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Faculty of Mechanical Engineering, Koszalin University of Technology, Śniadeckich 2,
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Abstract: Triply periodic minimal surfaces (TPMS) are structures inspired by nature with unique
properties. Numerous studies confirm the possibility of using TPMS structures for heat dissipation,
mass transport, and biomedical and energy absorption applications. In this study, the compres-
sive behavior, overall deformation mode, mechanical properties, and energy absorption ability of
Diamond TPMS cylindrical structures produced by selective laser melting of 316L stainless steel
powder were investigated. Based on the experimental studies, it was found that tested structures
exhibited different cell strut deformation mechanisms (bending-dominated and stretch-dominated)
and overall deformation modes (uniform and “layer-by-layer”) depending on structural parameters.
Consequently, the structural parameters had an impact on the mechanical properties and the energy
absorption ability. The evaluation of basic absorption parameters shows the advantage of bending-
dominated Diamond TPMS cylindrical structures in comparison with stretch-dominated Diamond
TPMS cylindrical structures. However, their elastic modulus and yield strength were lower. Compar-
ative analysis with the author’s previous work showed a slight advantage for bending-dominated
Diamond TPMS cylindrical structures in comparison with Gyroid TPMS cylindrical structures. The
results of this research can be used to design and manufacture more efficient, lightweight components
for energy absorption applications in the fields of healthcare, transportation, and aerospace.

Keywords: additive manufacturing; selective laser melting; lattice structures; triply periodic minimal
surface; lightweight metallic structures; quasi-static compression; energy absorption

1. Introduction

Triply periodic minimal surfaces (TPMS) are structures inspired by nature with period-
ically, infinite continuous non-self-intersecting surfaces with zero mean curvature in three
independent directions [1–3]. Thanks to the mathematical description, it is possible to arbi-
trarily change the global or regional porosity (relative density) [4–7], unit cell shape, size,
and arrangement [8–11], which allows for a global or regional change in the mechanical
properties and creates new structural designs for innovative applications. The most impor-
tant features of TPMS are the elimination of the effect of stress concentration [12]. Thanks to
this, TPMS performs better mechanical properties and absorption energy capacity in com-
parison to strun structures, such as octet, cubic, body center cubic (BCC), or face-centered
cubic (FCC) [12–14]. Due to the large volume-specific surface area, TPMS structures can be
used as radiators [15–17], chemical microreactors [18,19], and membranes [20,21]. Thanks
to the system of open internal channels, which allows multiple reflections of waves, the
TPMS structures have been used in the absorption of acoustic waves [22,23] and electromag-
netic microwave absorption [24]. Numerous studies confirm the feasibility of using TPMS
structures in the design of new bone implant systems [25–30]. In addition, TPMS structures
can be the basis for designing new solutions in mechanical energy absorption [31–35].
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Most of the research has focused on the classic cubic arrangement of skeletal or sheet
TPMS unit cells with uniform or graded relative density. In the case of a skeletal unit cell,
the design space is divided into two subspaces (void and material) separated by a smooth
and nonintersecting surface. In the case of the sheet unit cell, two surfaces are generated
in the design space that is shifted relative to each other, which divides the space into two
unconnected void areas and a material area. Research carried out, among others, by Li
et al. [4], Zhou et al. [5], and Zhang et al. [36] show that sheet TPMS performed better
mechanical properties, strength, and energy absorption capacity compared to skeletal TPMS.
Maskery et al. [37] investigated the energy absorption capacity of gyroid, diamond, and
primitive TPMS sheet structures manufactured by selective laser sintering from PA2200.
Experimental results confirm that the geometry of the elementary cell has the greatest
influence on the mechanical response and deformation mechanism. The porosity and
surface area for every unit cell decreases with increasing wall thickness. These observations
were also confirmed by Zhang et al. [33], Bobber et al. [38], and Novak et al. [39] for
structures manufactured by selective laser melting from 316L stainless steel and Ti6Al4V.
Moreover, most authors conclude on the advantage of diamond structures over other
TPMS in terms of mechanical properties and energy absorption capacity. Kladovasilakis
et al. [40] reported that among the tested TPMS structures (manufactured by selective laser
melting from polyamide 12), the highest energy absorption was observed for the diamond
structure. On the other hand, the lowest energy absorption per volume unit was observed
for primitive structures. The research carried out by Sokollu et al. [41] showed that the
diamond structure had the highest ultimate tense strength and yield stress, while the
gyroid structure had the highest energy absorption capabilities. The properties of diamond
structures have been student extensively by Wang et al. [42], Al-Ketan et al. [43], and Chen
et al. [44].

So-called cylindrical lattice structures (CLS) are most commonly used in energy ab-
sorption applications. The CLS consists of ribs in a circumferential and spiral direction, and
the intersection of ribs forms periodic patterns [45]. Reducing the weight in combination
with good mechanical properties (height stiffness-to-weight characteristics) made CLS
widely used in transport, aerospace, and cosmonautics [45–48]. The rapid development of
additive manufacturing technology has recently increased interest in the use of TPMS in
CLS design. Wang et al. [49] proposed a mapping methodology that allows the designing of
TPMS structures with cylindrical arrangements of unit cells by describing them with polar
coordinates. Based on the fine element analysis, it was observed that the gyroid cylindrical
lattice structure (G-CLS) shows improved energy absorption capability in comparison to
CLS based on the strun unit cells. Research carried out by Cao et al. for G-CLS [50] and
primitive cylindrical lattice structure (P-CLS) [51] showed that geometrical defects have a
significant impact on the mechanical properties, what should be taken into consideration
during analyzing the deformation mode and preparing simulation models. Szatkiewcz
et al. [52] analyzed the mechanical properties, energy absorption capacity, and deformation
models of Gyroid TPMS cylindrical structures. The experimental results show the rela-
tionship between the selected structural parameters, mechanical properties, and energy
absorption abilities. It was observed that the tested structures represented two different
modes of deformation, with the layer-by-layer mode being dominant.

This study investigated the Diamond TPMS cylindrical structures fabricated by se-
lective laser melting with 316L stainless steel powder. Based on the experimental study,
compressive behavior, overall deformation mode, mechanical properties, and energy ab-
sorption ability are evaluated. Next, the results were compared and discussed with our
previous work [52] concerning Gyroid TPMS cylindrical structures. The objective was an
evaluation of the possibility of tested structures in energy absorption applications.
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2. Materials and Methods
2.1. Diamond Lattice Structure Design

Diamond (Figure 1) is one type of TPMS, which can be designed by defining the
isosurface (D = 0) equation:

D = [sin(kxx)sin(kyy)sin(kzz) + sin(kxx)cos(kyy)cos(kzz) + cos(kxx)sin(kyy)cos(kzz) + cos(kxx)cos(kyy)sin(kzz)]e − te, (1)

ki = 2π * ui/Li i = x,y,z, (2)

where:

• ki—TPMS function periodicity;
• ui—number of unit cells in x, y, and z dimension;
• Li—absolute size of the porous structure in x, y, and z direction;
• e—exponent, which determines the type of unit cell: skeletal (for e = 1) and sheet (for

e = 2);
• t—parameter, which determines the parts of the volume of the regions separated by

isosurface [4,37,52,53].
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Figure 1. Three-dimensional models of Diamond unit cell: (A) sheet (matrix, shell); (B) skeletal (net-
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In this study, the lattice structures with the cylindrical arrangement of unit cells were 
designed with nTopology 3.23.3 (nTopology, New York, NY, USA) software [54] based on 
the methodology described by Wang et al. [49] and Szatkiewicz et al. [52]. The geometrical 
dimension (Figure 2) and relative density (20%) of the structures adopted are the same as 
in our previous studies to enable comparative analysis. The plan of the experiment as-
sumed the design and manufacture of a series of 9 structures with 12, 9, and 6 cells in a 
circumferential direction (ncircum), 1, 1.5, and 2 cells in the radial direction (nradial), and 3 
cells layer in an axial direction (naxial). The symbol of each structure consisted of 4 parts, 
respectively: the type of TPMS topology, ncircum, nradial, and the wall thickness. 

Figure 1. Three-dimensional models of Diamond unit cell: (A) sheet (matrix, shell); (B) skeletal
(network).

In this study, the lattice structures with the cylindrical arrangement of unit cells were
designed with nTopology 3.23.3 (nTopology, New York, NY, USA) software [54] based on
the methodology described by Wang et al. [49] and Szatkiewicz et al. [52]. The geometrical
dimension (Figure 2) and relative density (20%) of the structures adopted are the same
as in our previous studies to enable comparative analysis. The plan of the experiment
assumed the design and manufacture of a series of 9 structures with 12, 9, and 6 cells in
a circumferential direction (ncircum), 1, 1.5, and 2 cells in the radial direction (nradial), and
3 cells layer in an axial direction (naxial). The symbol of each structure consisted of 4 parts,
respectively: the type of TPMS topology, ncircum, nradial, and the wall thickness.
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Figure 2. Project of Diamond TPMS cylindrical structures on example Diamond_9_1_0.64 structure: 
(A) unit cell (top and side view); (B) geometrical dimensions (top and side view; green color- single 
unit cell; orange color- single layer of unit cells). 
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The sample structures were produced using MetcoAddTM 316L-A (Oerlikon Metco 
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mined using a PHENOM PRO scanning electron microscope (Thermo Fisher Inc., Wal-
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Laser particle sizer ANALYSETTE 22 MicroTec Plus (Fritsch GmbH, Amberg, Ger-
many) was used to determine the particle size distribution of the powder (Figure 3B) in 
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Element Fe Cr Ni Mo C Other 
Weight percent (%) Balance 18 12 2 <0.03 <1.0 

 
Figure 3. MetcoAddTM 316L-A powder characterization: (A) SEM morphology, (B) particle size dis-
tribution analysis. 

All samples were fabricated using laser sintering technology with the same process 
parameters shown in Table 2 using the SLM ORLAS CREATOR® process equipment (OR 
Lasertechnologie GmbH, Dieburg, Germany). 

Figure 2. Project of Diamond TPMS cylindrical structures on example Diamond_9_1_0.64 structure:
(A) unit cell (top and side view); (B) geometrical dimensions (top and side view; green color- single
unit cell; orange color- single layer of unit cells).

2.2. Metal Powder Characterization and Sample Structures Fabrication

The sample structures were produced using MetcoAddTM 316L-A (Oerlikon Metco
Inc., Troy, MI, USA) 316L austenitic stainless steel powder. The chemical composition of the
powder is shown in Table 1. The morphology of the powder (Figure 3A) was determined
using a PHENOM PRO scanning electron microscope (Thermo Fisher Inc., Waltham, MA,
USA).
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Figure 3. MetcoAddTM 316L-A powder characterization: (A) SEM morphology, (B) particle size
distribution analysis.

Laser particle sizer ANALYSETTE 22 MicroTec Plus (Fritsch GmbH, Amberg, Ger-
many) was used to determine the particle size distribution of the powder (Figure 3B) in
accordance with PN-ISO 9276-1 [55].

Table 1. Chemical composition of MetcoAddTM 316L-A powder [56].

Element Fe Cr Ni Mo C Other

Weight percent (%) Balance 18 12 2 <0.03 <1.0
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All samples were fabricated using laser sintering technology with the same process
parameters shown in Table 2 using the SLM ORLAS CREATOR® process equipment (OR
Lasertechnologie GmbH, Dieburg, Germany).

Table 2. Parameters of the SLM manufacturing process [52].

Laser Power Laser Speed Layer Thickness Printing Environment

123 W 1000 mm/s 25 µm Argon

The greatest advantage of porous structures based on the TPMS topography is their
self-supporting nature. This allows the fabrication of a structure with open pores and
channels using a limited support system. The supports were removed mechanically. The
fabricated structures were then cleaned of unbound powder and then subjected to a wash
process in an ultrasound washer in distilled water for 10 min. To determine the difference
between the actual (mr) and design (md) weight, each sample was weighed on a precision
balance with an accuracy of d = 0.01 g. The designed mass was calculated by the equation:

md = ρS ∗ VL, (3)

where VL is the volume of the structure calculated from the CAD design, and ρS is the
density of the sample produced from 316L powder with the same technological parameters
as the tested structures. In this study, ρS was set as 7.62 g/cm3. Based on this, it was
calculated that the designed mass for tested samples should be 16.57 g. The quasi-static
compression test was performed for structures in which the difference between the design
and the real mass was about 2%. Figure 4 shows the collection of all Diamond TPMS
cylindrical structures that were fabricated to perform the tests. In addition, Figure 5 shows
their vertical cross-sections. Table 3 presents the exact specification of the tested samples.
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Table 3. Parameters of sample structures tested.

Symbol ncircum nradial naxial T (mm) mr (g) ∆m (%) mr_avrage (g)

Diamond_6_1_0.73
16.42 −0.9

16.436 1 3 0.73 16.45 −0.7
16.42 −0.9

Diamond_6_1.5_0.64
16.46 −0.6

16.476 1.5 3 0.64 16.45 −0.7
16.50 −0.4

Diamond_6_2_0.58
16.47 −0.6

16.466 2 3 0.58 16.45 −0.7
16.46 −0.6

Diamond_9_1_0.64
16.46 −0.6

16.469 1 3 0.64 16.44 −0.8
16.47 −0.6

Diamond_9_1.5_0.56
16.45 −0.7

16.459 1.5 3 0.56 16.45 −0.7
16.44 −0.8

Diamond_9_2_0.51
16.50 −0.4

16.469 2 3 0.51 16.44 −0.8
16.44 −0.8

Diamond_12_1_0.58
16.45 −0.7

16.4712 1 3 0.58 16.45 −0.7
16.50 −0.4

Diamond_12_1.5_0.51
16.50 −0.4

16.4512 1.5 3 0.51 16.41 −0.9
16.43 −0.8

Diamond_12_2_0.47
16.47 −0.6

16.4612 2 3 0.47 16.47 −0.6
16.44 −0.8
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2.3. Quasi-Static Compression Test

A quasi-static compression test was carried out to determine the mechanical properties
of the porous structures. Tests were carried out on a Zwick Z400E (ZwickRoell GmbH and
Co., Ulm, Germany) testing machine in accordance with ISO 133:14 standard [57] with
continuous loads at a rate of 2 mm/min (this is about 8.33% strain per minute) at ambient
temperature. The loading direction was parallel to the building direction. For each design
of the structure design, 3 tests were carried out. The compression tests were recorded using
the camera to analyze the tested structure’s deformation models.

Based on the uniaxial stress–strain curve, the elastic modulus (EL), yield strength (σy),
plateau stress (σL), and energy absorption capacity (WV) were determined. The modulus
of elasticity was determined from the angle of inclination of the linear elastic section of the
stress–strain curve, and the yield strength was determined using the 0.2% offset method.
Plateau stress was defined as the arithmetic mean of the stress in the strain intervals from
20% to 30% of the compressive strain according to ISO 13314:2011.

The energy absorption capacity was defined as the area under the stress–strain curve
(energy absorption per unit volume):

WV =
∫
σ(ε)dε. (4)

The energy absorption efficiency [4,6,49,56] was defined as the quotient of the energy
absorption and the highest stress obtained for compression up to the strain ε, according to
the equation:

η(ε) = (1/σ(ε)) ∗WV. (5)

3. Results
3.1. Compression Process and Overall Deformation Model

The course of change in the stress–strain diagrams from quasi-static compressive tests
for tested structures is presented in Figures 6–8. All curves exhibit three characteristic
sections: a linear elastic section, followed by a long plateau section, and ended by a
densification section. For the linear elastic section, the compressive stress increased rapidly
until the struts yielded due to bending or stretching. The shape of the plateau section is
the result of the sequential collapse of the unit cells because of bucking, brittle crushing,
or yielding, depending on the type of construction material and unit cell geometry. After
crossing the so-called densification point (εD), the stress value rises due to the entire
collapsing of unit cell walls and reaching contacts. The point of densification is, therefore,
the limit of a structure’s suitability for energy absorption applications [4,6,52,57–59]. In
some cases, a linear-elastic section was preceded by a non-linear stage, the reason for
which was the lack of full contact between the specimen surface and the testing machine
head [28,52].

According to Gibson et al. [57] and Ashby [60] works, depending on the deformation
mechanism of the cell strut and the overall deformation models, lattice structures can be
divided into stretch-dominated and bending-dominated structures. The stress–strain curve
of stretch-dominated structures is characterized by an initial increase in stress followed by
a rapid decrease in stress and a series of fluctuations in the course of the plateau section
associated with the progressive collapse of the unit cells layers. In comparison, the bending-
dominated structures exhibit a more constant curse of plateau section. Based on this, the
tested Diamond TPMS cylindrical structures with nradial = 1 were classified as bending-
dominated lattice structures, while the structures with nradial = 1.5 and nradial = 2 were
classified as stretch-dominated lattice structures.



Materials 2023, 16, 3196 8 of 21Materials 2023, 16, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 6. Stress–strain curves from compressive testing of Diamond TPMS cylindrical structures 
with 6 unit cells in a circumferential direction. 

 
Figure 7. Stress–strain curves from compressive testing of Diamond TPMS cylindrical structures 
with 9 unit cells in a circumferential direction. 

Figure 6. Stress–strain curves from compressive testing of Diamond TPMS cylindrical structures with
6 unit cells in a circumferential direction.

Materials 2023, 16, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 6. Stress–strain curves from compressive testing of Diamond TPMS cylindrical structures 
with 6 unit cells in a circumferential direction. 

 
Figure 7. Stress–strain curves from compressive testing of Diamond TPMS cylindrical structures 
with 9 unit cells in a circumferential direction. 
Figure 7. Stress–strain curves from compressive testing of Diamond TPMS cylindrical structures with
9 unit cells in a circumferential direction.



Materials 2023, 16, 3196 9 of 21
Materials 2023, 16, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 8. Stress–strain curves from compressive testing of Diamond TPMS cylindrical structures 
with 12 unit cells in a circumferential direction. 

According to Gibson et al. [57] and Ashby [60] works, depending on the deformation 
mechanism of the cell strut and the overall deformation models, lattice structures can be 
divided into stretch-dominated and bending-dominated structures. The stress–strain 
curve of stretch-dominated structures is characterized by an initial increase in stress fol-
lowed by a rapid decrease in stress and a series of fluctuations in the course of the plateau 
section associated with the progressive collapse of the unit cells layers. In comparison, the 
bending-dominated structures exhibit a more constant curse of plateau section. Based on 
this, the tested Diamond TPMS cylindrical structures with nradial = 1 were classified as 
bending-dominated lattice structures, while the structures with nradial = 1.5 and nradial = 2 
were classified as stretch-dominated lattice structures. 

In order to illustrate the overall deformation mode of Diamond TPMS cylindrical 
structures during the compression test, camera images were recorded. Based on the anal-
ysis of the images, it was found that the studied structures were destroyed according to 
two different deformation modes. For bending-dominated structures, horizontal bending 
of the walls of unit cells located in the middle layers of the structure was observed. This 
gave the structure a characteristic barrel shape (the diameter of the structure after the 
compression test was higher than before). With the increase in strain, the folding and col-
lapse of the walls of unit cells located in the upper or lower layers of the structure were 
observed. This so-called uniform deformation mode was presented for structures with 
nradial = 1 (Figure 9). The second mode of deformation is characterized by the successive 
collapse of the walls of elementary cells until the structure is completely destroyed. This 
is the so-called “layer-by-layer” deformation mode, which was presented for structures 
with nradial = 1.5 and nradial = 2 (Figure 10). 
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12 unit cells in a circumferential direction.

In order to illustrate the overall deformation mode of Diamond TPMS cylindrical
structures during the compression test, camera images were recorded. Based on the
analysis of the images, it was found that the studied structures were destroyed according to
two different deformation modes. For bending-dominated structures, horizontal bending
of the walls of unit cells located in the middle layers of the structure was observed. This
gave the structure a characteristic barrel shape (the diameter of the structure after the
compression test was higher than before). With the increase in strain, the folding and
collapse of the walls of unit cells located in the upper or lower layers of the structure were
observed. This so-called uniform deformation mode was presented for structures with
nradial = 1 (Figure 9). The second mode of deformation is characterized by the successive
collapse of the walls of elementary cells until the structure is completely destroyed. This is
the so-called “layer-by-layer” deformation mode, which was presented for structures with
nradial = 1.5 and nradial = 2 (Figure 10).
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Figure 10. “Layer-by-layer” deformation mode at levels of strain 0%, 20%, 30%, 40%, and 50% for
bending-dominated structure on the example of Diamond_9_1.5_0.51.

3.2. Compressive Mechanical Properties

Compressive mechanical properties (elastic modulus, yield strength, and plateau
stress) of the tested structures are summarized in Table 4. Generally, it was observed that
increasing the number of unit cells in radial (nradial) and circumferential (ncircum) directions
reduced the value of elastic modulus. For the stretch-dominated structures increasing
ncircum increased the yield strength and plateau stress. The bending-dominated structures
showed similar values of yield strength and significantly higher values of plateau stress.
Generally, increasing nradium decreased the value of plateau stress for all tested structures.
The numerical results are also presented in Figure 11 to better illustrate the described
relationships.

Table 4. Compressive mechanical properties of tested Diamond TPMS cylindrical structures (mean
and standard deviation).

Symbol Elastic Modulus
(MPa)

Yield Strength
(MPa)

Plateau Stress
(MPa)

Diamond_6_1_0.73 1446 ± 162 27 ± 0.33 35 ± 0.30

Diamond_6_1.5_0.64 1663 ± 21 25 ± 0.69 21 ± 0.33

Diamond_6_2_0.58 2030 ± 109 22 ± 0.37 16 ± 0.92

Diamond_9_1_0.64 1493 ± 279 28 ± 0.32 36 ± 0.22

Diamond_9_1.5_0.56 1731 ± 7 30 ± 0.87 27 ± 0.79

Diamond_9_2_0.51 2061 ± 40 24 ± 1.31 19 ± 0.45

Diamond_12_1_0.58 1166 ± 26 27 ± 0.66 30 ± 0.26

Diamond_12_1.5_0.51 1883 ± 142 33 ± 0.87 27 ± 3.68

Diamond_12_2_0.47 2406 ± 180 31 ± 1.49 25 ± 3.93
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3.3. Energy Absorption

The energy absorption ability is a significant evaluation index of the lattice structures
for energy absorption applications. Figure 12A,C,E shows the cumulative energy absorption
per unit volume as a function of compressive strain. It can be found that energy absorption
gradually and linearly increased until the densification point was reached. After that, an
exponential increase in energy absorption was observed due to the entire collapsing of
unit cell walls and reaching contacts. For stretch-dominated structures (nradial = 1 and
nradial = 1.5), the densification point was reached for lower values of compressive stresses.
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Figure 12B,D,F presents the efficiency–strain curve. It can be observed that energy
absorption efficiency gradually increased until the densification point was reached. For
stretch-dominated structures (nradial = 1 and nradial = 1.5) in the raising stage of the curve,
the fluctuation was observed. It can be explained that the energy absorption efficiency is
related to fluctuations in stress values caused by the collapse of the cell walls of elementary
structures. The absence of oscillatory changes in the phase of the absorbed energy gain
indicates the stability of the absorption energy process during compression for the studied
structures [52,56,60].

The basic energy absorption parameters of tested Diamond TPMS cylindrical struc-
tures are summarized in Table 5. Generally, the energy absorption up to the densification
point decreased with increasing the number of unit cells in the radial direction (nradial).
The highest value of the energy absorption up to the densification point (17.53 MJ/m3)
was observed in the case of Diamond_9_1_0.64, which was a bending-dominated structure.
The lowest value (7.67 MJ/m3) was shown for Diamond_6_2_0.58, which was a stretch-
dominated structure. This confirms the advantage of structures with a long and flat plateau
in energy absorption applications [37]. The data are also presented in Figure 13 to better
illustrate the described dependencies.

Table 5. Basic energy absorption parameters of tested Diamond TPMS cylindrical structures.

Symbol Densification Point
εD (%)

Energy Absorption
W(εD) (MJ/m3)

Diamond_6_1_0.73 52 17.68

Diamond_6_1.5_0.64 38 7.67

Diamond_6_2_0.58 44 6.80

Diamond_9_1_0.64 55 19.53

Diamond_9_1.5_0.56 51 13.83

Diamond_9_2_0.51 51 9.43

Diamond_12_1_0.58 56 17.61

Diamond_12_1.5_0.51 51 13.50

Diamond_12_2_0.47 55 13.65
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4. Discussion

The research results described in this paper were compared with research on me-
chanical properties and energy absorption abilities of Gyroid TPMS cylindrical structures,
which were described in one of our previous works [52]. This was possible due to the same
experiment methodology.

Based on the stress–strain curve, it was found that all Gyroid TPMS cylindrical struc-
tures were bending-dominated structures, while this compressive behavior was observed
only for Diamond TPMS cylindrical structures with 1 unit cell in the radial direction.
Therefore, different relationships between design parameters (ncircum and nradial) and
compressive mechanical properties (EL, σy, σpl) were observed, which confirmed that
mechanical and compressive behavior depends not only on the relative density but also on
the geometry and arrangement of unit cells. These relationships are summarized in Table 6.

Table 6. Relationships between design parameters and mechanical properties for Gyroid [52] and
Diamond TPMS cylindrical structures. Where: ↑ increase. ↓ decrease.

Gyroid TPMS
Cylindrical Structures

Diamond TPMS
Cylindrical Structures Figure

Elastic modulus

• When nradial ↑, then EL ↓
for all structures

• When ncircum ↑, then EL ↑
for all structures

• When nradial ↑, then EL ↑
for all structures

• When ncircum ↑, then EL ↑
for all structures

Figure 14A–C

Yield strength

• When nradial ↑, then σy ↓ f

for all structures.

• When ncircum ↑, then σy ↑
for all structures

• When nradial ↑, then σy ↓
for stretch-dominated structures

• When ncircum ↑, then σy ↑
for stretch-dominated structures

• σy similar for all
bending-dominated structures

Figure 15A–C

Plateau stress

• When nradial ↑, then σpl ↓
for all structures

• When ncircum ↑, then σpl ↑
for all structures

• When nradial ↑, then σpl ↓
for all structures

• When ncircum ↑, then σpl ↑
for stretch-dominated structures

• When ncircum ↑, then σpl ↓
for bending-dominated structures

Figure 16A–C

The energy absorption ability is a significant evaluation index of the lattice structures
for energy absorption applications. Comparing the basic energy absorption parameters for
Gyroid and Diamond TPMS cylindrical structures, the following was found:

• In both cases, the structure that absorbed the highest value of energy to the densifica-
tion point had ncircum = 9 and nradial = 1;

• In both cases, the structure that absorbed the lowest value of energy to the densification
point had ncircum = 6 and nradial = 2.

Therefore, the comparative analysis was extended by another evaluation criterion,
which is the maximum efficiency of energy absorption. It is energy absorption efficiency
for the stress corresponding to the densification point read from the curve efficiency–strain.
The data are summarized in Table 7.
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Table 7. Comparison of maximum energy absorption for Gyroid and Diamond TPMS cylindrical
structures.

ncircum nradial
Maximum Energy Absorption η(εD) (%)

Gyroid Diamond

6

1 45 42

1.5 38 39

2 38 44

9

1 45 42

1.5 40 40

2 36 51

12

1 42 39

1.5 38 50

2 36 47

Comparing results for structures with nradial = 1, it was found that Diamond type
structures absorb more energy in comparison to Gyroid-type structures (Figure 17), but
their maximum efficiency was about 2–3% lower. Comparing the courses of the stress–
strain or efficiency–strain curves for this group, it can be concluded that Diamond type
structures presented more stability of energy absorption during compression.
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The stretch-dominated deformation mechanism of the cell strut characterized diamond
TPMS cylindrical structures with nradial = 1.5 and nradial = 2. Therefore, they absorbed much
less energy than Gyroid TPMS cylindrical structures with the same number of nradial.
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5. Conclusions

This study investigated the mechanical properties and energy absorption capacity of
Diamond TPMS cylindrical structures fabricated in the additive manufacturing process
by selective laser melting of 316L stainless steel powder. Based on the stress–strain curve,
the tested Diamond TPMS cylindrical structures were categorized as stretch-dominated
(nradial = 1.5 and nradial = 2) and bending-dominated (nradial = 1). The dependence of the
mechanical properties on the geometric parameters of the designed structures over the
entire range of changes in the values of these parameters was observed. The following
were found:

• An increase in ncircum and nradial causes an increase in the value of EL for all structures;
• For stretch-dominated structures, an increase in ncircum and a decrease in nradial causes

an increase in the value of σy;
• An increase in ncircum causes an increase in the value of σpl for stretch-dominated

structures and a decrease in the value of σpl for bending-dominated structures;

These relationships can be traced in Figure 11 in Table 6.
An ideal energy absorber should accommodate deformations at almost constant stress

and thus have a long and flat plateau section. The amount of energy absorbed up to
the densification point is determined by the area under the stress–strain curve, so the
highest possible plateau stress value is preferred. Such features are exhibited by structures
dominated by bending. On the other hand, fluctuations in the plateau region, typical of
stretch-dominated structures, limit the amount of energy absorbed [58,61–63]. Evaluation
of basic absorption parameters shows the advantage of bending-dominated Diamond
TPMS cylindrical structures in absorption energy applications in comparison with stretch-
dominated Diamond TPMS cylindrical structures. However, their elastic modulus and
yield strength were lower.

Comparative analysis showed a slight advantage of cylindrical Diamond TPMS struc-
tures with bending-dominated cellular strut deformation mechanisms for energy absorption
applications. This type of structure absorbed more energy compared to Gyroid-type struc-
tures and was characterized by greater stability of energy absorption during compression.
However, all cylindrical Gyroid TPMS structures that have been studied previously have
been dominated by this deformation mechanism, allowing for more design freedom.
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