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Abstract: Considering the continuous increase in production costs and resource optimization, more
than a strategic objective has become imperative in the copper mining industry. In the search to
improve the efficiency in the use of resources, the present work develops models of a semi-autogenous
grinding (SAG) mill using statistical analysis and machine learning (ML) techniques (regression,
decision trees, and artificial neural networks). The hypotheses studied aim to improve the process’s
productive indicators, such as production and energy consumption. The simulation of the digital
model captures an increase in production of 4.42% as a function of mineral fragmentation, while
there is potential to increase production by decreasing the mill rotational speed, which has a decrease
in energy consumption of 7.62% for all linear age configurations. Considering the performance of
machine learning in the adjustment of complex models such as SAG grinding, the application of
these tools in the mineral processing industry has the potential to increase the efficiency of these
processes, either by improving production indicators or by saving energy consumption. Finally, the
incorporation of these techniques in the aggregate management of processes such as the Mine to Mill
paradigm, or the development of models that consider the uncertainty of the explanatory variables,
could further increase the performance of productive indicators at the industrial scale.

Keywords: SAG mill; comminution processes; artificial intelligence algorithms; modeling;
optimization; mineral processing

1. Introduction

Minerals and metals in many cases support national economies, providing strategic
raw materials for industrial activities that are sources of input for almost all sectors of the
global economy. Extraction and production processing encompass various activities, from
highly mechanized industrial mining to informal artisanal miners. Mineral production
(especially copper) has been growing in recent years. In fact, the estimated global copper
mining production increased slightly to 21 million tons in 2021 from 20.6 million tons
in 2020 [1]. Additionally, a report generated by the International Copper Study Group
indicates that since 1900, when copper production was less than 500 thousand tons, world
copper mine production has grown by 3.1% per year, reaching approximately 21 million
tons in 2021 [2].

In the Chilean copper industry, approximately 70% of processing takes place by
pyrometallurgical routes or flotation processes, processes that generate large environmental
liabilities, such as tailings dams (negative externalities that have been reduced in recent
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years [3–6]), while only 30% takes place by hydrometallurgical routes, which is explained
by the depletion of deposits of oxidized copper minerals. Additionally, it is estimated
that by 2027, the ratio of pyrometallurgical to hydrometallurgical processes will be 80%
to 20% [7]. This change is due to the depletion of deposits of oxidized copper minerals,
processed by acid leaching, which has led the copper industry to process more complex
copper minerals. This has resulted in more complex threads, requiring more resources
and energy consumption in the comminution stage [8–10], mainly in minerals whose
downstream processing requires smaller particle sizes.

The comminution process is a key stage within any mining worksite since most
of the energy invested in the operation is concentrated on achieving a size reduction
in the material (accounting for an average of 53% [11]) through both the crushing and
the grinding processes [12,13]. In the crushing stage, the rock is crushed by vibratory
movements, reducing the object’s volume into a series of smaller or more compact particles
to obtain a finer material, which will depend on mechanisms such as chipping, abrasion,
and the underlying characteristics of these mechanisms, such as the frequency of collision
or the rate of loading and/or unloading into the rotary mill [14]. Then, the grinding process
comprises a further reduction in the particles, adding water to the mineralized material in
sufficient quantities to form a milky fluid, and adding the reagents necessary to carry out
the downstream processes, such as flotation, a process that is strongly influenced by the
grinding medium and the grinding method which will vary the properties of the surface
and the roughness of the minerals [15]. These processes of size reduction are collectively
called comminution [16]. Thus, this process aims to liberate and concentrate the mineral
particles contained in mineralized rocks and particles recovered downstream in the froth
flotation stage, which involves the separation of valuable ore from other minerals [17].

The run-of-mine (ROM) materials that feed copper processing plants are varied, cov-
ering particles finer than 1 (mm) to fragments thicker than 1 (m) in diameter. Hence,
the objective of crushing is to reduce the size of the largest fragments until a maximum
uniform size of 0.5 inches (1.27 cm) is obtained [18]. This usually takes place by combining
three pieces of in-line equipment that reduce the fragments in stages: the primary stage,
secondary stage, and tertiary stage. The configuration of comminution circuits mainly de-
pends on the mechanical properties of the mineral and the requirements that comminution
products should meet from the scope of downstream separation processes; therefore, the
number of stages strictly depends on the operational conditions of the mining worksite.
Subsequently, through grinding, the size of the mineral-bearing particles is reduced to
obtain a maximum granulometry of 180 microns (0.18 mm), which finally allows the release
of most of the copper minerals in the form of individual particles [19].

As grinding is a core pyrometallurgical process, the efficiency and continuous im-
provement of comminution processes have been the principal focus in the last two decades,
where semi-autogenous grinding (SAG) is considered the grinding system par excellence
(at least in the Chilean case). The advantages of SAG grinding are mainly related to a
simpler layout, with fewer stages and pieces of comminution equipment in concentrator
plants, which translates into less investment. Currently, AG/SAG grinding is used in most
of the mining sites in Chile, and the layouts vary depending on the requirements of each
concentration plant, such as plants that have the potential to make their circuits more
efficient by modifying their design or operating conditions [20].

Due to the complex nature of the SAG grinding process, developing abstractions
that represent the dynamics of SAG milling have the potential to contribute both to ob-
taining a better understanding of the process and to simulating or optimizing its perfor-
mance. Considering the highly non-linear nature of the SAG milling process [21], the
robustness of machine learning techniques (such as ANN [22,23], random forest [24,25],
regressions [26–28], Bayesian networks [29,30], Malmquist and DEA [31], fuzzy logic and
ANFIS [32,33], support vector machines [34,35], principal component analysis [36], and
ensemble methods [37], among others), the potential of these techniques to model complex
process dynamics, and the shortage of case studies in the literature in respect to SAG
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grinding modeling using machine learning techniques in industrial contexts. In this work,
machine learning techniques for the development of hypothesis tests (prior modeling)
and the application of corrective measures in order to increase process productivity are
devised. The structure of this work is as follows. A state of the art overview is presented
in the background section with respect to the modeling of the SAG grinding process. In
the Materials and Methods section, a description of the case study, the objectives, and
the scope are stated. We give a description of the machine learning algorithms used to
generate the digital model of the SAG grinding process, with the respective performance
measures. In the Results and Discussions section, the application of machine learning to
the modeling process is presented, including the correlation of the variables, the efficiency
of the algorithm adjustment, and the evaluation and discussion of the studied hypothesis.
Finally, conclusions are drawn based on the performance of the digital model in terms of
the operational performance indicators of the SAG mill.

2. Background

The SAG grinding process has been modeled by various authors, either generating
explanatory models of the grinding process, with the aim of modeling, simulating, and
optimizing the individual process, as well as integrating it into aggregate processes, such
as the mine-to-mill (M2M) paradigm, a practice that has generated the capacity to analyti-
cally assess aspects of mining and processing (primarily the comminution process) and to
run models and simulations to predict the effects of changes at the mine on downstream
processing [38]. It is possible to find different trends in the modeling, design, simulation,
and optimization of complex systems such as mineral processing using techniques such as
computational fluid dynamics, discrete element simulation, surface response methodology,
machine learning algorithms such as artificial neural networks, support vector machines or
random forest, and uncertainly analysis or sensitivity analysis [39]. These techniques have
been applied to different fields of practical industry [40], such as machining processes [41],
chemical and process industries [42], geomechanics [43], the development of hybrid intel-
ligent systems (combining human intelligence with artificial intelligence) [44], industrial
control systems [45], decision support systems [46,47], applications in the pharmaceutical
industry [48], integration through digital twins and Industry 4.0 in the food industry [49],
improvement in the efficiency of industrial boilers through the detection, diagnosis, and
forecasting of failures [50], and applications of discrete event simulation to metallurgical
processes [51,52]. Directly related to the work carried out in the present manuscript, there
was a survey of applications of machine learning algorithms in mineral processing, differ-
ing in categories such as data-based modeling, fault detection and diagnosis, and computer
vision [53].

The literature review highlights works such as a study of the impact of the design
of the flow diagram of a grinding circuit on the benefit of iron ore [54], the evaluation of
the impact of the active control of the eccentric speed, and the adjustment of the closed
circuit of the cone crusher in the performance and/or the energy efficiency of the SAG
circuit, which was implemented in Matlab/Simulink as a dynamic model of the circuit of a
mill crusher of SAG boulders [55]. Then, different theoretical models applied to represent
the dynamics of mineral processing are exposed, both those embodied in mathematical
relationships or equations and models based on machine learning.

As usual, rotary mill power equations are derived from mechanics, and the equations
used for the prediction of power output by balls/AG/SAG mills [56–58]. However, none
of these models consider the size distribution of the material in the feeding as a design
variable. Many mine-to-mill (M2M) works [59–61] have shown the influence of ROM
(in addition to mineral characteristics such as hardness, lithology, and alterations) in the
performance of the comminution process, proving that the manipulation of fed material
size affects the process efficiency [60]; although, it should be noted that in many cases,
the size distribution of feeding is even more influential than mineral characteristics [59].
Morrel [62], on the other hand, relates the feed mineral, mill geometry, and operating
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conditions with the specific energy of the circuit. In the same M2M line, it has that the feed
size distribution directly affecting the SAG mill load, which directly affects the power of
the mill, and in turn impacts its efficiency [63].

Silva et al. [64] fit a power equation and an energy equation specific to the design of
SAG mills, using them to predict energy consumption as a function of mill size, internal
load level and density, critical speed, and a variable representing the size distribution
of the feed (not just the F80). Dong et al. [65] analyzed the factors that influence energy
consumption in the grinding and flotation processes in a gold treatment plant, establishing
three models for the prediction of energy consumption: regression models, artificial neural
networks (ANNs), and a hybrid model of a genetic algorithm (GA)-ANN, which presented
the highest precision in the prediction of the response. Razani et al. [66] evaluated the effect
of initial feed size range on the amount of grind product and its size distribution in order
to find the particle size range to achieve the maximum grind product. Lucay et al. [67,68]
demonstrate that uncertainty analysis (UA) and global sensitivity analysis (GSA) are useful
tools for identifying operating conditions for grinding systems under uncertainties.

Asghari et al. [69] did not generate an integrated model of the production dynamics of
an SAG mill, but they studied the effects of ore characteristics and operating parameters
on mill performance using mathematical models, such as t10 or the Bond work index,
in addition to the particle shape of the mill product to monitor breakage events as a
function of ore strength. Lvov et al. [70] and Marijnissen et al. [71] developed a model of
a wet SAG mill based on the discrete element method and computational fluid dynamics
(CFD), which allows for determining the energy grossness ratios of the grinding process
(SAG) under certain conditions [70], or to obtain the velocities and collision angles of a
representative group of particles in the mill [71]. Focused on optimizing SAG grinding
performance, Behnamfard et al. [72] applied the properties of feed ore, including hardness
and particle size distribution, to improve the operation of an AG mill, developing a model
for the prediction of mill energy consumption, a variant of the MINNOVEX model [73].
Behnamfard et al. [72] aimed to reduce energy consumption and increase mill performance
by adding larger lumps and lowering the mineral’s hardness in the feeding.

On the other hand, focusing on machine learning techniques shows has that these
have been increasing in presence and impact in a wide variety of research fields, high-
lighting their application in the study and modeling of processes in the field of mineral
processing [53,74]. Many prominent review articles have discussed [75–78] and applied [79]
the potential need for process engineers to take advantage of techniques such as applied
mathematics and statistics, machine learning (ML), and artificial intelligence (AI).

Checking the above, in the literature review, it is possible to find a lots of applications
of ML to the study of mineral processing dynamics, highlighting the following applications
to the grinding phase: analysis of the mechanisms and measurement methods for the load
of a mill based on mechanical vibrations and acoustic signals [80]; the impact of blast frag-
mentation control on increased mill production [81]; the development of a dynamic model
of operation of an SAG mill using equations based on the conventional non-stationary
population balance approach [82]; the identification of the best operating conditions with
which to identify the cut size of optimal grinding to reduce metal losses in flotation circuits
using a gradient recovery model [83]; case studies of grinding circuit modeling using time
series analysis or the adjustment of vector machine algorithms of support [10] in order to
analyze descriptor variables, such as power or temperature; predicting breakage and the
evolution of rock size and shape distributions in AG/SAG mills [84]; models of power and
specific energy consumption based on the distribution of the size of the mineral feed [64];
inferential measurement of SAG mill parameters [85–89]; multicomponent phenomeno-
logical modeling, which represents the performance of an SAG mill as a function of the
distribution and components of the mineral feed [21]; and modeling of energy consumption
prediction [90,91], among others.

Additional applications of machine learning to SAG modeling put the focus on the
control of SAG grinding mill circuits, predicting power consumption [90,91], one of the



Materials 2023, 16, 3220 5 of 23

main concerns of plant operators for years. In Hadizadeh et al. [92], an advanced distributed
control system (DCS) is developed for the successful control of mineral processing plants,
presenting the basis of an expert fuzzy supervisory controller for SAG mill circuits. In the
proposed controller by Hadizadeh et al. [92], the fuzzy system calculates the optimal set
points for the DCS control loops of the plant, allowing them to change the manipulation
parameters to reach the new set points. In Avalos et al. [91], several predictive methods
based on ML were studied for the real-time forecast of the energy consumption of an SAG
mill (depending on variables such as feed tonnage, bearing pressure, and mill speed),
among which are: polynomial regression, k-nearest neighbor, support vector machine,
multilayer perceptron, short-term memory, and closed recurrent units (deep learning). In
Kahraman et al. [90], a data-driven multi-rate (MRA) method was developed to better
predict the energy consumption of a semi-autonomous grinding mill (SAG) using a deep
neural network as the prediction model for the MRA method. In Avalos et al. [93], an
operational definition of relative hardness is proposed and applied to SAG mill operating
datasets to train a deep neural network architecture in order to forecast the next operating
relative hardness, achieving accuracies greater than 80%. In Olivier et al. [94], decision
trees were used to model the decision-making of the operator when deciding whether
to remove material of critical size from the circuit to prevent the mill from overloading,
demonstrating that the model specification can be used to identify the causes of events of
interest, in addition to extracting rules to understand why and when the operators make a
particular decision.

Chelgani et al. [95] used explainable artificial intelligence to build a conscious labora-
tory that could be a strategic approach to digitizing a high-precision grinding roll (HPGR)
system, predicting particle size throughput through the conjunction of techniques such
as SHAP (SHapley Additive exPlanations; SHapley values indicate how each point of
a variable can contribute to the prediction, a single linear and nonlinear simultaneous
multivariate evaluation) and XGBoost (extreme gradient boost model). The results ob-
tained by Chelgani et al. [95] indicate that SHAP and XGBoost could accurately model
the relationships between the operational variables of an HPGR. Finally, and not directly
focused on production modeling, Azizi et al. [96] investigate the application of supervised
learning algorithms (single- and multiple-kernel SVM regression analysis and artificial
neural networks) to model the wear rate of grinding media as a function of multiples inputs
factors, concluding that multi-kernel SVM can be used efficiently to remodel and model
grinding ball wear rates.

3. Materials and Methods
3.1. Case Study

The case study corresponds to the grinding process of a copper concentrator plant,
whose operation is based on the open-pit exploitation of a mineral deposit located in the
Antofagasta region in northern Chile. The main grinding line (primary grinding) of the
concentrator plant is made up of an SAG mill (see Figure 1), whose operation is intended
to be optimized after adjusting models based on statistical modeling and machine learning.
The concentrator comminution circuit has a configuration that includes a single SAG mill
with dimensions of 12.2 m × 7.3 m, followed by two ball mills in parallel (secondary
grinding). Additionally, the pebble produced by the mill is returned to the SAG mill.

It is considered that there is an opportunity to increase production by focusing efforts
on reducing the particle size of the SAG mill feed, supported by a mine-to-mill strategy
that contributes to reducing the fragmentation of the ore fed. The optimizing production as
a function of mill rotational speed is also considered, for each liner age configuration, since
it is intuited that the rotational speed is higher than required, considering the mineralogical
characteristics of the material fed.
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The collection of historical operation data considers 12 operational variables/
parameters for 27 months of operation (see the domain in Table 1), measured minute
by minute, which are some of the input variables for the generation of a representative
model of the SAG mill. The independent variables are as follows: P80; water in feeding;
mill rotational speed; mill pressure; stockpile level; sump level; mineral hardness; solid
percentage in feeding; pebble; granulometry thicker than 100 mm; granulometry finer than
30 mm; and liner age. The response variable is the production in tons per hour (TpH) and
the energy consumption (MW).

Table 1. Operational variables of the SAG grinding process (V: Variable, R: Response; P: Parameter).

Unit Type Lower Limit Mean Value Upper Limit

P80 mm V 50 100 150
SAG water feeding m3/h V 750 1350 2000

SAG rotational speed RPM V 4 9 10
SAG pressure kPa R/P 7300 7700 8100
Stockpile level m V 5 25 35

Sump level m R/P 60 90 100
Hardness dimensionless P 20 35 50

Solids in the feeding % V 55 70 80
Pebble TpH R/P 0 400 900

Granulometry > 100 mm % V 5 20 40
Granulometry < 30 mm % V 25 40 75

Liner age (LA) months P 1–2 3–4 5–6

The variables/parameters considered in the sampling are described below:

• P80: Size of the mesh opening that allows the passage of 80% of the granulometry.
• SAG water feeding (m3/h): Water flow feeding to the SAG mill.
• SAG rotational speed (RPM): Mill rotational speed.
• SAG pressure (PSI): Mill fill or load level.
• Stockpile level (m): Stockpile level in the feeding stack.
• Sump level (m): Thicker downloading pool at the SAG mill.
• Hardness: Resistance offered by the mineral to abrasion or scraping.
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• Solids in the feeding (%): Percentage of solids in the feed pulp.
• Pebble (TpH): Pebble (pebble, chunks, or small stones) are the result of mineral

grinding. These are hard materials and are difficult to reduce to a smaller size in the
SAG mill.

• Granulometry > 100 mm (%): Percentage of the ore feed whose granulometry is greater
than 100 mm.

• Granulometry < 30 mm (%): Percentage of the ore feed whose granulometry is less
than 30 mm.

Liner age (months): Categorical variable. Age of the mill liners. The liners are part
of the mill and act as protective jackets for the internal shell (hull), which in turn wear
out over time due to the strong and constant internal impact that occurs between the
ore load and the balls of steel. This wear requires that mining organizations perform
predictive maintenance.

The proposed process for optimizing the SAG grinding dynamics (see Figure 2) con-
siders the adjustment of machine learning algorithms (prior preprocessing of the available
data) in order to determine the model that presents the best goodness-of-fit indicators.
Then, once the best model has been identified, different strategies could be simulated,
evaluating the hypothesis test(s) associated with each strategy and finding the optimal
configurations of the variables that maximize the productive indicators.
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The design of the application of machine learning techniques considers the improve-
ment of the performance of the SAG mill using a study of the following initiatives (prior
determination of the best-fitted model):

• Mine-to-mill (M2M): Identifying the current impact and potential for optimizing
the crushing process before the SAG grinding process. The strategy assumes the
maximization of the percentage of the granulometry in the feed that is finer than
100 mm to reduce the processing time of the SAG mill.

• SAG parameters: Optimal operation for scenarios of liner age and hardness of the feed.

The representative model of the SAG mill is used for testing the following hypotheses:

• H1: TpH SAG can be improved by M2M.
• H2: TpH SAG can be optimized by adjusting the following SAG mill parameters:

pressure (load level), liner age, and rotational speed (considering hardness and frag-
mentation in the fed material).
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3.2. Objectives and Scope

This work is focused on checking productivity improvement strategies, specifically in
the SAG grinding process of a copper concentrator plant. It intends to establish procedures
that improve productivity and reduce energy consumption, based on better management
of operating variables, which can be controlled and adjusted to improve the efficiency of
the process.

The use of statistical and machine learning techniques is due to the complexity of the
modeled process, its non-linear dynamics, and the lack of theoretical or empirical models
representative of the process. The model developed in this work includes variables that
are not usually incorporated into conventional models, such as liner age. A representative
model of an SAG mill can be used to optimize productive indicators, test hypotheses, and
simulate probable or expected scenarios, adding value to mineral processing.

3.3. Statistical Analysis and Machine Learning

Machine learning involves computer programs or algorithms that automatically im-
prove and/or adapt their performance through experience. Machine learning has many
things in common with other domains, such as statistics and probability theory (under-
standing the phenomena that have generated the data), data mining (finding patterns in
the data that are understandable to people), and cognitive science (where human learning
aims to understand the mechanisms underlying the various learning behaviors exhibited
by people, such as concept learning, skill acquisition, strategy change, etc.) [98]. Machine
learning aims to devise learning algorithms that learn automatically without human in-
tervention or assistance, generating methods by which the computer creates its program
based on examples or samples that are provided to it [99].

Machine learning algorithms are used due to the potential to test hypotheses, analyze
the high volume of data available today, make quick decisions, and test multiple scenarios
and strategies. Machine learning provides new skills and abilities to the organization; these
include data science, autonomy, and artificial intelligence. There are different methods
of machine learning. However, among the most used methods are regression (simple,
multiple, and logistic, among others) [26,27], random forest, XgBoost (a scalable tree
boosting system) [100], a gradient boosting machine (GBM) [101], and artificial neural
networks (ANNs) [102], among others.

Decision trees were developed using the Ranger [103] and XgBoost [100] packages
in version 4.0.5 of the R programming language [104] (these packages are implementa-
tions used for the rapid calculation of random forests for high-dimensional information).
Multiple regression and ANN applications were developed using the scikit-learn [105]
and Keras [106] libraries, respectively, in Python 3.7.0 [107]. RStudio was the application
platform of R, while the Python application was developed through Jupyter Notebooks.

Finally, the historical data were divided into two groups, i.e., the training set (70%)
and the validation set (30%), while the fitted model was used for estimating the production
after the application of the M2M strategy and simulating the production distribution at
different values of the mill rotational speed and liner age factors.

3.3.1. Regression Analysis

Linear regression analysis is a statistical technique used to study the relationship
between variables [26]. Both in cases of two variables (simple regression) and more than two
variables (multiple regression, MR), regression analysis can be used to explore and quantify
the relationship between a dependent or criterion variable (Y) and other independent or
predictor variables (x1, x2, . . . , xn), as well as to develop a linear (or non-linear) equation
for predictive purposes. Furthermore, a conventional regression analysis is associated with
a series of diagnostic procedures, which inform the analysis of stability and suitability
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and provide clues on how to refine the analysis [108]. The generalization of the regression
models is presented in Equation (1).

Y = f(X) = β0 + ∑n
i=1 βixi + ∑n

i=1 ∑n
j=1 βijxixj|X = {x1, x2, . . . , xn} (1)

where β0 is the independent coefficient, βi is the coefficient of the linear terms, and βij is
the coefficient of the interactions. If βij = 0 ∀i, j, we are in the presence of a multiple linear
regression model, and if in addition n = 1, Equation (1) becomes a simple linear equation.

3.3.2. Decision Tree-Based Methods: Random Forest, GBM, and XGBoost

A decision tree model is a simple representation used for classifying examples or
samples. It involves supervised machine learning, where the data are continuously divided
according to specific rules applied to a particular parameter or a set of parameters [103,109].
In general, a decision tree consists of a root node, several interior nodes, and some terminal
nodes. The root and internal nodes are connected by decision stages, while the terminal
nodes represent the final classifications [110]. Tree models are simple, interpretable models.
They have limited predictive power, but when several tree models are combined such as
in clustered trees, random forest [24,111], boosting [25], gradient increasing, or extreme
gradient boosting [100], they become a robust predictive model.

As an improvement to the decision tree algorithms explained above, assembler-type
methods have emerged, formed by a group of predictive models called random forests,
implying a significant improvement concerning individual decision trees. Random forest
is a co-learning technique. It hybridizes the bagging algorithm [112] and the random
subspace method and uses decision trees as the base classifier. Each tree is built from
a starting sample of the original dataset. The important point is that the trees are not
pruned after construction, which partially fits their data sample [113]. From random forests,
progress is made toward boosting algorithms (boosting, gradient boosting, or XGBoost).
Boosting is a highly effective and widely used machine learning method. Models are built
sequentially, minimizing errors from previous models while increasing the influence of
high-performance models. Boosting is a general set method that creates a robust classifier
from several weak classifiers.

AdaBoost was the first genuinely successful boosting algorithm developed for binary
classification. It is the best starting point from which to understand boosting. Modern rein-
forcement methods are based on AdaBoost. The AdaBoost algorithm begins by training a de-
cision tree in which each observation is assigned a weight equal toωi = 1/N, i = 1,2, . . . , N,
increasing the weights of difficult-to-classify observations and lowering the weights of
those that are easy to classify, cultivating the following trees with the data already weighted,
and generating an aggregate model by incorporating more decision trees after calculating
the classification errors. By repeating a specific number of iterations (M), the subsequent
trees help to classify the observations that are not well classified by the previous trees.
Therefore, the prediction of the final set model is the weighted sum of the predictions made
by the previous tree models [114–116].

Gradient boosting is a generalization of the AdaBoost algorithm that allows any cost
function to be used, as long as it is differentiable. The flexibility of this algorithm has made
it applicable for boosting in respect of a multitude of problems, making it one of the most
successful machine learning methods. Although there are several adaptations, the general
idea of all of them is the same: train models sequentially so that each model adjusts the
residuals (errors) of the previous models.

Gradient augmentation machines have shown considerable success in a wide range
of practical applications, as they are highly customizable for particular application needs,
such as learning different loss functions [101]. Gradient boosting also trains many models
in a gradual, additive, and sequential way. The main difference when comparing with
AdaBoost is how the two algorithms identify the weaknesses of the weak models. While
the AdaBoost model identifies deficiencies using heavy data points, gradient augmentation
does the same by using gradients in the loss function. This function indicates how good



Materials 2023, 16, 3220 10 of 23

the model’s coefficients are in respect of fitting the underlying data. One of the major
motivations for using gradient augmentation is that it enables a user-specified cost function
to be optimized, rather than a loss function that generally offers less control and does not
essentially correspond to real-world applications [117–121].

Finally, XGBoost is an end-to-end scalable tree augmentation machine learning method,
a gradient augmentation algorithm optimized through parallel processing, tree pruning,
missing value handling, and regularization techniques to avoid overfitting/biasing. XG-
Boost is an algorithm based on decision trees that have high accuracy and a low risk of
overfitting, thanks to a boosting algorithm. XGBoost is based on gradient increase, which
generates a robust classifier by iteratively updating the parameters of the previous classifier
to decrease the gradient loss function, adding a regularization function to the loss function
in the objective function. Another study of the mathematical formulation of the method
can be found in Chen and Guestrin [100].

3.3.3. Artificial Neural Networks

ANNs are supervised machine learning techniques that determine associations be-
tween a known set of observations (i.e., training points) and different environmental
variables to classify new and unknown data [98]. The main advantages of ANNs are
their ability to handle large datasets, approximate non-linear relationships, generalize
complex systems from relatively imprecise information, and handle noise, overfitting, and
outliers [122,123].

The most common artificial neural network structure type is the multilayer perceptron,
which is composed of a structure with two or more hidden layers, where Xi represents the
inputs, Oi the outputs, and f the activation function of each neuronal unit. The input layers
depend on the information available to be classified (independent and/or operational
variables). In contrast, the output layer has one or many nodes and is dependent on
the number of response variables (dependent variables). The neurons in one layer are
connected to those in the next layer by synapses. The value is different for each connection
and is determined by the training process, the activation functions, and the initial values.

3.4. Validation Using Performance Measures

Once the models have been developed, they must be validated using different tech-
niques. The measures of merit used in this study help determine the quality of the predictive
models developed. The goodness-of-fit indicators are MAE/MAD, RMSE, and R2. These
merit values are the mean absolute error (MAE) or mean absolute deviation (MAD), a
measure of errors between paired observations expressing the same phenomenon (see
Equation (2)); the root-mean-square deviation (RMSD) or root-mean-square error (RMSE),
used to measure the differences between values (sample or population values) predicted
by a model or an estimator and the values observed (see Equation (3)); and the coefficient
of determination (R2), which is the proportion of the variation in the dependent variable
that is predictable from the independent variable(s) (see Equation (4)).

MAE = (1/n)∑n
i=1|yi − ŷ| (2)

RMSD =
√
(1/n)∑n

i=1(yi − ŷ)2 (3)

R2 = 1−∑n
i=1(yi − ŷ)2

/
∑n

i=1(yi − y)2 (4)

where ŷ and y are the predicted and mean values of y. All indicators shown quantify how
well a model fits a dataset.
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4. Results and Discussions
4.1. Preliminary Analysis

To analyze the relationship between variables of interest (dependent and/or indepen-
dent) considered in respect of sampling, a Spearman correlation analysis was developed. A
Spearman correlation analysis relates the performance of a characteristic of interest to po-
tential causal factors, explaining how each factor helps explain the response. The Spearman
correlation study (see Figure 3) indicates a strong relationship between SAG production
and SAG water feeding. In contrast, a moderate relationship is observed between SAG
production and the following variables: sump level, pebble, and solids in mineral feeding.
It should be noted that the non-existence of a monotonous relationship does not imply
that these variables have no impact on the response, only that the impact (if any) is not
monotonous (increasing or decreasing).
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4.2. Validation of ML Algorithms

The adjustment of the SAG grinding system using machine learning algorithms can
generate models of an SAG mill using algorithms such as multiple regression analysis,
random forest, gradient reinforcement machines, and neural networks. Multiple linear
regression models did not perform well, leaving evidence of the ineffectiveness of modeling
the SAG mill dynamics using linear relationships.

Table 2 shows the goodness-of-fit indicators. The model based on a regression analysis
does not allow modeling, examining, exploring spatial relationships, and explaining the
factors behind the spatial patterns because the model does not present an adequate fit to
the sampled dataset (R2 = 0.5514372). However, although the value of R2 indicates that
the percentage of the variability of the response that the linear model explains is only
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approximately 55%, this percentage can be considered relatively good when considering
the large amount of data and variables sampled that influence the dependent variable.

Table 2. Goodness-of-fit statistics for statistical and machine learning techniques.

Model RMSE R2 MAE/MAD RMSESD R2SD MAESD

MR 411.1305 0.5514372 320.3928 11.53500 0.02511 8.62293
Random Forest 330.7013 0.7546393 249.8718 10.12509 0.02463 8.22492

XGBoost 319.9871 0.7717928 243.1334 8.863804 0.01905 6.69247
GBM 349.1443 0.7060547 269.4338 6.862753 0.03074 6.64043
ANN 284.6292 0.8852025 203.9580 5.232471 0.01435 5.23569

The gradient boosting machines (GBM) present a better fit than linear models, resulting
in goodness-of-fit indicators of 75.46%, 77.18%, and 70.61%, for Ranger, XgBoost, and GBM,
respectively. Extreme gradient boosting (XgBoost) is the method that presents the best
performance out of the three methods indicated above (R2 = 77.18%). Such implementation
of decision trees overcomes the defects of other machine learning methods based on
decision trees (such as the Ranger method), which include the parallelization problem with
respect to an increasing gradient and non-increasing in random forest. To overcome these
defects, the algorithm employs two techniques: weighted quantile sketching and scatter-
conscious divisions. The algorithm also uses second-order gradients (Newton boosting) to
converge faster and advance regularization, improving the model’s generalizability and
overcoming overfitting problems in terms of an increasing gradient [124].

The adjustment through the application of artificial neural networks, on the other
hand, turned out to be the model with the best adjustment indicators (MAE, RMSE, and
R2), where approximately 89% of the variability of the sample data is explained by the
architecture of the adjusted artificial neural network (whose architecture corresponds to a
multilayer perceptron). The low dispersion in the contrast of the fitted models versus the
real production (kTpH) is shown in the scatter plots in Figure 4.
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The digital model used to simulate the responses to variations for each of the strategies
defined in the present case study is the model based on artificial neural networks, which
presents the best goodness-of-fit indicators (see Table 2).

4.3. Application of the ML Model by Individual Strategies
4.3.1. Mine-to-Mill

In the mine-to-mill strategy, the grinding process is simulated using the SAG mill
digital model (ANN) to determine the level of fragmentation that tends to maximize the
production of the SAG grinding process. The machine learning model was used to validate
the impact of mine-to-mill on improving fragmentation (see Figure 5) and the increase in
production in tons per hour (see Figure 6). The fragmentation after implementing the M2M
strategy was compared with the fragmentation estimated without applying the method.
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The improvement was evaluated, quantifying the % increase in TpH as a function of the
fragmentation improvement obtained with M2M.
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Figure 6. Average production of an SAG mill in tons per hour.

The increase in granulometry (that is, for purposes of this work, the percentage of
minerals less than 30 mm, a product of the application of the strategy) is approximately
12.28% (despite the increase in mineral hardness in the period, as is shown in Figure 7),
with a standard deviation of 5.15 (see Figure 8a), while the increase in production is
approximately 4.42% (see Figure 8b). It should be noted that the behavior of the percentage
increase in granulometry and production tends to show normal behavior (see Figure 8).
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In addition to quantifying the impact of M2M on production at +4.42% TpH, the model
obtained −7.62% energy savings in the SAG mill (see Figure 9a). The ML model suggests
that there would be the potential to increase TpH production by an additional 1% if the
percentage of fine mineral increases (that is, fragmentation increases from 41% to 46%),
prior to technical evaluation developed by the geology field. Then, the model suggests
that the cost of the additional fragmentation delta derived from the comminution phases
before SAG grinding could be quantified, which must be contrasted with the potential
incremental profit of 1% in production using the M2M strategy (see Figure 9b).
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4.3.2. SAG Mill Parameter Control

The use of machine learning to improve the efficiency of the production process
is focused on increasing the performance or production in TpH and reducing energy
consumption. As the second optimization strategy for the SAG milling process, after
identifying the variables of interest through the correlation study and the adjustment of
the machine learning models presented in Section 3.3, the variable SAG rotational speed
(RPM), solids in the feed (%), and SAG pressure (fill level) were fitted to evaluate TpH
performance and energy consumption.

The analysis of the machine learning model for the study of production as a function of
SAG rotational speed (RPM) and liner age (1–2, 3–4, 5–6 months) indicates that there is an
optimal configuration speed that would allow an increasing TpH at lower SAG rotational
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speeds (RPM), regardless of the age of the liner, as shown in Figure 10. That is, there is the
potential to increase production by decreasing the SAG rotational speed.
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After identifying the optimal linear level of the mill’s rotational speed and age, the
optimal levels were used to determine the optimal configuration points for solid percentage
and pressure (see Figure 11). Then, for a scenario of 1–2-month-old liners, a hardness
> 32.5, and an optimal rotational speed of 8.4 RPM, the SAG mill is usually operated at
a percentage of solids of 70% and a pressure of 8000 kPa (see Figure 11a). However, to
improve the performance of the SAG production in TpH, the ML model suggests adjusting
the percentage of solids to approximately 73% (see Figure 11b) while keeping the pressure
constant. Additionally, the variation in the rate of solids and the decrease in the SAG
rotational speed, in addition to increasing the production in TpH, decreases the probability
of torque events (considering that mill pressure remains constant). It should be noted that
the lower the torque, the lower the levels of energy consumption, and high torque levels
prevent reaching optimal rotational speeds.

Then, optimal operating guidelines were constructed considering the operational
parameters of the mill rotational speed, percentage of solids, and pressure for different
hardness scenarios (<32.5, >32.5) and age of liners (1–2, 3–4, 5–6 months), as shown
in Table 3.
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Table 3. Optimal operating guidelines for the SAG mill.

Hardness Liner Age Rotational Speed (RPM) Solids in the Feeding (%) Pressure (kPa)
Actual Optimum Actual Optimum Actual Optimum

>32.5
1–2 8.7 8.4 72 75 7960 8000
3–4 8.7 8.5 72 75 7813 7900
5–6 8.8 8.7 72 75 7556 7700

<32.5
1–2 8.6 8.5 72 72 7934 8000
3–4 8.9 8.7 72 75 7744 7700
5–6 8.7 8.7 72 75 7540 7600

Finally, the machine learning model shows that to the extent that it is possible to
operate with similar SAG production in TpH (slightly higher), reducing rotational speed
allows a saving of 1.95% for every 0.1 RPM for the scenario where the hardness is greater
than 32.5 and the liner age is 1–2 months (see Table 3). As shown in the correlation in
the scatter plot and boxplots between SAG rotational speed and energy consumption (see
Figure 12), the impact corresponds to approximately 5.85% of the cost of energy consumed
by the SAG mill.
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4.4. Discussion

Today’s world is economically volatile, and most mineral processing companies face
challenges in creating sustainable plans and schedules over time, plans that directly affect
the value chain. By combining machine learning techniques with data analysis, mining
industries can improve the management of their production processes, developing models
that allow simulation and optimizing operational indicators. In this way, recommenda-
tions can be obtained regarding the best way to operate while considering the domain of
control variables.

Using adjusted machine learning models to represent the SAG grinding process, after
identification and validation of the variables that have a direct impact on TpH performance,
the variables that have a significant impact on the response were identified as liner age,
hardness, granulometry, SAG rotational speed, percentage of solids, and the pressure
level, while the response indicators were production in TpH and energy consumption.
A summary of the different operational strategies (both the captured results and the
incremental impact) is shown in Table 4, verifying both research hypotheses. It shows an
increase in production in TpH as a result of an M2M strategy (H1) that produces a greater
fragmentation of the mineral fed (which also impacts to a lesser degree on the energy
consumption of the SAG mill), together with increases in production and decreases in
energy consumption derived from optimum handling of mill control parameters, such
as pressure and rotational speed, which has a limited impact on production growth but
considerable savings in energy consumption (H2).

Table 4. The impact of the ML model on the SAG grinding system’s operational strategies (LA: liner
age).

Strategy
Impact on TpH

Impact on EnergyCaptured Incremental

Mine-to-mill: Identification of the
current impact of granulometry and its

additional potential
+4.41% +1.0% −7.62%

SAG parameters: Optimal operation for
LA and hardness scenarios +0.76% −5.85% (LA: 1–2)
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Finally, it highlights that machine learning or artificial intelligence algorithms are the
keys to unlocking new findings in existing datasets (which are increasingly robust due
to paradigms such as the Industrial Internet of Things, IIoT), such as those presented in
the development of this work. IIoT technologies will allow mineral processing companies
to collect, process, and generate intelligence from large amounts of data from sensors
connected to the internet. These data could also be used to create digital twins, either from
the plant as an aggregated process or for a particular thread (e.g., the SAG grinding process).

5. Conclusions and Future Works
5.1. Conclusions

Mineral processing modeling is often a difficult task due to the multiple variables
involved and the complex dynamics that comprise the value chain. Despite its complexity
and the application of many physical, mechanical, chemical, and other types of separation
processes and operations, mineral processing can generally be divided into a reduction
in the size of the feed material and a separation of useful minerals from the gangue [124].
As part of the physical treatment (a reduction in ROM), grinding is the most relevant
sub-process since it is the one that consumes more resources as a result of the reduction in
the particle size in large rotating equipment (such as SAG mills). In most mining operations
today, comminution uses energy and inputs on an unprecedented scale, and the discovery
of new mineral deposits in remote areas, with increasingly hard minerals and a demand
for finely granulated downstream materials in mineral processing, have a significant
influence on processing costs. Along with the above, there is a growing concern about the
environmental impact of mining operations, which is why there is a focus on reducing
energy consumption and reducing the carbon footprint of these industrial activities.

In the present work, models of an SAG mill were generated, adjusting different ma-
chine learning algorithms such as regression, decision trees, and artificial neural networks.
The model that presented the best performance was based on artificial neural networks
(R2 ≈ 0.89) and was used to study the research hypothesis of this work: the impact of
fragmentation and the mill power strategy in TpH production. The conclusions reached
are presented below:

• The application of the M2M strategy allowed for an increase in production of 4.41% in
TpH and a potential increase of 1.0% (conditioned to a 3% increase in fragmentation);
in addition, a decrease in energy consumption of 7.62% was observed (for a liner age
of 1–2 months).

• The production modeling as a function of the mill power and the ages of the liners
indicated that excess power is being applied. It is possible to increase the production
in TpH by reducing the mill’s rotational speed, regardless of the age of the liners. The
application of this strategy implies an increase of 0.76% in production and a decrease
in energy consumption of 5.85% (only for a liner age of 1–2 months).

Algorithms based on ML are powerful tools for capturing the dynamics of complex
systems, such as SAG grinding. It is possible to abstract the dynamics of operation (that
is, the behavior of the explained variables based on the explanatory variables to simulate
and/or optimize the model), find the conditions that optimize the output or, failing that,
find a better configuration of variables that improves the process’s productive indicators.

5.2. Future Works

Despite the potential of the machine learning algorithms adjusted in the present work
and the impact verified in operational conditions on the productive indicators, the dynamics
of the grinding process involve variables that do not necessarily maintain deterministic
behavior. The inclusion of stochastic variables or stochastic processes in the modeling,
simulation, and optimization of the process will be of interest in future research [125]. The
modeling of the dynamics of SAG grinding could also be applied in the implementation of
circular economy strategies in the mineral processing industry with respect to the elevated
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energy consumption [126], aiming to make production more efficient and save energy costs,
as observed in the development of the second hypothesis of this research.

Additionally, probability and sensitivity analysis (e.g., the Monte Carlo simulation
method) could be applied to obtain the sensitivity of the explanatory variables versus
the explained ones. These analyses are useful for generating confidence intervals for the
estimated variables, while the sensitivity analysis would allow us to perform residual
analysis, outlier detection, and assumption evaluation.
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