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Abstract: Lead zirconate titanate (PZT) films have shown great potential in piezoelectric micro-
electronic-mechanical system (piezo-MEMS) owing to their strong piezoelectric response. However,
the fabrication of PZT films on wafer-level suffers with achieving excellent uniformity and prop-
erties. Here, we successfully prepared perovskite PZT films with similar epitaxial multilayered
structure and crystallographic orientation on 3-inch silicon wafers, by introducing a rapid ther-
mal annealing (RTA) process. Compared to films without RTA treatment, these films exhibit (001)
crystallographic orientation at certain composition that expecting morphotropic phase boundary.
Furthermore, dielectric, ferroelectric and piezoelectric properties on different positions only fluctuate
within 5%. The relatively dielectric constant, loss, remnant polarization and transverse piezoelectric
coefficient are 850, 0.1, 38 µC/cm2 and −10 C/m2, respectively. Both uniformity and properties
have reached the requirement for the design and fabrication of piezo-MEMS devices. This broadens
the design and fabrication criteria for piezo-MEMS, particularly for piezoelectric micromachined
ultrasonic transducers.

Keywords: lead zirconate titanate (PZT); micro-electronic-mechanical system (MEMS); piezoelectric
properties; dielectric properties; rapid thermal annealing

1. Introduction

Owing to their satisfactory piezoelectric and dielectric properties as well as high Curie
temperature compared to other piezoelectric films, lead zirconate titanate (PZT) films have
been widely employed in piezoelectric microelectron-mechanical systems (piezo-MEMS),
such as sensors, actuators and energy-harvesters [1–3]. However, except above properties,
the development of PZT-based piezo-MEMS devices also includes device performances
optimization. For example, the configuration design of piezoelectric devices could improve
performances including bandwidth, membrane displacement, output pressure/voltage,
electro-mechanical coupling performance, etc. [4–6]. Among them, the design of piezoelec-
tric micromachined ultrasonic transducers (PMUT) considers piezoelectric constant as an
important parameter. Specifically, the dynamic displacement ds of PMUT can be greatly
influenced by piezoelectric coefficient e31,f, which could be expressed as [7]:

ds = −r2·e31,f (ts + tm +
tp

2
− zn)·Ip(r)

/D·Id

where r is the PMUT radius, ts, tm, tp is the thickness of the substrate, bottom electrode
and piezoelectric films, respectively. Zn is the distance from the middle of the piezoelectric
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films to neutral axis. Ip(r) and Id are integrals related to the piezoelectric bending moment
and modal stiffness of the PMUT, respectively. In addition, both the sensing sensitivity Gs
and actuation sensitivity Gt could be affected by [8]:

Gs ∝ e31,f

Gt ∝ e31,f/ε33

Dielectric constants ε33 is inversely proportional to actuation sensitivity while piezo-
electric constants e31,f is proportional to sensing sensitivity and actuation sensitivity. Both
|e31,f| and ε33 are essential for enhancing ultrasonic receiving and transmitting perfor-
mance. It is worth mentioning that PZT films possess much higher piezoelectric properties
than other films, such as AlN, ZnO and so on [9]. Since, |e31,f| is generally positively
correlated with ε33, strategies that enhance |e31,f| of PZT films are of great importance [10].

In general, excellent piezoelectric properties of PZT films require perovskite crys-
tallographic structure with epitaxial (001) orientation [11,12]. Crystal dynamics theory
suggests that, among possible PZT phases, both amorphous state and metastable py-
rochlore state possess higher energy than stable perovskite state [13]. However, PZT films
usually manifest an amorphous structure when deposited at relatively low temperature.
Thus, subsequent annealing at high temperature is necessary to realize a uniform crys-
tallographic structure and the formation of stable perovskite phases. Thermal annealing
process normally comprises two categories: (1) conventional furnace annealing (CFA) with
slow heating rate, and (2) rapid thermal annealing (RTA) with high heating rate. Huang
et al. [14] compared the nucleation processes and found that PZT films during RTA would
hetero-nucleated on PtPb intermetallic phases at the interfaces while PZT films during
CFA preferentially homo-nucleated around defects and impurities. Hu et al. [15] systemat-
ically compared the crystallization behavior of PZT films using these two strategies and
concluded that the crystallization temperature can be greatly reduced using RTA process.
Wang et al. [16] suggested that the crystallinity and texture behaviors can be greatly im-
proved by controlling RTA parameters. Besides, Lu et al. [17] studied the effects of RTA
parameters and found that nucleation and growth process were more sensitive to heating
rate than holding time. Wan et al. [18] confirmed the feasibility to control orientations of
PZT films by tailoring RTA temperature. Yamauchi et al. [19] systematically investigated
as-deposited, CFA-treated and RTA-treated PZT films, and found that the crystallinity of
RTA-treated sample had not only smooth surface but was also tenfold stronger diffraction
intensity than CFA-treated counterpart. Velu et al. [20] fabricated PZT films by conven-
tional annealing and RTA. Experimental results showed that RTA was beneficial to (100)
orientations while conventional annealing could promote (110) orientations. However, to
our best knowledge, there is a lack of evidence on understanding the correlation between
the RTA parameters and the uniformity of various properties of the films on the whole
wafer, which is one of the key issues in the device level fabrication of piezo-MEMS devices
whatever process were underwent [21].

In this work, medium temperature (500 ◦C) magnetron sputtering was employed to
fabricate PZT films on a 3-inch silicon wafer, and subsequent rapid thermal annealing (RTA)
was performed, in order to realize perovskite structure of PZT films. Then, the uniformity
at different positions on the 3-inch wafer was examined to understand the influences of RTA
treatment. This “two-step” thermal treatment process successfully achieved micro-meter
thick, (001)-oriented perovskite PZT films with enhanced uniform piezoelectric, dielectric
and ferroelectric properties on 3-inch silicon wafers, with fluctuation <5%. The relatively
dielectric constant, loss, remnant polarization and transverse piezoelectric coefficient are
850, 0.1, 38 µC/cm2 and −10 C/m2, respectively.

2. Materials and Methods

Pb(Zr0.52Ti0.48)O3 ceramic target and 3-inch platinized silicon substrate were em-
ployed for magnetron sputtering. The substrate was cleaned before placing in the chamber,
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and the vacuum chamber was then pumped to ~10−5 Pa. PZT films were fabricated with
a thickness of 1µm, which can be controlled by deposition time. During the sputtering
process, gas pressure and temperature were fixed at 0.5 Pa and 500 ◦C, respectively. More-
over, the target power was set at 150 W. Subsequent RTA treatment at 700 ◦C for 5 min
was applied. Crystallographic orientation and phase structure of PZT films were char-
acterized by X-ray diffraction (D8, Bruker, Bremen, Germany). Surface morphology of
PZT films were analyzed by scanning electron microscope (SEM, Mira3, Tescan, Brno,
Czech Republic). The dielectric constant of PZT films were measured by a LCR meter (TH
2838, Tonghui, China). The room temperature ferroelectric hysteresis loops (P-E) were
measured by using a Radiant Precision Premium II ferroelectric tester (Radiant Technology,
Albuquerque, NM, USA). Lastly, the longitudinal piezoelectric characteristics and surface
morphology were characterized via Atomic Force Microscopy with piezoelectric module
(MFP-3D, Oxford Instruments, Concord, MA, USA) while transverse e31,f piezoelectric
measurement were performed by laser Doppler vibrometer (OFV-5000, Polytec, Waldbronn,
Germany). For the e31,f test, PZT film cantilevers were diced from the Silicon wafer with
the size of 20 mm × 2 mm × 0.5 mm, which was different from other tests of PZT film
capacitors with small lateral size (generally not more than 0.2 mm in diameter). During the
test, the PZT cantilevers were fixed at one end and driven by an electric voltage at the other
end [22,23].

3. Results and Discussion

Figure 1a shows the XRD patterns of PZT films in-suit and through rapid thermal an-
nealing (RTA) process. It could be observed that there were only pyrochlore (Py) phases in
as-grown PZT films. This is due to the fact that amorphous PZT phases can transform to Py
phases as low as 350 ◦C while Pe phases only form at temperatures higher than 525 ◦C [24].
However, Py phase is centrosymmetric and does not display desirable piezoelectric proper-
ties compared to Pe phase. It is well known that RTA process could significantly promote
the perovskite nucleation for sputtered PZT films [25]. As shown in Figure 1a, after the RTA
process, the PZT films displayed dominant (001)-oriented perovskite phases. This indicates
that almost all Py phases converted into perovskite phases in these PZT films after RTA
process. The existence of Py phases after RTA may be attributed to the loss of PbO, which
stabilized the Pb-deficient Py phases and prevented complete phase transformation [24]. In
Figure 1b,c, the cross-sectional SEM images show 1µm-thick PZT films, as well as closely
packed columnar grains. Moreover, nearly no visible cracks or pores are observed after
RTA process. Combining the results of XRD and SEM, introducing RTA can improve the
film quality and replace the Py phases with (001)-preferred orientation Pe phases, which is
crucial for achieving a good piezoelectric performance.

In practical applications, films integrated on a wafer are required to possess good
uniformity in terms of microstructure and properties. Figure 1d exhibits the XRD patterns
of PZT films after RTA at different locations on a 3-inch Si wafer. The inset of Figure 1d is
the picture of Si wafer coated with PZT films where the three probed positions were marked.
It could be observed that PZT films at different locations on the 3-inch wafer possessed
similar (001) crystalline orientations. Figure 1e–g are the surface SEM images obtained
from the marked positions 1, 2 and 3, respectively. PZT films at the three positions all
display smooth morphology with no visible bulges or cracks. Furthermore, representative
surface element distributions of PZT films at red rectangle area in position 2 are presented
in Figure 1h. The Pb, Zr, Ti and O elements are all uniformly distributed across the film
surface, and similar distributions are observed at positions 1 and 3. Through a quantitative
EDS analysis, the composition of PZT films is confirmed to be stoichiometric with a Zr/Ti
ratio of 52/48 (morphotropic phase boundary). Thus, we can conclude that PZT films
deposited at different positions on the 3-inch silicon wafer possess similar microstructure,
including the phase composition, crystalline orientations and surface morphology.
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Dielectric, ferroelectric and piezoelectric properties of RTA treated PZT films were 
examined, with special emphasis on the property variation at different positions over the 
whole wafer. Before that, surface morphology was evaluated to guarantee the reliability 
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Figure 1. (a) XRD patterns of PZT films before and after RTA process; Cross-sectional SEM images of
PZT films (a) before and (b) after RTA process; (d) XRD patterns of PZT films within different positions
on a 3-inch wafer; The inserted image shows the actual position on a 3-inch wafer. SEM surface
morphology of PZT thin films at (e) Position 1, (f) Position 2 and (g) Position 3; and (h) corresponding
energy dispersion spectrum mapping of PZT films at red rectangle area in Position 2. All scale bars in
(b–f) are 1 µm; All scale bars in (h) are 300 nm.

Dielectric, ferroelectric and piezoelectric properties of RTA treated PZT films were
examined, with special emphasis on the property variation at different positions over the
whole wafer. Before that, surface morphology was evaluated to guarantee the reliability of
electrical characterization, as shown in Figure 2a. It could be observed that the roughness is
ultra-low, 1000 nm± 10.5 nm. This indicates that PZT films possess smooth surface without
obvious defects and surface morphology does not have unfavorable effects. Figure 2b
implies the relations of relative dielectric constant εr and applied electric voltage. There are
typical ferroelectric butterfly loops that exhibit good repeatability for the measurements at
different positions. The two peaks in the loop indicate the polarization switching, which
proves the excellent ferroelectricity. The values of εr fluctuate between 500 and 1100
according to the voltage. The remnant εr was slightly shifted and had a value of about 850.
This small shift indicates the existence of build-in electric field [26]. Similar to dielectric
constant εr, the dielectric loss tan δ in Figure 2c also varies with the voltage between
0.05–0.14. The loss in different positions fluctuates in a small range and the remnant tan δ
possessed a value below 0.1. Remnant polarization Pr, presented in Figure 2d at positions
1, 2 and 3, were 34.8, 38.1 and 38.3 µC/cm2, respectively. Moreover, coercive field Ec in
different positions were nearly repeatable with zero-polarization voltage at −45.5 kV/cm
and +60.5 kV/cm, respectively. The asymmetric loops could also be explained by the
existence of build-in electric field and space charge accumulated at PZT films-electrode
interface [27].
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Figure 2. (a) AFM morphology of PZT films at position 2; Relations of (b) relative dielectric constant
εr, (c) dielectric loss tan δ, (d) polarization and drive voltage for PZT films at different positions on a
3-inch wafer.

Figure 3a shows the variation of switching angle and piezo-response amplitude as
a function of bias-voltage. There is an obvious rectangular-shape loop, indicating the
successful 180◦ domain switching. The domain switching indicates the existence of ferro-
electricity and piezoelectricity with variable piezoresponse amplitude manifesting regular
butterfly-shape. Figure 3b demonstrates the voltage-dependence of transverse piezoelec-
tric coefficients e31,f of PZT films at different positions on the 3-inch silicon wafer. The
inset in Figure 3b shows the configuration of e31,f measurement. Transverse piezoelectric
coefficients e31,f could be calculated as follows [28]:

|e31,f|= δouth2
s Es/3(1 −υs)L2V (1)

where hs, Es, νs, L, V and δout are the thickness, Young’s modulus and Poisson’s ratio of the
substrate, length of the PZT unimorph cantilever, input AC voltage, and tip displacement
of free-end, respectively. The frequency of the applied ac voltage was 310 Hz, much lower
than the resonant frequency of the cantilever. hs = 550 µm, Es = 169 GPa and νs = 0.064 for a
Si substrate were used to calculate e31,f [22]. With increasing voltage, the values of e31,f first
rose and then saturated after a threshold voltage (about 10 V). This may be attributed to the
tendency of c-domains alignment to electrical field, where the volume fraction of c-domains
was increasing with increased voltage [29]. This mechanism was also demonstrated in
piezoelectric ceramics [30]. Similar to relative dielectric constant εr, transverse piezoelectric
coefficient e31,f manifest consistent values across the wafer surface, especially at saturation
voltage (>7.5 V). In this case, the saturated |e31,f| values were stable at around 10 C/m2,
regardless of the wafer positions. Therefore, uniformity in the dielectric, ferroelectric and
piezoelectric properties could be successfully achieved.
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Figure 3. (a) Switching angle and piezoelectric amplitude as a function of bias voltage for PZT films;
(b) Dependence of transverse piezoelectric constant e31,f and voltage for PZT thin films at different
positions on a 3-inch wafer.

Through the RTA process, PZT films exhibited (001) preferred orientation with less py-
rochlore phase, and also presented excellent piezoelectric performance. The RTA process is
an effective mothed to improve film quality. Moreover, there are some theoretical supports.
Dang et al. [13] investigated the annealing process using Landau model and Langevin
dynamical simulations, the RTA process can be seen as long-ranged elastic interactions and
these different crystallographic phases manifested various Landau-type free energy. The
high heating rates enable higher energy within RTA system than sputtering, which can
supply more energy to bypass the pyrochlore formation, as shown in Figure 1a. Figure 4
demonstrates the schematics of RTA and conventional furnace annealing (CFA) process, the
heat released in the relaxation process was not dispersed but aided in further nucleation
and crystallization of perovskite phases. Thus, as shown in Figure 4, compared to CFA
with slow heating rate (Red rectangle) with A/B/C three phase transitions, RTA may skip
one phase and generate A/C or B/C two phase transitions. In this work, the initial state
of deposited PZT films was not amorphous but pyrochlore at different sputtering temper-
ature, indicating state B in Figure 4. In general, PZT films deposited at low temperature
(<300 ◦C, green rectangle) manifest amorphous state rather than pyrochlore phases forming
at higher temperature (>350 ◦C, medium temperature). Therefore, RTA may only need to
overcome energy barrier F and facilitate phase transition from pyrochlore to perovskite
phases, marked as the bule rectangle in Figure 4 [24].
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Figure 4. Schematics of annealing process of PZT films at different states.

In addition, RTA may also overcome energy barrier D to form perovskite phases, as
indicated by green rectangle in Figure 4. This is dominated by thermal kinetics and there
is nearly zero relaxation. In this case, the excess energy in amorphous phases may play
an important role on forming perovskite phases. The greater energy differences provide a
more powerful driving force to the nucleation of perovskite phases, and the formation of
pyrochlore phases as an intermediate state can be avoided effectively. Therefore, we think
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RTA could also improve the crystallinity and realize the completely transformation within a
short time, which is beneficial to the piezoelectric properties due to more perovskite phases
and less interfacial reactions between PZT films and bottom electrode [31].

4. Conclusions

In summary, micro-meter thick PZT films were successfully integrated on a 3-inch
silicon wafer via the combination of medium-temperature magnetron sputtering and rapid
thermal annealing (RTA). Specially, the uniformity of PZT films after RTA on the whole
wafer was explored. The crystallographic orientations, surface morphology and elemental
composition at different positions showed nearly negligible differences. Furthermore, the
relative dielectric constant εr, dielectric loss tan δ, remnant polarization Pr and transverse
piezoelectric coefficient |e31,f| fluctuated within 5%, which were about 850, 0.1, 38 µC/cm2

and 10 C/m2, respectively. The uniformity of microstructure and properties on the whole
wafer after RTA is beneficial to subsequent device fabrication. Our PZT films integrated on
the 3-inch silicon wafers will definitely broaden the multiple possibilities for silicon-based
piezo-MEMS applications.
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