, a schematic of a quarter model of a socket-PCB assembly
with one socket and its related geometric and material parameters are shown in Figure 6.
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Based on the Suhir theory [13,14] and its modified version [15], the thermal deflection
w (x) of the socket-PCB assembly can be revised by considering the beam-like deformation
and expressed as

w(x) =
t∆α∆T
2λD

[
1
2

x2 − cosh kax− 1
ka2 cosh kal

]
(11)

where t = t1 + t2 + t3; ka =
√

λ
κ ; κ = t1

3G1b +
2t2

3G2b +
t3

3G3W ; Gi =
Ei

2(1+vi)
; λ = 1

E1t1b +
1

E3t3W +

t2

4D ; and D =
E1t3

1b
12 +

E2t3
2b

12 +
E3t3

3W
12 .

The thermal load is
∆T = Tf − Ti (12)
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where Tf is a final temperature and Ti is an initial one. The difference of thermal expansion
coefficient (∆α) between the socket (α1) and the PCB (α3) is

∆α = α3 − α1 (13)

The E, ν, α, and t denote the elastic modulus, Poisson’s ratio, the thermal expansion
coefficient, and the thickness of each layer, respectively, with subscripts from 1 to 3 repre-
senting the socket, effective adhesive, and PCB. The b and W are the width of the socket (or
effective adhesive) and the PCB, respectively. The above-mentioned equations can be used
for thermal warpage calculations of the one-socket-PCB assembly.

For the FEM simulation, a quarter model for the one-socket-PCB assembly is shown in
Figure 7a with two planes of symmetry and a zoomed-in area. The roomed-in area has two
different geometries shown in Figure 7b: one with a full model (including socket housing,
Cu pins, and solder joints) and the other with a simplified socket model (only including
socket housing and effective material). Note that the simplified socket model used here
is to prepare for analyzing more complicated structures of a multi-socket-PCB assembly.
Material properties used in the theoretical analysis and FEM simulation are listed in Table 1,
in which the α for the socket and PCB and the E for the socket were actually measured in
this study, and the rest of them except for E2 were provided by material vendors. The E2 for
the effective material of the pin solder joint is varied in the analyses and then approximated
by the FEM simulation.
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Table 1. Material properties for the theoretical analysis and FEM simulation. (Note: The α for the
socket and PCB and the E for the socket were measured in this study, while the rest of them except
for E2 were provided by material vendors.)

Material E (GPa) α (ppm/◦C) ν

Socket 8.7 14 0.3
Pin Solder Joint

(Effective) E2 8.1 0.3

PCB 20 18 0.42
Cu Pin 120 16.9 0.3
Solder 30 22 0.3

3. Results and Discussion

The obtained results of the measurements and modelling for the thermally induced
warpages of the DIMM socket-PCB assembly will be extensively discussed individually in
this section, including material property measurements of the socket and the PCB, FEM
modelling, thermal warpage measurements, warpage comparisons from different analyses,
and warpages of the socket-PCB assembly after solder reflow.

3.1. Material Property Measurements

(a) Elastic Modulus and CTE of DIMM Socket

Since the DIMM socket is a hollow structure with many Cu pins inside, it is difficult to
calculate or measure its elastic modulus. The effective elastic modulus was adopted and
determined by performing the three-point bending test for the socket shown in Figure 8a,
associated with the related FEM modelling of the test in Figure 8b, and then the effective
elastic modulus can be determined as 8.7 GPa from the load–displacement curves obtained
from the test and FEM simulation shown in Figure 8c. Furthermore, both bending strain
distributions shown in Figure 8d across the thickness of the socket with and without Cu
pins from the FEM simulation reveal that the neutral axis (with zero strain) is located at
half of the socket thickness. This helps the CTE measurement of the socket using the strain
gauge. Since the data of the CTE are more influential than those of the elastic moduli in
terms of the thermal warpage according to Equation (11), the CTEs of the socket and PCB
should be precisely determined later.

Moreover, typical strain data from the front and back gauges located at the neutral
axis of a socket during the second, third, and fourth thermal loading cycles were ob-
tained and are shown in Figure 9a. Note that the average of the front and back strains
represents the thermal expansion strain, and the slope of the curve is the CTE, based on
Equations (9) and (10). The obtained CTEs need to be added to αcomp (=6.22 ppm/◦C) to
exclude the thermal effect on the gauge and the connected wires. Then, the CTEs of three
sockets (no. 1 to no. 3), obtained from gauges for these three thermal cycles, are shown in
Figure 9b with their average of 14 ppm/◦C. However, the strain data from the front and
back gauges for those three sockets during the first thermal loading cycle are shown in
Figure 10a, which are drastically dissimilar to those in Figure 9a, especially for temperatures
beyond 120 ◦C. The CTE data extracted from the first thermal cycle are further shown in
Figure 10b in comparison with those from the second to fourth cycles. The CTEs of three
sockets are found to be not stable for the first thermal cycle, especially at temperatures
higher than 120 ◦C, but stable after the first thermal cycle. Such variability in the CTEs may
be attributed to the partially cured polymer of the socket before the first thermal cycle.
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Figure 8. (a) Three-point bending test for a socket, (b) FEM modelling of the test, (c) determination of
effective elastic modulus from load–displacement curves obtained by the test and FEM simulation,
and (d) bending strain distributions across the thickness of the socket with and without Cu pins from
the FEM simulation.

(b) CTE of Bare PCB

The strain gauges were also applied for the CTE measurement of the bare PCB. Typical
strain data from three pairs of the front and back gauges (located at GA, GB, and GC) on the
PCB under thermal loading are shown in Figure 11a. The corresponding average strains
are shown in Figure 11b for those three pairs of gauges during two thermal cycles and then
the obtained average CTE of the bare PCB are about 18 ppm/◦C. It is found that, unlike
the socket, the CTE data of the bare PCB is much more stable and consistent during the
thermal cycling.

3.2. FEM Modelling

(a) Model Validation and Comparison with Theory

To simplify the FEM calculation, the simplified socket model (shown in Figure 7b)
was adopted in the simulation instead of the full socket model. The results of thermally
induced warpages (at point a’) for a one-socket-PCB assembly are shown in Figure 12a
with various effective moduli (E2) of the joint under different thermal loadings (∆T). It is
apparent that the warpage linearly depends on the thermal loading, but depends quite
nonlinearly on the effective moduli of the joint. Meanwhile, for replacing the full socket
model with the simplified one, the acceptable E2 should be determined and used for the
FEM simulation afterward. For this, the thermal warpage obtained from the full socket
model is also plotted in Figure 12a in comparison with those from the simplified one. It can
be seen that the simplified socket model with E2 = 100 MPa can be representative of the full
one with the same warpage values. Moreover, a further comparison of the out-of-plane
deformations (along the line a-a’) of the one-socket-PCB assembly under thermal loading
∆T = 150 ◦C with E2 = 100 MPa is shown in Figure 12b from the FEM simulations with full
and simplified socket models. The consistency of both models is ensured again. Therefore,
it is feasible to apply the simplified socket model associated with E2 = 100 MPa to the rest of
the FEM simulations in this study. The theoretical result of the deformation is also plotted in
Figure 12b, compared with the FEM ones. It is seen that the theoretical solution, with slight
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overprediction, is consistent with both FEM results. For further parametric study, the effect
of the width of the PCB on the thermal warpage of a one-socket-PCB assembly along the
socket line is shown in Figure 13a from the theoretical and FEM analyses for E2 = 100 MPa
and 1000 MPa. Both results indicate that the thermal warpage decreases with increasing
the width of the PCB, and the discrepancy between both results is relatively lower for E2
= 1000 MPa. Furthermore, the effects of effective modulus E2 and thickness t2 are also
demonstrated in Figure 13b from both analyses with W/b = 7.5 under ∆T = 150 ◦C. It can
be seen that the thermal warpage decreases with increasing the thickness t2 but decreasing
the effective modulus E2. However, both parametric effects become relatively insignificant
as the effective modulus E2 is larger than 1000 MPa. It is noted from Figures 12 and 13
that a sight overprediction of the theoretical solution in comparison with the FEM one,
especially for a low effective modulus E2, is also found in the literature [16] due to the
limitation of the plate or beam assumption used in the theoretical formulations. Although
our concern in this study is mainly with the warpage of the assembly, interfacial stresses
are also important and comprehensively discussed [17] in the joint of the assembly.
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first thermal cycle and their comparison with those for the second to fourth cycles.

(b) Local Model vs. Full Model

Since the test specimen is cut from the full socket-PCB assembly, the local model
representing the test specimen has to be ensured to have the same behavior as the full
model. Both local and full models under thermal loading ∆T = 150 ◦C were analyzed by
the FEM simulation. The results of the out-of-plane deformations along the socket line o-a
and their contour maps for the socket-PCB assembly are shown in Figure 14. It is obvious
that, even though both contour maps look quite different due to different settings of the
zero-deformation positions, the out-of-plane deformations along the socket line for both
models are almost identical. Therefore, investigating the test specimen by experimental
and FEM analyses can help in understanding the thermal deformation behavior of the full
socket-PCB assembly.

3.3. Thermal Warpage Measurement

(a) Bare PCB

The out-of-plane deformation contours of the bare PCB from the moiré measurement
at various temperature are shown in Figure 15a, and the out-of-plane deformations of the
bare PCB along three socket lines (A, B, and C) in which the sockets will be located are
plotted in Figure 15b. Note that the positive value of the deformation is concave, while
the negative value indicates convex. The key line is a line with six through vias for fixing
the socket on the PCB before the solder reflow. It is shown that the bare PCB at room
temperature (T = 30 ◦C) is slightly concave and becomes flatter after heating up. The
thermally induced deformations of two bare PCB specimens along those three lines at
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various temperature loadings (∆T) are shown in Figure 16a, which were extracted from the
moiré data. The corresponding warpages of the two bare PCB specimens along the socket
lines at various thermal loadings are shown in Figure 16b. The results indicate that the bare
PCB subject to the thermal heat loading deforms convex with a socket line warpage value
between −5 µm and −25 µm at∆T = 150 ◦C.
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Figure 12. (a) Thermally induced warpage (plus an inset of full-field deformation contours) of a
one-socket-PCB assembly with various effective moduli of the joint under different thermal loadings
(∆T) from FEM with full and simplified socket models, and (b) the out-of-plane deformations (along
the line a-a’) of the one-socket-PCB assembly under thermal loading ∆T = 150 ◦C, from the theory
and FEM simulations with full and simplified socket models.
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Figure 14. The out-of-plane deformations along the socket line o-a and their contour maps for the
socket-PCB assembly under thermal loading ∆T = 150 ◦C, determined from the FEM simulation using
a local model and a full model.

(b) Socket-PCB Assembly

The out-of-plane deformation contours of the six-socket-PCB assembly, obtained from
moiré measurements at various temperatures, are shown Figure 17a and their out-of-
plane deformations of this assembly along the socket lines (A to C) are also plotted in
Figure 17b with setting zero deformation at the key line. It can be seen that the concave-
shape deformation increases with an increase in temperature. Furthermore, by subtracting
the deformation at 30 ◦C, thermally induced deformations for two samples of the six-socket-
PCB assembly along the socket lines at various temperature loadings (∆T), obtained from
moiré measurements, are shown in Figure 18a, and the corresponding warpages of those
two samples along the socket lines at various temperature loadings (∆T) are presented in
Figure 18b. Those results indicate that the thermally induced warpage along the socket lines
increases linearly with temperature loading and its variation is less significant between the
different socket lines as well as between the samples.

3.4. Comparisons of Thermal Warpages from Moiré, Gauges, Theory, and FEM

The thermally induced deformations of the six-socket-PCB assembly along the socket
lines (line o-a) at various temperature loadings (∆T) are shown in Figure 19a from moiré
measurements, theory, and FEM simulation, and in Figure 19b for their corresponding
warpages along the socket lines at various temperature loadings (∆T). Note that moiré
data presented here have been modified by considering the thermal warpage of the bare
PCB observed in Figure 16b, while the b = 6 × 6.4 mm = 38.4 mm and W = 105 mm were
used in the theoretical analysis. It is found that all moiré, theoretical, and FEM results
are reasonably consistent, either for thermally induced deformations or warpage along
the socket lines. Moreover, the front and back gauges located at the PCB near the middle
of the socket lines on the socket-PCB assembly were used for measuring the bending
strains (or curvature) under two thermal loading cycles. The obtained data are shown
in Figure 20a for the apparent strains from the front and back gauges under two thermal
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cycles. Additionally, the gauge-determined corresponding warpage along the socket line is
obtained and shown in Figure 20b by converting those strains to bending strain, curvature,
and warpage data using Equations (4)–(6), respectively. It is found that the thermally
induced warpage along the socket line, measured by the gauges, increases linearly with
temperature at the beginning, but starts dropping near T = 180 ◦C. This turning-around
mechanism cannot be clearly understood at this moment but could be discussed later. It is
also shown that the gauge results are in good agreement with the moiré data, especially for
those along the socket line A.
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Figure 16. (a) Thermally induced deformations of two bare PCB specimens along the socket lines
at various temperature loadings, obtained from moiré measurements, and (b) the corresponding
warpages of the two bare PCB specimens along the socket lines (A, B, and C) at various tempera-
ture loadings.

3.5. Warpage of Socket-PCB Assembly after Solder Reflow

The cooling-rate effect on thermally induced warpages of the six-socket-PCB assembly
after solder reflow was also studied. The gauge results of the warpage along the socket lines
with two cooling cycles each at two different cooling rates (0.6 ◦C/min and 1.2 ◦C/min,
corresponding, respectively, to 6 h and 3 h of cooling time from 250 ◦C to 30 ◦C) are shown
in Figure 21, compared with those from the theory and FEM simulation. Note that the
negative value of the warpage indicates the concave-down deformation. It is found that
the zero thermal warpages are maintained down to 180 ◦C from 250 ◦C during the cooling,
and those warpages have lower values with lower cooling rates, but the theoretical and
FEM values give an upper bound for those. The reason behind it is that the lead-free solder
(with a melting temperature of 217 ◦C) used here is soft with a strong creep (visco-plastic)
behavior at high temperatures and it could not generate a constraint between the socket
and PCB until the temperature reached 180 ◦C. Such a behavior has also been observed
in a PBGA package-PCB assembly [11]. Additionally, the cooling-rate dependency of the
thermal warpage is caused by the creep behavior of the solder joint. However, since the
fast cooling rate of around 60 ◦C/min is generally adopted in the reflow process, the FEM
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simulation without considering the creep behavior might give a good prediction of the
thermal warpage of the socket-PCB assembly after the solder reflow. From the present
observation of the zero warpage induced beyond 180 ◦C, it might indicate there is no
constraint between the socket and PCB due to the very soft material property and high
creep rate of the solder joints. That could be a reason for the warpage drop in the strain
gauge data beyond 180 ◦C, as observed in Figure 20b.
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Figure 18. (a) Thermally induced deformations for two samples of the six-socket-PCB assembly
along the socket lines at various temperature loadings (∆T), obtained from moiré measurements, and
(b) the corresponding warpages of the two samples along the socket lines at various temperature
loadings (∆T).

Based on the zero warpage occurring at the temperature of 180 ◦C, the effects of the
thickness of the PCB (tPCB) and mismatch of CTE (∆α) between the socket and PCB on
the thermally induced warpages of the PCB specimen with six sockets along the socket
line (line o-a) and in the full field (in inserted graph) are shown in Figure 22 from the
FEM simulation for thermal loading ∆T= 30 ◦C−180 ◦C = −150 ◦C. The warpage data can
represent those of the specimen cooling down after the reflow process. The thicknesses of
the PCB here are taken based on the possible values in the application. The results indicate
that the thermal warpage is linearly dependent on the ∆α, but nonlinearly dependent on
the tPCB. The linear dependence on the ∆α and the nonlinear dependence on tPCB can
also be observed in Equation (11) for the thermal deflection from the theoretical solution.
Moreover, the effects of both parameters are also applied to the specimen with 24 sockets
on the PCB (like the configuration in Figure 1b). The results of the thermal warpage at the
corner of the PCB (or the maximum warpage) and the full-field deformation are shown
in Figure 23 with various tPCB and ∆α from the FEM simulation after solder reflow. It can
be seen that, after the solder reflow, the socket-PCB assembly deforms cylindrically with
a maximum warpage at the corner of the PCB and the maximum thermal warpage also
depends linearly on the ∆α and nonlinearly on the tPCB. It is specially noted that the FEM
results shown in Figures 22 and 23 were obtained by assuming that the bare PCB is always
flat during the solder reflow heating and cooling process.
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Figure 19. (a) Comparison of thermally induced deformations of the six-socket-PCB assembly along
the socket lines (line o-a) at various temperature loadings (∆T), obtained from moiré measurements,
theory, and FEM simulations, and (b) the corresponding warpage comparison of the six-socket-PCB
assembly along the socket lines at various temperature loadings (∆T).
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Figure 20. (a) Strain data of the front and back gauges on the six-socket-PCB assembly under two 
thermal loading cycles, and (b) the gauge-determined corresponding warpages of the six-socket-
PCB assembly along the socket lines, compared with moiré results. 
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Figure 23. The effects of the thickness of the PCB (tPCB) and mismatch of CTE (∆α) on thermally
induced warpages at the corner of the PCB for the socket-PCB assembly with 24 sockets from the
FEM simulation ∆T = 30 ◦C −180 ◦C = −150 ◦C.

4. Conclusions

The problem of thermal warpage for the DIMM socket-PCB assembly after the sol-
der reflow processes has been extensively investigated experimentally, theoretically, and
numerically, especially along the socket lines and over the entire assembly. In this study,
a beam-like theoretical solution to this problem has been newly proposed by modifying
the existing Suhir theory. The theoretical solution validated by the finite element method
(FEM) simulation has provided the detailed mechanics, including the critical parameters,
such as the coefficient of thermal expansion (CTE, α), elastic modulus (E2), thickness (t2)
of the effective material (which is a combined material of a solder joint and Cu pin), and
width of the PCB. The CTEs of the socket and the bare PCB have been obtained as 14 and
18 ppm/◦C by the strain gauge measurement, respectively. However, inconsistent data for
the CTE were found for the sockets in the measurement of the first thermal cycle, but the
CTE became constant after the first thermal cycle. Meanwhile, the effective elastic moduli
of the socket and the combined material of solder joint and Cu pin have been determined
by a hybrid method (combined with the experiment and FEM) and FEM simulations with a
simplified model, respectively. Furthermore, the cylindrical-like thermal deformation and
warpage of the bare and socket-PCB have been measured by the moiré experiment, and the
thermally induced warpages of the socket-PCB assembly are also consistent with those from
the theory and FEM simulations. Moreover, the result from the moiré-consistency strain
gauge measurement for the thermal warpage of the socket-PCB assembly has revealed
that the thermal warpage starts at 180 ◦C during the process of cooling down from the
reflow peak temperature (250 ◦C) and is dependent on the cooling rate due to the nature
of the high creep (visco-plastic) behavior of the solder material. Finally, the thermally
induced warpages of the full socket-PCB assemblies along the socket lines and over the
entire assembly after the solder reflow process have been provided in this study by the
validated FEM simulation in terms of the PCB thickness (tPCB) and the CTE mismatch (∆α)
between the socket and PCB for future design and verification.
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