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Abstract: The combination of rice husk ash and common concrete both reduces carbon dioxide
emission and solves the problem of agricultural waste disposal. However, the measurement of the
compressive strength of rice husk ash concrete has become a new challenge. This paper proposes a
novel hybrid artificial neural network model, optimized using a reptile search algorithm with circle
mapping, to predict the compressive strength of RHA concrete. A total of 192 concrete data with
6 input parameters (age, cement, rice husk ash, super plasticizer, aggregate, and water) were utilized
to train proposed model and compare its predictive performance with that of five other models.
Four statistical indices were adopted to evaluate the predictive performance of all the developed
models. The performance evaluation indicates that the proposed hybrid artificial neural network
model achieved the most satisfactory prediction accuracy regarding R2 (0.9709), VAF (97.0911%),
RMSE (3.4489), and MAE (2.6451). The proposed model also had better predictive accuracy than that
of previously developed models on the same data. The sensitivity results show that age is the most
important parameter for predicting the compressive strength of RHA concrete.

Keywords: rice husk ash; concrete; compressive strength; reptile search algorithm with circle mapping;
artificial neural network

1. Introduction

Concrete is globally still one of the most highly demanded materials in construction
and other industries [1]. By 2018, the production of concrete exceeded 10 billion cubic
meters [2]. As a main component, the production of cement rose to 4 billion tons in
2020 [3]. Although cement provides the necessary strength for concrete, carbon dioxide
(CO2) produced in the forging process is a heavy burden (approximately 7%) on the
atmosphere. Considering the harm of CO2 to the environment and human beings, energy
conservation and emission reduction have become normal goals in concrete application.
Searching for ovel materials to replace parts of cement, namely, supplementary cementitious
materials (SCMs), is one of the most effective ways to solve this problem.

Most available SCM options are derived from byproducts associated with industrial
and agricultural processes, such as palm-oil fuel [4,5], olive-oil [6,7], and fly [8,9] ash,
silica fume [10,11], seed shells [12], dispersed coconut fibers [13], and other types of
powder [14–20]. Among these novel SCMs, the combination of rick husk ash (RHA)
and conventional concrete has received much attention [21–23]. First, RHA is one of
the main byproducts of agricultural production. Conventional stacking could pollute
the air and groundwater [24], but adding it to concrete is a reasonable and innovative
way to recycle. Second, the pozzolanic nature of RHA helps in improving the durability
and strength of concrete [25]. However, the addition of RHA has an important effect
on concrete performance [26], especially compressive strength, which directly affects the
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durability and stability of structures in construction and other industries. Madandoust
et al. [27] used RHA to replace 20% of cement to study the strength of concrete. Their
results showed that the short-term compressive strength of RHA concrete was reduced,
but the long-term compressive strength was increased. Ahsan and Hossain [28] compared
cement performance at different RHA replacement rates (10% and 20%). They found that
replacing 10% of cement with RHA was optimal because the interfacial transition zone was
more effectively densified with the silica content of RHA. However, Noaman et al. [29]
reported that that replacing cement with 15% RHA could maximize concrete’s compressive
strength. Furthermore, determining the mixing ratio of other components in concrete
production with cement and RHA is complicated; thus, it is both necessary and challenging
to determine the strength of concrete.

The most accurate strength measurement method of concrete is the compressive
test in the laboratory. However, the production and maintenance of concrete samples is
complicated and time-consuming, and wastes workers and material resources [30]. For
example, a group of experiments require two to three professionals to complete. In order
to improve calculation efficiency and site limitation, a method based on an empirical
formula was developed to estimate compressive strength that was especially praised by
field workers. Islam et al. [31] developed an empirical formular by using the least-squares
approach to calculate the compressive strength of RHA concrete. Their results showed that
the formular achieved good predictive performance with a correlation coefficient (R) of
0.816. Liu et al. [32] utilized six empirical equations to estimate the compressive strength of
concrete containing RHA with different replacement values. However, the limitation of the
empirical formula is that it cannot accurately express the complex nonlinear relationship
between the considered parameters and compressive strength [33].

In recent years, artificial-intelligence methods with machine learning (ML) as a main-
stream technologies have been widely used to solve the problem of concrete strength
prediction [34–40]. Azimi-Pour et al. [41] utilized four types of support vector machine
(SVM) models to predict the compressive strength of fly ash concrete. The performance
results indicated that the radial basis function (RBF)-based SVM model had the highest
accuracy for a coefficient of determination (R2) equal to 0.9932. Zhang et al. [42] improved
the random forest (RF) model to predict the compressive strength of lightweight concrete
(LWC). The extreme learning machine (ELM) model was applied for the compressive
strength prediction of lightweight foamed concrete [43]. Compared with these models, an
artificial neural network (ANN) model with a simple structure, and good capabilities for
processing high-dimensional data and complex parameter relationships is more favored in
predicting the concrete strength of RHA [44–47]. Getahun et al. [48] developed an ANN
model to forecast the 28-day compressive strength of a composite concrete mixture with
RHA and reclaimed asphalt pavement (RAP). The prediction results illustrated that the
ANN model could accurately fit the relationship between the considered components and
the strength, as evidenced by excellent performance indices: R was 0.9811 and the root
mean square error (RMSE) was 0.648. To optimize the selection scheme of the ANN model
on weight and bias values, and further improve model performance, many scholars modi-
fied this model using numerous optimization algorithms for predicting concrete strength,
e.g., grey wolf optimization (GWO) [49,50], particle swarm optimization (PSO) [51,52],
the genetic algorithm (GA) [53], the whale optimization algorithm (WOA) [54], and simu-
lated annealing (SA) with PSO [55]. For the strength prediction of RHA concrete, Andalib
et al. [56] utilized the bat algorithm (BA), PSO, and teaching–learning-based optimiza-
tion (TLBO) algorithm to optimize the ANN model for predicting compressive strength.
The performance results showed that all optimized ANN models achieved satisfactory
prediction accuracy, especially the BA–ANN model (RMSE = 5.898); Hamidian et al. [33]
proposed four hybrid ANN models to estimate the compressive strength of RHA concrete.
On the basis of the results of the performance analysis of all models, the PSO-with-two
differential-mutations (PSOTD)-based ANN model achieved superior performance than
that of other models, indicated by the higher R2 values (0.9697). There are still many newly
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developed and excellent optimization-algorithm-based populations that have not been
applied to the strength prediction of RHA concrete. Population initialization also needs
attention to maximize the predictive potential of ANN models.

Therefore, this paper utilizes circle mapping (CM) to improve the optimization perfor-
mance of the reptile search algorithm (RSA). A novel hybrid ANN model optimized with
CMRSA is proposed to estimate the compressive strength of RHA concrete. The predictive
accuracy of four ML models and an empirical model was compared. These ML models
consisted of optimized and common models: seagull optimization algorithm (SOA)-based
SVM (SOA–SVM) and RF (SOA–RF) models, an ANN model, and an ELM model. Four
statistical indices, regression analysis, error comparison, and the Taylor diagram were
adopted to evaluate the predictive performance of all models in order to determine the
optimal model. Lastly, sensitivity analysis was performed to select the most important
parameter for predicting the compressive strength of RHA concrete.

2. Data and Methods
2.1. Rice Husk Ash Concrete

RHA concrete cannot be produced without the use of other materials. For example,
cement is used to provide sufficient strength for concrete, water is key to controlling
concrete compactness in the mixing process, and the aggregate maintains concrete volume
stability. To assess the compressive strength of RHA concrete, Iftikhar et al. [57] combined
cement (kg/m3), RHA (kg/m3), a superplasticizer (kg/m3), an aggregate (kg/m3), and
water (kg/m3) to produce a series of concrete samples. Freshly poured concrete needs to
be cured, and its strength must be measured after a certain time. Therefore, age (days) is
also an important variable in predicting concrete strength. In this paper, 192 compressive-
strength data from Iftikhar et al. [57] were utilized to evaluate RHA concrete. The statistical
information of these variables and the compressive strength of the target concrete samples
is listed in Table 1.

Table 1. Statistical information on each variable for predicting RHA concrete strength.

Variables
Statistical Indices

Min Max Mean Median St. D

Cement 249.0 783.0 409.02 400.00 105.47
RHA 0.0 171.0 62.33 57.00 41.55

Superplasticizer 0.0 11.3 3.34 1.85 3.52
Aggregate 1040.0 1970.0 1621.51 1725.00 267.77

Water 120.0 238.0 193.54 203.00 31.93
Age 1.0 90.0 34.57 28.00 33.52

Compressive strength 16.0 104.1 48.14 45.95 17.54
Note: Min, minimal values; Max, maximal values; St. D, standard deviation.

For establishing the prediction model, all variables except compressive strength were
taken as the input parameters. The interdependence of the input parameters must be evalu-
ated to simplify the model and maintain prediction accuracy. The correlation coefficient is
widely used to describe dependence [58–60]. If the correlation coefficient between any two
input parameters exceeds 0.8, parameter deletion should be considered. Table 2 shows the
calculation results of correlation coefficient values between input parameters. The maximal
correlation coefficient value was 0.549, induced by water and the aggregate. Therefore, all
input parameters could be considered for generating a prediction model for estimating the
compressive strength of RHA concrete.
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Table 2. Correlation coefficient values between all considered parameters.

Variables Cement RHA Superplasticizer Aggregate Water Age Compressive Strength

Cement 1 −0.219 0.253 −0.238 0.083 −0.106 0.370
RHA 1 −0.021 −0.139 0.136 −0.033 −0.023
Superplasticizer 1 −0.205 0.268 −0.000 0.301
Aggregate 1 −0.549 −0.063 0.147
Water 1 0.011 −0.244
Age 1 0.495
Compressive strength 1

2.2. Reptile Search Algorithm

RSA is a novel metaheuristic optimization-algorithm-based algorithm proposed by
Abualigah et al. [61]. This algorithm was inspired by the hunting behavior of crocodiles to
solve the optimization problem. As the apex predators in amphibious environments, the
behavior of crocodiles has long attracted the attention of scientists. Crocodiles are highly
mobile, and can thereby quickly chase and attack prey, especially at night. The crocodile’s
excellent night vision and body shape with little resistance benefit this feature [61]. Second,
crocodiles are highly intelligent animals, which endows them with high recognition and
high perception capabilities. For instance, crocodiles wait where prey is frequent, such as
near a river. Crocodile hunting is also group behavior, and teams with a clear division of
labor enable individuals to obtain enough food. Therefore, the first step in performing a
hunting campaign is to initialize the population in the search space as follows:

Cij = rand · (Ub − Lb) + Lb (1)

where Cij represents the j-th position of the i-th crocodile; Ub and Lb represent the upper
and lower bounds of the search space, respectively; rand is a random number. The setting
of rand indicates that the individual position is randomly determined to find the prey.
However, population diversity and the possible search area are limited by this random
initialization-method-based mechanism [62]. To solve this problem, various types of chaos
mapping were combined to establish the different distributions of individuals in the search
space [63,64]. In this paper, circle mapping, with the advantages of stability and coverage
rate, was utilized to optimize the population initialization of RSA.

Cij = Cij + H −
(

G
2π

)
sin
(
2πCij

)
mod(1) (2)

where H and G represent the externally applied frequency and strength of nonlinearity,
respectively.

After determining the initial positions of individuals, the exploration command was
executed to find and encircle prey in the search space (see Figure 1a). In this phase, two
strategies could be selected by the crocodiles to search the entire area as much as possible.
The mathematical expressions of these strategies are as follows:

Ct+1
ij =

{
Bestt − ∂t

ij · α− Ft
ij · rand, t ≤ T

4

Bestt · Cij · ηt · rand, t ≤ T
2 and t > T

4

(3)

where Ct+1
ij represents the j-th position of the i-th crocodile at the t + 1 iteration; T is the

maximal iteration value; Bestt indicates the best position at the current (t) iteration, ∂t
ij

represents an internal parameter, namely, the hunting operator for the j-th position of
the i-th crocodile at the current iteration; α represents a related parameter to exploration
accuracy, which was equal to 0.1 in this paper; Ft

ij and ηt are the reduce function and
evolutionary sense, respectively. The former is used to narrow the search in a limited space,
and the latter is a probability ratio.
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Figure 1. Illustration of hunting behavior for RSA proposed by Abualigah et al. [61]: (a) exploration;
(b) exploitation.

Once the prey is encircled by crocodiles, the hunting (i.e., exploitation, as shown in
Figure 1b) can be performed, which uses two strategies, coordination and cooperation, to
determine the optimal crocodile position. Two strategies in this phase are mathematically
expressed as follows:

Ct+1
ij =

{
Bestt · Pt

ij · rand, t ≤ 3T
4 and t > T

2

Bestt − ∂t
ij · µ− Ft

ij · rand, t ≤ T and t > 3T
4

(4)

where Pt
ij represents the percentage difference between the best and current positions, and

µ is a small value in RSA. In general, the aim of the combination of coordination and
cooperation is to avoid falling into local optima.

3. Development of the Novel CMRSA–ANN Model

In this paper, the ANN model was generated to accurately predict the strength of RHA
concrete. However, the design of an ANN structure has an important effect on predictive
performance. In particular, the determination of weights and biases among the input,
hidden, and output layers is difficult and challenging [65]. The improved RSA using Circle
mapping (CM) was utilized to find the optimal weights and biases for the ANN model.
To that end, a novel prediction model, CMRSA–ANN model, was proposed to predict the
compressive strength of RHA concrete. Before running the model, a total of 192 data were
randomly divided into training and test sets at a 4 to 1 ratio, i.e., 154 data were utilized
to train the model, and 38 data to verify the model performance. All data can be found
in the Supplementary materials. Since the units of all used parameters were different, the
necessary normalization could avoid this impact on performance development. Thus, all
parameters were normalized in the range from −1 to 1. For the optimization-algorithm-
based population, population size is the most important internal parameter that needs to
be determined during iterations [66–68]. To find the global optimal solution, six population
sizes (25, 50, 75, 100, 125, and 150) were adopted to conduct the optimization process for
the ANN model. We set up 300 iterations to ensure that the optimal solution could be
found and remain stable. In general, the fitness value was utilized to represent the solution
calculated with the optimization algorithm. In this paper, RMSE was used to generate a
fitness function for evaluating optimization performance. The flowchart of developing
CMRSA–ANN models to predict the compressive strength of RHA concrete is shown in
Figure 2.
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Figure 2. Flowchart of generating CMRSA–ANN model to predict the compressive strength of
RHA concrete.

Other models (SOA–SVM, SOA–RF, ANN, ELM, and an empirical formular) were
also developed to predict concrete strength, and their prediction results were compared
with those of the CMRSA–ANN model. To select the best prediction model, four statistical
indices were considered to evaluate the predictive performance of each model: R2, RMSE,
variance accounted for (VAF), and mean absolute error (MAE). The definition of these
indices can be found in the literature [69,70], and their formulars are expressed as follows:

R2 = 1−

[
T
∑

t=1
(Ct − ct)

]2

[
T
∑

t=1
(Ct − C)

]2 (5)

VAF =

[
1− var(Ct − ct)

var(Ct)

]
× 100 (6)

RMSE =

√√√√ 1
T

T

∑
t=1

(Ct − ct)
2 (7)

MAE =
1
T

T

∑
t=1
|Ct − ct| (8)
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where T is the maximal number of samples; Ct and ct are the values of the t-th measured
and predicted, respectively; C is the average of the measured values.

4. Prediction Model Development

Before applying the ideal proposed model to predict the compressive strength of RHA
concrete, all models were developed using the same training set (80% of the database). The
detailed development process of each model is shown in this section.

4.1. ANN Model

For a common ANN model, the basic structure is composed of input, hidden, and
output layers. Compared with the number of hidden layers, one input layer and one output
layer are fixed collocations in single-target regression tasks. Two hidden layers are often
utilized to solve similar prediction problems [71–73]. Furthermore, the number of neurons
in each hidden layer greatly impacts ANN model performance. Hence, a series of tests were
carried to select the suitable ANN structure and the corresponding neurons for predicting
the compressive strength of RHA concrete. In this paper, the hidden layers were 1 or 2,
the range of neuron numbers was from 2 to 12, the activation function was set to sigmoid,
and the backpropagation algorithm was utilized to improve the prediction accuracy. As a
result, 10 tests with different ANN models were established, and their performance was
represented by using R2 and RMSE, as shown in Table 3. The ANN model with two hidden
layers (four neurons in the first hidden layer and three neurons in the second hidden layer)
had the best performance, with a higher R2 (0.8772) and lower RMSE (5.8632) than those of
other models.

Table 3. Performance of the ANN model with different hidden layers and neuron numbers.

Tests
Structure Performance

HL-1 HL-2 R2 RMSE

1 2 / 0.8322 6.8525
2 4 / 0.7839 7.7690
3 6 / 0.8100 7.2921
4 8 / 0.8225 7.0476
5 10 / 0.8554 6.3611
6 4 3 0.8772 5.8632
7 4 6 0.8312 6.8726
8 6 8 0.8025 7.4350
9 8 10 0.8143 7.2101
10 10 12 0.8338 6.8193

Note: HL-1, first hidden layer; HL-2, second hidden layer.

4.2. CMRSA–ANN Model

Although the best structure was determined in the ANN model development, it
is difficult to choose weights and biases between layers to minimize prediction error.
Therefore, the CMRSA optimization algorithm was utilized to optimize the initial ANN
model with two hidden layers (four neurons in the first hidden layer and three neurons in
the second hidden layer); the framework is shown in Figure 2. Six hybrid CMRSA–ANN
models with different population sizes were run for 300 iterations. The iteration curve of
each model is shown in Figure 3a. Figure 3b shows that the CMRSA–ANN model with
a population size of 75 had the lowest fitness value among all hybrid ANN models. As
a result, this model was used to predict the compressive strength of RHA concrete in
this paper.
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4.3. SOA–SVM Model

The development of the SOA–SVM model is similar to that of the CMRSA–ANN
model. For the SVM model, two main hyperparameters, the regularization parameter
(C) and kernel coefficient (γ) of the used kernel function, are key players to improving
the model performance [74,75]. In this paper, the popular radial basis function (RBF)
was considered as the kernel function of the SVM model. To determine the optimal
hyperparameter combination of the SVM model, the range of these parameters was 0 to
100. Thew population sizes and iteration number of SOA were set to be the same as those
of the CMRSA. The development results of the SOA–SVM models are shown in Figure 4.
The best SOA–SVM model had a population of 75 in the training phase and had a lower
fitness value of RMSE than that of other models.
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4.4. SOA–RF Model

Ensemble models such as the RF model could achieve good performance in solving
classification and regression problems; a detailed introduction of the RF model can be found
in the literature [58,76]. The unique tree structure and bootstrap sampling allow for the RF
performance to be determined by all trees and resist overfitting [74]. In the development
of SOA–RF models, the main purpose is to find the best hyperparameter combination
of the RF model, i.e., the number of tress (Nt) and the random features (Maxdepth). In
this paper, the tree-number range was from 1 to 100, and the random-feature range was
from 1 to 10. Figure 5 shows the optimization results of thew SOA–RF models based on
different population sizes after 300 iterations. The OA–RF model containing a population
of 75 achieved the most satisfactory performance, as shown by having the lowest fitness
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value of RMSE. Therefore, this SOA–RF model was considered to predict the compressive
strength of RHA concrete.
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4.5. ELM Model

The ELM model is a special neuron network with a single hidden layer for solving
regression problems. The predictive performance of the ELM model is only controlled by
the selection of neuron numbers in the hidden layer. To that end, 10 ELM models with
various neuron numbers in the hidden layer were generated to predict concrete strength.
Table 4 lists the predictive performance of each ELM model in the training phase. ELM
models with large neuron numbers achieved better performance than that of models with
smaller neuron numbers. However, the best ELM model was in the 9th test, when the
neurons were 100. The performance indices of this model were more reliable than those of
other models, i.e., R2 is equal to 0.8932 and RMSE is equal to 5.4682.

Table 4. Performance of an ELM model with different neuron numbers.

Tests Neuron Numbers
Performance

R2 RMSE

1 20 0.5268 11.5078
2 30 0.6460 9.9534
3 40 0.7327 8.6492
4 50 0.7595 8.2046
5 60 0.7851 7.7555
6 70 0.7997 7.4873
7 80 0.8589 6.2835
8 90 0.8373 6.7479
9 100 0.8932 5.4682
10 110 0.8788 5.8235

4.6. Empirical Model

The empirical model is an effective method that uses the relevant parameters to quickly
achieve the target calculations. In this paper, six input parameters were considered into the
empirical formular using multivariate linear regression, as expressed in Equation (9). The
training performance of the developed empirical model is shown in Figure 6.

Y = −0.47317 + 0.297X1 + 0.0779X2 − 0.0732X3 − 0.145X4 + 1.524X5 + 0.0154X6 (9)

where Y represents the compressive strength. X1–X6 represent the age, cement, RHA, water,
superplasticizer, and aggregate, respectively.
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5. Results and Discussion

After training the proposed models, the predictive performance of each model was
properly evaluated. Figure 7 shows the prediction curves of all models for estimating the
compressive strength of RHA concrete in the training phase. The difference between the
prediction curve of the empirical model and the training curve was the greatest among all
models. The similarity between the prediction curves of three hybrid models and training
was relatively higher, especially in the CMRSA–ANN model.

However, all trained models needed to be further tested to ensure the retention of the
excellent predictive ability. Table 5 illustrates the evaluation results of each model using four
performance indices in both the training and the testing phases. The performance results
from using the training set show that the CMRSA–ANN model was the best prediction
model, as it had the highest values of R2 and VAF (0.9679 and 96.7884%), and the lowest
values of RMSE and MAE (2.9991 and 2.3169). Following this model, two other hybrid
models (SOA–SVM and SOA–RF) also had superior predictive accuracy than that of the
unoptimized ML (ANN and ELM) and empirical models. On the other hand, the proposed
CMRSA–ANN model still achieved better predictive performance than that of other models,
indicated by the higher values of R2 and VAF (0.9709 and 97.0911%), and the lower values of
RMSE and MAE (3.4489 and 2.6451). Although the performance of the SOA–SVM and SOA–
RF models in the testing phase was worse than that using the training set, they still achieved
higher predictive accuracy than that of the unoptimized ML models. The ANN model
achieved better performance than that of the ELM model in the testing phase, proving that
the prediction accuracy of the ELM model is unstable for solving regression problems.

Table 5. Performance evaluation of prediction models using training and test sets.

Model
Performance (Training Set)

Model
Performance (Test Set)

R2 VAF % RMSE MAE R2 VAF % RMSE MAE

ANN 0.8772 87.7619 5.8632 4.1423 ANN 0.8572 86.0686 7.6353 5.2808
CMRSA–ANN 0.9679 96.7884 2.9991 2.3169 CMRSA–ANN 0.9709 97.0911 3.4489 2.6451
SOA–SVM 0.9595 96.0957 3.3651 1.2528 SOA–SVM 0.9494 95.0044 4.5436 3.0904
SOA–RF 0.9224 92.2384 4.6610 3.2359 SOA–RF 0.8941 89.5048 6.5743 4.8037
ELM 0.8932 89.3163 5.4682 4.0644 ELM 0.7020 70.6826 11.0294 8.5905
Empirical 0.2023 50.0783 14.9418 12.0202 Empirical 0.3716 57.3263 16.0169 13.1709
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Regression relationships can also be used to evaluate and compare the predictive
performance of models. Figure 8 shows the regression results of each model using the test
set. In each regression plot, one perfect and two limited lines were used to evaluate the
regression relationship between the values from the prediction model and the measured
values. For instance, the data point determined by the best model with a prediction accuracy
of 100% could lie on the perfect line. Observations based on this criterion show that the
CMRSA–ANN model achieved better predictive performance than that of other models,
indicated by the greater number of data points close to the perfect line and within the
limited lines. Furthermore, the performance of the SOA–SVM and SOA–RF models was
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better than that of the ANN, ELM, and empirical models, but they could not perform
accurate predictions for small values of compressive strength (less than 30 MPa).
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For the regression problem, the error between the predicted and measured values
was one of the most concerning performance indices. Although perfect predictions rarely
exist, one of the purposes of training and testing is to shrink the prediction error of each
target as much as possible. The measured and predicted values of the compressive strength
of RHA concrete are listed in Table 6. Figure 9 illustrates the error distribution of each
prediction model in the testing phase. The error by the CMRSA–ANN model was mainly
concentrated within 10 MPa and accounted for the highest proportion within 5 MPa. The
error distribution of the SOA–SVM model was similar to that of the CMRSA–ANN model
in a small range where the error was less than 10 MPa, while there were some larger errors
between 10 and 15 MPa. The error distribution from the empirical model was undoubtedly
the most unsatisfactory, as it both accounted for the lowest proportion of small errors and
had many excessive errors.
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Table 6. Prediction results of the compressive strength of RHA concrete using the developed models.

No. Measured
Predicted

ANN CMRSA–ANN SOA–SVM SOA–RF ELM Empirical

1 82.20 100.09 87.90 83.20 78.36 95.91 64.96
2 72.80 72.04 74.38 75.93 69.61 83.15 55.26
3 43.50 44.85 43.59 42.07 42.81 37.48 31.36
4 48.70 41.82 47.91 43.25 54.26 32.36 39.11
5 16.00 27.32 16.50 22.53 28.28 30.40 20.62
6 85.70 75.39 85.31 84.08 73.81 94.46 62.58
7 43.00 39.93 44.88 38.92 35.43 38.80 17.57
8 33.60 30.16 33.05 31.06 33.00 23.74 23.33
9 94.00 92.21 92.18 80.18 78.79 81.86 81.00
10 31.10 34.15 31.28 31.15 33.57 31.17 10.31
11 57.30 55.35 58.61 59.18 52.92 61.25 57.31
12 41.30 40.49 38.96 39.98 40.03 46.12 28.98
13 20.80 24.08 24.19 20.48 26.86 20.58 11.78
14 22.70 38.28 19.66 33.55 35.84 32.02 47.24
15 38.80 38.68 36.91 40.64 39.48 42.21 20.21
16 60.00 60.42 63.35 54.54 59.20 49.98 54.46
17 55.50 53.28 61.66 59.50 51.22 70.86 49.78
18 61.00 63.75 62.30 62.09 54.07 63.77 57.04
19 63.00 59.20 58.12 61.35 55.48 57.46 60.53
20 66.00 70.44 69.78 63.07 63.24 74.16 56.84
21 52.00 50.39 54.58 55.85 53.52 48.25 26.83
22 43.30 50.25 48.77 43.25 43.49 50.56 50.28
23 26.00 35.75 24.35 34.61 34.82 24.83 22.97
24 64.50 67.10 63.77 66.99 64.85 34.38 56.76
25 35.30 36.41 36.21 35.36 35.36 32.85 24.82
26 83.20 88.88 76.67 86.11 80.21 69.73 73.68
27 50.00 50.77 51.73 48.15 44.58 60.87 39.90
28 56.50 57.93 56.92 57.31 53.43 44.06 62.27
29 35.50 20.85 30.46 33.68 39.28 35.10 34.13
30 36.10 34.92 34.59 36.03 35.78 32.35 16.05
31 20.90 42.96 15.75 33.59 35.93 44.32 53.03
32 51.00 60.39 61.63 54.00 54.33 50.00 54.81
33 95.20 79.24 92.32 97.05 80.43 71.92 56.78
34 28.00 30.20 29.90 27.95 29.14 26.68 22.74
35 60.00 56.15 57.96 60.36 57.60 53.10 30.99
36 46.80 45.49 45.32 44.13 45.88 34.48 35.04
37 39.30 35.34 35.41 37.21 37.24 38.70 18.93
38 38.00 38.96 36.98 39.21 43.23 25.48 23.56

Taylor diagrams are used in visually comparing the predictive performance of multiple
models. In a Taylor diagram, a model with high prediction accuracy is close to the position
of the target value. The position of each model is determined with three indices, i.e., St.
D., RMSE, and R. Therefore, the model performance can be evaluated and compared with
multiple indices. Figure 10 displays the evaluation results of all developed models in the
Taylor diagram. The CMRSA–ANN model was the closest to the position of the test set.
Following this model, models sorted by distance are SOA–SVM, SOA–RF, ANN, ELM,
and empirical. These results indicate that the CMRSA optimization algorithm is successful
in improving the predictive performance of ANN models. The optimized SVM and RF
models had better predictive accuracy than that of the unoptimized ANN and ELM models.
Therefore, it is feasible to use the hybrid optimization model to predict the compressive
strength of RHA concrete. CMRSA–ANN was selected as the optimal model in this paper.
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Nevertheless, the importance or sensitivity of each input parameter to the prediction
of compressive strength is unknown, which is detrimental to further improving concrete
properties. Therefore, sensitivity analysis was conducted to evaluate the impact of each
input parameter on the output. In this paper, calculation method PAWN, proposed by
Pianosi and Wagener [77,78], was adopted to calculate the importance score of the input pa-
rameters. Figure 11 illustrates the sensitivity results of the compressive strength prediction
of the CMRSA–ANN model. Age was the most important parameter, with the highest score
(0.351), for predicting the compressive strength of RHA concrete. After age, parameters
ranked by influence are cement (0.300), the superplasticizer (0.292), water (0.279), RHA
(0.227), and the aggregate (0.225). This result is consistent with that obtained by Iftikhar
et al. [57].
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In order to verify the effectiveness and superiority of the prediction model, the predic-
tive performance of the other models developed using the same database was compared
with that of the CMRSA–ANN model proposed in this paper, and the results are shown
in Table 7. The proposed model had superior predictive performance than that of the
published models, indicated by the higher R2 value. These results also indicate that the
CMRSA–ANN model could better explain the relationship between the input parameters
and the compressive strength of RHA concrete.

Table 7. Performance comparison of previous works and the proposed model.

Reference Model Performance (R2)

Iftikhar et al. [57]
GEP 0.9670
RFR 0.9130

Amin et al. [79]
DT 0.8900
BgR 0.9200
ADB 0.9100

This paper CMRSA–ANN 0.9709
Note: GEP, gene expression programming; RFR, random forest regression; DT, decision trees; BgR, bagging
regressors; ADB, AdaBoost regressors.

6. Conclusions

The combination of RHA and concrete not only solves the problem of carbon dioxide
emissions from cement production and reduces the pressure of waste accumulation, but
could also be widely used as a green building material. To evaluate the performance of RHA
concrete, we proposed a novel hybrid CMRSA–ANN model to predict the compressive
strength of RHA concrete. We utilized 192 concrete data to train the model and test its
performance. Furthermore, four ML models and an empirical model were developed,
and their prediction results were compared with those of the proposed model. The main
conclusions of this paper are as follows:

(1) The proposed hybrid CMRSA–ANN model achieved the best prediction accuracy
for R2 (0.9679 and 0.9709), VAF (96.7884% and 97.0911%), RMSE (2.9991 and 3.4489),
and MAE (2.3169 and 2.6451) among all models in the both the training and the testing
phases. The performance comparison between the proposed and optimized ANN models
also indicated that the CMRSA could effectively improve the prediction ability of the
ANN model.

(2) The empirical model could not better explain the relationship between the input
parameters and the compressive strength of RHA concrete. Therefore, the empirical model
was not suitable as a conventional means to evaluate concrete performance.

(3) The hybrid SOA–SVM and SOA–RF models achieved better performance than that
of the unoptimized ANN and ELM models, indicated by a higher R2 (0.9491 and 0.8941)
and VAF (95.0044% and 89.5048%), and lower RMSE (4.5436 and 6.5743) and MAE (3.0904
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and 4.8037) in the testing phase. It is effective and necessary to use an optimization (such
as population-based) algorithm to improve the performance of ML models.

(4) Age was the most important input parameter for predicting the compressive
strength of RHA concrete. However, other input parameters with similar importance scores
should also be given high priority.

The purpose of this paper was to propose a new method for predicting RHA concrete
strength, and the mining of the potential relationship among the data themselves through
hybrid algorithm combination and optimization. However, the limitation of this paper is
that the amount of data used for training and testing the models was always insufficient.
An increase in effective data could help in improving the ability of the model to learn the
potential relationship between input and output parameters, and the diversification of the
test data could better verify the model performance. Therefore, adding more experimental
data is an effective way to further improve the prediction accuracy of the model. Com-
binations of other optimization algorithms and different ML models in the performance
prediction of RHA concrete are also worth comparing.
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