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Abstract: Ultrasonic metal welding (USMW) is widely used in assembling lithium-ion (Li-ion) battery
packs due to its advantages in joining dissimilar and conductive materials in the solid state. However,
the welding process and mechanisms are not yet clearly understood. In this study, dissimilar joints of
aluminum alloy EN AW 1050 to copper alloy EN CW 008A were welded by USMW to simulate the
tab-to-bus bar interconnects for Li-ion battery assembly. Qualitative and quantitative investigations
were carried out on plastic deformation, microstructural evolution, and the correlated mechanical
properties. During USMW, the plastic deformation concentrated on the Al side. The thickness of Al
was reduced by more than 30%; complex dynamic recrystallization and grain growth occurred near
the weld interface. The mechanical performance of the Al/Cu joint was evaluated with the tensile
shear test. The failure load gradually increased until a welding duration of 400 ms, and then remained
almost constant. The obtained results showed that the mechanical properties were greatly influenced
by plastic deformation and microstructure evolution, which provides guidance for improving the
weld quality and the process in general.

Keywords: ultrasonic welding; dissimilar joints; plastic deformation; microstructure

1. Introduction

Recently, the concerns regarding climate change and energy exhaustion have led
to an increasing demand for battery electric vehicles (BEVs) including electric, hybrid
electric, and plug-in hybrid electric vehicles [1–3]. The performance of BEVs is highly
dependent on the power and energy density of their battery packs. Due to their high energy
density, low self-discharge, and portability, lithium-ion (Li-ion) electrochemistry-based
secondary batteries are now widely used for BEVs [4,5]. Typically, an automotive battery
pack is manufactured in a pack–module–cell structure and consists of several hundred
to a thousand interconnected individual cells, which are connected through tab-to-tab or
tab-to-bus bar joints [5–7]. Copper (Cu) and aluminum (Al) are commonly used as materials
for battery tabs and bus bars due to their good ductility, corrosion resistance properties, and
high thermal and electrical conductivities [8–10]. A reliable joining technique is essential
to ensure a robust mechanical and electrical connection, as the failure of a single joint can
result in the invalidity of the entire battery pack.

The most commonly used joining techniques are resistance spot welding (RSW), pulsed
tungsten inert gas (TIG) welding, laser beam welding (LBW), and ultrasonic metal welding
(USMW). Depending on the material properties and contact geometry, these welding
techniques have their own advantages and disadvantages [4,11–13]. When compared with
the rest of the welding techniques, USMW is one of the major joining techniques used
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for assembling battery packs due to its advantages of low energy consumption and short
welding time. Additionally, USMW is more suitable for welding multiple thin sheets of
dissimilar highly conductive materials, whereas several challenges, such as large differences
in melting temperature and reactions between dissimilar metals, limit the conventional
fusion welding techniques.

USMW is a solid-state welding process that uses ultrasonic shear vibration to produce
relative motion between joining partners (typically in sheet or wire forms) clamped under
pressure [8,14,15]. Generally, there are three main process parameters used to control the
welding process: oscillation amplitude, welding force, and welding time/energy. The
comprehensive effects of process parameters on joint quality have been investigated by
a large number of researchers [16–25]. A reasonable combination of all three process
parameters is critical to ensure a robust mechanical and electrical connection. Hence,
the design-of-experiment (DoE), regression analysis, and machine learning techniques
have been applied to determine and optimize the process parameters [16,22–25]. Such
methods are commonly classified as “black box” models because the process physics and
the underlying bonding mechanisms are not required to be understood [15].

To evaluate weld quality, welded joints are usually evaluated by the T-peel, U-peel,
and tensile shear tests, where the failure load and failure modes are used to assess the
mechanical performance of the joint [26–28]. Das et al. [27] categorized the weld quality
into three classes: under-weld, good weld, or over-weld. While under-weld joints are
characterized by interfacial separation with no or partial adhesion of materials, a partial
or full circumferential fracture was observed around the perimeter of the weld nugget in
the case of the over-weld. The good-weld joints show a limited interfacial separation with
material tearing and had a maximal failure load in the test.

During the actual operation of a battery module, the interconnects may be damaged
due to the dynamic loading, random vibration, as well the dynamic behavior of batteries
during charging and discharging [29,30]. Thus, the interconnects should also be resistant
to crash impact, vibration, and fatigue [5,11]. However, few studies have focused on the
dynamic deformation behavior of welded joints. Lee et al. [10] proposed waveform design
methods to reduce the parasitic vibration and maintain the quality of the welded joint
during the welding process. Kang et al. [31] used a one-dimensional continuous vibration
model to analyze the stress distribution in the battery tab. According to their results, the
residual stress induced by the resonant flexural vibration can cause fatigue fracture near
the weld area. Zhao et al. [32] developed a fatigue life cycle model to predict fatigue life
of ultrasonically welded Al/Cu joints. Additionally, the service condition may affect the
mechanical strength of the interconnects. According to [33], ultrasonically welded Al/Cu
joints are reliable in working environments with temperatures below 150 ◦C, because
no obvious intermetallic compounds (IMCs) form at the weld interface. Nevertheless,
inhomogeneous thermal expansion may introduce shear stress in the weld area due to
the different physical properties of the base metals [34]. Further studies on the effects of
dynamic loading, thermal input, and corrosion are needed.

Several other studies have characterized the welding process via different measuring
systems. The temperature evolution during the USMW process has been measured by
embedding thermocouples at the interface or by observing the interface using an infrared
camera [17–21]. The temperature at some localized spots may reach or exceed the melting
point of the joining partners, even though the average temperature at the weld contact is
below the melting point. High-speed camera and laser-doppler vibrometry-based devices
have been applied to observe the relative motion between a sonotrode, joining partners,
and an anvil [35–38]. It was indicated that the USMW process involves different welding
stages such as a slip stage, slip–stick transition stage, stick stage, and over-welding stage.
Such investigations can improve the understanding of the welding process. Thus far, few
studies have provided insights into the bonding mechanism of Al–Cu ultrasonic welding.
Yang et al. [39] reported that mechanical interlocking, localized metal melting, significant
diffusion, and recrystallization can occur during USMW. However, the bonding formations
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and the microstructure at the weld interface vary with different material combinations
and processing conditions. While Zhao et al. [17] and Wu et al. [40] determined the inter-
metallic compounds (IMCs) of Cu9Al4, no IMCs were observed by Balasundaram et al. [41].
Fujii et al. [42] used texture analysis to investigate the bonding mechanism and proposed
that dynamic recrystallization occurred during USMW. Ma et al. [43] performed molecular
dynamics (MD) simulations to analyze dynamic weld evolution, which suggested that weld
formation involved several processes, including microweld formation, tear deformation
and fracture of microwelds, Al surface flattening, and complete weld formation.

In view of the above, it can be found that more systematic and theoretical analyses are
still required for the scientific understanding of weld formation mechanisms. Thus, the
overall purpose of this work was to contribute to the explanation of USMW to improve
welding quality. For this purpose, the plastic deformation of the joining partners and the
microstructure development at the weld interface were qualitatively and quantitatively
investigated. Additionally, their influence on the joint strength was discussed.

2. Materials and Methods

In this study, commercially pure 1 mm thick sheets of aluminum alloy EN AW 1050
(Al) and copper alloy EN CW 008A (Cu) both in half-hard condition were used to simulate
the joining of battery tabs and bus bars. The selected mechanical properties of the base
materials are listed in Table 1.

Table 1. Selected mechanical properties of the base materials.

Sheet Materials Yield Strength (MPa) UTS (MPa) Elongation at Fracture (%) Hardness

EN AW 1050 H24 107.3 ± 5.4 129.0 ± 0.5 11.9 ± 0.7 39 HV 1

EN CW 008A R240 189.6 ± 2.4 252.1 ± 0.4 82.6 ± 5.5 81 HV 10

A Herrmann HiS VARIO B (Herrmann Ultraschalltechnik GmbH & Co. KG, Karlsbad,
Germany) welding system with a working frequency of 20 kHz was employed for this
study. Figure 1a schematically depicts the main components of the ultrasonic welding
system. The ultrasonic generator converted the mains AC voltage with a frequency of 50 Hz
to a high-frequency voltage of 20 kHz. In the piezoelectric converter, this high frequent
electrical oscillation was transformed into a mechanical oscillation of the same frequency
based on the inverse piezoelectric effect of the piezoelectric crystal. Between the converter
and sonotrode, a booster was mounted to amplify the oscillation amplitude. This oscillation
amplitude was further amplified by the sonotrode. The transverse oscillations from the
sonotrode introduced shear loads into the weld zone.

As shown in Figure 1b,c, both the sonotrode and the anvil had a pyramidal profile on
the coupling surface to the joining partners, which served to prevent excessive slippage
and ensure a good transmission of the oscillation. The dimension of the sonotrode surface
was 10 mm × 10 mm, while the anvil side was 40 mm × 40 mm. Furthermore, the welding
force (Fus) was applied with a pneumatic cylinder, which applied constant pressure on the
joining partners throughout the welding process.

Both joining partners were cut from sheet material and had dimensions of 70 mm ×
15 mm × 1 mm. Figure 1d shows the configuration of the joining partners. The length of
the joining partner was set to be parallel to the rolling direction (RD) of the sheet, which
was perpendicular to the oscillation direction (OD). In this study, the thickness direction
(TD), OD, and RD served as the specimen coordinate system. Al and Cu were placed on the
anvil as the upper and lower joining partner, respectively. The Al/Cu joint had an overlap
area of 15 mm × 15 mm, and the weld zone was positioned at the center of the overlapped
area. The main welding parameters were selected as follows: an oscillation amplitude
(u) of 28 µm, a welding force (Fus) of 700 N, and welding time varied systematically from
75 ms to 700 ms. Before the welding process, the surfaces of both joining partners were
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cleaned using ethanol in an ultrasonic bath to remove the contaminants. No further surface
treatment was applied to change the surface condition.

Materials 2023, 16, x FOR PEER REVIEW 4 of 21 
 

 

overlapped area. The main welding parameters were selected as follows: an oscillation 
amplitude (u) of 28 µm, a welding force (Fus) of 700 N, and welding time varied systemat-
ically from 75 ms to 700 ms. Before the welding process, the surfaces of both joining part-
ners were cleaned using ethanol in an ultrasonic bath to remove the contaminants. No 
further surface treatment was applied to change the surface condition. 

  
Figure 1. Experimental setup: (a) schematic of an ultrasonic welding system, (b) optical micrographs 
of sonotrode profile, (c) dimensions of sonotrode and anvil profiles, (d) configuration of the joining 
partners, and (e) cut positions of cross-sections. 

To evaluate the monotonic mechanical properties of the Al/Cu joints, tensile shear 
tests were performed at room temperature with a constant speed of 1 mm/min using a 
ZwickRoell Z020 universal testing machine (ZwickRoell, Ulm, Germany). To compensate 
for the asymmetry of the single overlap joint, an offset was set for the clamping device. 
Cross-sections of the welded Al/Cu joints were cut parallel to the OD, grounded, and pol-
ished for the microstructural characterization. Figure 1e shows two cut positions. The sur-
face deformation of the upper joining partner, the fracture surface after the tensile shear 
test, and the prepared cross-section were analyzed using a Zeiss Smartzoom 5 digital op-
tical microscope (OM) (Zeiss, Oberkochen, Germany). To observe further details of the 
microstructure, a Zeiss EVO 15 scanning electron microscope (SEM) (Zeiss, Oberkochen, 
Germany) with energy-dispersive X-ray spectroscopy (EDX) and a Zeiss Sigma with EDX 
and electron backscatter diffraction (EBSD) techniques were utilized for this study. The 
temperature evolution during the welding process was measured using a type K thermo-
couple, which was embedded as close as possible to the center of the weld zone at the 

Figure 1. Experimental setup: (a) schematic of an ultrasonic welding system, (b) optical micrographs
of sonotrode profile, (c) dimensions of sonotrode and anvil profiles, (d) configuration of the joining
partners, and (e) cut positions of cross-sections.

To evaluate the monotonic mechanical properties of the Al/Cu joints, tensile shear
tests were performed at room temperature with a constant speed of 1 mm/min using a
ZwickRoell Z020 universal testing machine (ZwickRoell, Ulm, Germany). To compensate
for the asymmetry of the single overlap joint, an offset was set for the clamping device.
Cross-sections of the welded Al/Cu joints were cut parallel to the OD, grounded, and
polished for the microstructural characterization. Figure 1e shows two cut positions. The
surface deformation of the upper joining partner, the fracture surface after the tensile
shear test, and the prepared cross-section were analyzed using a Zeiss Smartzoom 5 digital
optical microscope (OM) (Zeiss, Oberkochen, Germany). To observe further details of the
microstructure, a Zeiss EVO 15 scanning electron microscope (SEM) (Zeiss, Oberkochen,
Germany) with energy-dispersive X-ray spectroscopy (EDX) and a Zeiss Sigma with EDX
and electron backscatter diffraction (EBSD) techniques were utilized for this study. The
temperature evolution during the welding process was measured using a type K thermo-
couple, which was embedded as close as possible to the center of the weld zone at the weld
interface, as shown in Figure 1d. To implant the thermocouple, a channel was sealed on the
copper surface.
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3. Results and Discussion
3.1. Plastic Deformation on the Al Surface

During USMW, the pyramid-profile tips of the sonotrode and anvil gradually pen-
etrated into the joining partners as a result of the plastic deformation of the metals to
be joined. Therefore, the indentation that appeared on the specimen surface varied with
respect to the welding time. In this study, the analysis was focused on the plastic de-
formation of the upper specimen. Owing to the different mechanical performances, EN
AW 1050 H24 more easily deforms than EN CW 008A R240. Furthermore, the oscillation
amplitude decreased during the transmission from the sonotrode to the anvil, which also
resulted in a larger deformation on the upper joining partner. The plastic deformation was
characterized by two features: sonotrode indentation in the horizontal direction and base
material compression in the vertical direction.

The appearance of the Al surface at different welding times was observed using a
ZEISS Smartzoom 5 OM. Figure 2 shows the evolution of the indentation. At the initial
phase of the welding process, the original Al surface with rolling marks was still observed,
and the indentation appeared to be relatively small in rhombic shape. It can be seen that
the plastic deformation started in the contact area under the sonotrode tip. As the welding
process proceeded, the indentation gradually expanded, and the deformed Al flowed into
the valley areas of the sonotrode tip. The directions of material flow are indicated by the
red arrows in Figure 2. As can be seen, these directions tended to the OD because of the
severe shear deformation. When the welding time reached 400 ms, the original Al surface
was almost removed and the Al crests between indentation became sharp, which was fit to
the outline of the sonotrode tips. Because there was no space for the deformed Al to flow
in, no significant change was observed with further increases in welding time.
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To quantitatively analyze the indentation on the Al surface, the widths of indentation
D1 along the RD and D2 along the OD were measured, as illustrated in Figure 3a. The
widths of the indentation are plotted against the welding time in Figure 3b. The evolution
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of indentation showed a similar tendency in both directions. However, the width D2 was
constantly larger than D1 during USMW, which was caused by the tendency as a result of
the vibration in the OD.
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According to the increasing rate of the indentation, the ultrasonic welding process
could be divided into three stages. In Stage I (<200 ms), the widths of the indentation
rapidly grew in both directions. Moreover, the difference between D1 and D2 increased
with increasing welding time and reached up to 150 µm at 200 ms. This was supposedly
caused by the increase in the relative movement at the sonotrode/Al interface. In Stage II
(200–400 ms), the increasing rate as well as the width difference between D1 and D2
decreased gradually. At the welding time of 400 ms, the width reached the maximum value
of about 920 µm in the OD and 830 µm in the RD. During Stage III (>400 ms), the widths of
the indentation remained nearly unchanged with some fluctuation, which indicated the
complete penetration of the pyramid-profile tips.

To evaluate the compaction behavior in the vertical direction, two cross-sections
parallel to the OD were prepared. As shown in Figure 1e, cross-section I was close to
the edge of the plastically deformed area, while cross-section II was in the middle of the
weld zone. Figure 4 shows the optical micrographs of cross-sections I and II at different
welding times. It can be noticed that the Al surface became more and more uneven in
both cross-sections as the welding time increased. Owing to the stress concentration, a
V-shaped valley formed at the contact area under the sonotrode tip. With additional shear
stress caused by ultrasonic oscillation, the deformed Al was gradually driven into the free
space between the sonotrode tip, resulting in a crest over the original Al surface. At short
welding times, a gap between the two crests could be clearly obtained, as indicated by the
red arrows in Figure 4. When the welding time reached 400 ms, the original Al surface was
almost completely covered by the deformed Al and was not visible anymore.

To analyze the penetration process more accurately, the postweld thickness T [8] and
the height of deformed Al H were measured, as defined in Figure 5a. The results are plotted
in Figure 5b, where both cross-sections show a similar evolution of the plastic deformation
on the Al surface during the welding process.

At the beginning of the welding process, the thickness of the Al decreased with a high
compaction rate, and the difference between both cross-sections was relatively small. More
than 55% of the total penetration depth was reached within 100 ms. Correspondingly, the
height of the deformed Al increased up to 77 µm, nearly 80% of the maximum. As the
welding process progressed, the penetration process of the sonotrode gradually slowed
down and quickly reached a saturation condition. The final postweld thickness was about
770 µm, while the height of the deformed Al reached about 97 µm. However, the postweld
thickness reached the maximum much faster in cross-section I than in cross-section II. This
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implied an inhomogeneous pressure distribution. A higher pressure was located at the
edge of the weld zone, which could accelerate the formation process of the joints.
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To identify the relationship between the deformation in the vertical and horizontal
directions, the postweld thickness was correlated to the width of indentation, which is
plotted in Figure 5c. It can be seen that the postweld thickness had a linear tendency to
proportionally decrease with the width of indentation, which indicated that the specimen
simultaneously deformed in the vertical and horizontal directions.

3.2. Microstructural Evolution at the Weld Interface

To comprehend the deformation behaviors and the microstructure evolution at the
weld interface, the cross-sections from Section 3.1 were investigated using OM, SEM, EBSD,
and EDX. As shown in Figure 4, a flat weld interface was observed at the weld interface,
and the swirl-like structures reported by Zhao et al. [17] and Bakavos et al. [44] did not
appear. Thus, no obvious mechanical interlocking was formed, which is associated with
the significant hardness difference between Al and Cu [17,41].

The optical micrographs of cross-section I at different welding times in Stage I are
shown in Figure 6. To learn the weld formation process, we focused on two characteristic
regions: the microasperities (a–c) and the locations with attached Al fragments (d–f) on the
Cu surface, which were mainly localized under the indentation of the sonotrode.

As shown in Figure 6a,d, a gap was located at the weld interface in both regions
when the welding time was shorter than 75 ms. Nevertheless, the attached Al fragments
were discovered on the copper surface in the unbonded regions, which indicated that a
metallurgical bonding between Al and Cu was already achieved at this time. Furthermore,
Figure 6d shows that the Al surface fits the outline of the Al fragments. It is suggested
that the initial bonding between Al and Cu fractured on the Al side under the shear stress,
resulting in the formation of attached Al fragments on the Cu surface.

This gap between Al and Cu was clearly reduced, and the microasperity of Cu pene-
trated into Al at a welding duration of 100 ms. As shown in Figure 6b, a strong bonding
was formed on the top of the microasperity. Simultaneously, local bonding between the
Al and Al fragments can be observed in Figure 6e, which was characterized by bonding
with some inside cracks. Additionally, more and more unbonded regions on the Cu surface
were covered by attached Al fragments, which could have promoted the formation of the
bonding between the Al and Al fragments.

With increasing welding time to 200 ms, the gap at the weld interface was almost
eliminated; the microwelds spread across the interface and coalesced with each other. As a
result, a continuous weld line was observed at the weld interface. As shown in Figure 6c, the
microasperity penetrated completely into the Al, where mechanical interlocking could be
generated and enhance the joint strength. Nevertheless, there were still a few microcracks
that appeared on the Al side, which further confirmed the bonding formed between the Al
and attached Al fragments. These observations were in agreement with the results reported
by Ma et al. [43].

To examine the evolution of the grain structure and texture, EBSD analyses were
performed at the weld interface of cross-section II. The approximate location was near the
indentation, where the plastic strain locally concentrates according to Chen et al. [45]. The
inverse pole figure (IPF) maps of the Al/Cu joints welded at 100 ms, 200 ms, and 700 ms
are presented in Figure 7a–c, respectively. The initial microstructures of aluminum- and
copper-based materials were characterized by the elongated grains along the rolling plane
due to the mechanical deformation during cold rolling.

It can be seen that during the welding process, the Al near the weld interface signifi-
cantly deformed, while no obvious microstructure changes were observed on the Cu side
near the weld interface. At a welding time of 100 ms, the Al side had roughly the same
microstructure as the base material, as shown in Figure 7a. However, a continuous noisy
area was found at the weld interface, where no representative information was found with
EBSD. This phenomenon could be associated with the gaps or the small grain size, which
was below the EBSD resolution. According to Fujii et al. [46], nanosized grains can be
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generated around the weld interface due to high-strain-rate shear deformation and can
promote weld formation during USMW.
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When the welding time reached 200 ms, two regions with clear microstructural dif-
ferences were observed: Region A showed a similar microstructure with elongated grains
as the base material, while Region B consisted of fine and equiaxed grains with changed
orientation near the welding interface. This microstructure was formed by dynamic recrys-
tallization (DRX) due to frictional heat and plastic deformation during USMW. Figure 7e,f
show the {111} pole figures extracted from Regions A and B, respectively. In Region A,
the typical rolling texture for face-centered cubic (FCC) metals was observed, which was
similar to the Al-base material. In Region B, a {111} <110> texture was detected near the
weld interface, which is known to be one of the ideal simple shear orientations [47]. This
indicated that dislocations glided mainly along the FCC slip systems {111} <110> during
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the USMW process and were induced by shear deformation. Similar microstructures were
also reported for the USMW of Al/Al joints [48,49] and Al/steel joints [50].
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When the welding time increased from 200 to 700 ms, the thickness of the recrystallized
regions elevated from approximately 30 µm up to 65 µm. As shown in Figure 7c, the
gathering of coarse grains with almost the same orientation was observed in Region D,
while Region C still showed the microstructure of the Al-base material. The grain size
in Region D appeared to be larger than that of the base materials, which contributed to
a low level of noise in the IPF map. Moreover, many subgrains enclosed by low-angle
grain boundaries (LAGBs) were observed in Region D. In Figure 7d, the misorientation
angle of LAGBs ranges from 2◦ to 5◦ for the red lines and 5◦ to 15◦ for the green lines. This
microstructure was formed by the significant growth of the recrystallized grains due to the
long welding time. The {111} pole figures extracted from Regions C and D are presented in
Figure 7g,h. Region C shows a rolling texture similar to that of Region A and the Al-base
material. In contrast, a {110} <001> Goss texture was observed in Region D, which was
attributed to the annealing process [51,52].

To investigate the deformation behavior at the weld interface more accurately, Regions
I, II, and III, marked at the weld interface in Figure 7a–c, respectively, are magnified in
Figure 8. SEM micrographs and the corresponding EDS analyses were also performed at
this location. The IPF map shows that the thickness of the noisy area gradually increased
up to 9 µm with increasing welding time. Furthermore, numerous gaps and cracks were
found in this noisy area, as shown in the SEM images. The EDX mapping revealed that
such gaps and cracks were fully located on the Al side. When combined with the OMs,
it indicated that the rest of the materials in the noisy area corresponded to nanosized Al
layers. The bonding between the Al and attached Al fragments could be formed in this
region. However, no obvious IMC layer was generated at the weld interface even for a long
welding time.
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3.3. Temperature Evolution at the Weld Interface

To further verify the microstructural evolution during USMW, the interfacial temper-
ature was measured by embedding a thermocouple at the center of the weld zone. The
temperature profiles and the peak temperature during USMW are presented in Figure 9a,b,
respectively. A similar increase in interface temperature was observed with increasing
welding time. The temperature reached a maximum at the end of the welding process.
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Because of the excellent thermal conductivity of aluminum and copper, the temperature
decreased rapidly after the welding process.
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Figure 9. (a) Temperature–time profiles and (b) peak temperature and welding energy at different
welding times.

However, the temperature gradient decreased as the welding time increased. During
USMW, the heat was generated and introduced into the weld area due to plastic defor-
mation and interface friction [53]. At the initial phase of the welding process, the contact
resistance between two joining partners was high, and most of the frictional work was
performed at the weld interface. With the expansion of microwelds, more vibrating energy
was delivered into the sonotrode/Al interface, and the temperature gradient of the weld
area decreased. In contrast, a mostly linear relationship existed between the welding energy
and welding time, as shown in Figure 9b.

It can be seen that the average peak temperature was only 84 ◦C at 100 ms and reached
about 295 ◦C at 700 ms, which are far below the melting point of Al (660 ◦C). Additionally,
the highest peak temperature was still much lower than the eutectic transition temperature
(548.2 ◦C) in the Al–Cu equilibrium phase diagram [54]. This restricted the formation of
the effective IMCs at the Al/Cu interface, which corresponded well to the results from the
EDX analysis in Figure 8.

When compared with the results of EBSD, it should be noted that the interface temper-
ature exceeded the recrystallization temperature (240 ◦C) at a welding time of approximate
500 ms. However, recrystallized grains were actually observed at a welding time of 200 ms.
Due to the high-strain-rate deformation, a number of microstructure defects, such as va-
cancy and dislocation, were generated at the weld interface, which could have accelerated
the diffusion phenomenon [50,55,56]. Thus, recrystallization can happen during USMW,
even at low temperatures.

3.4. Mechanical Properties and Fractography Analysis

To evaluate the monotonic mechanical properties of the Al/Cu joints, tensile shear
tests were performed. The mechanical performance could be identified based on the tensile
shear failure load, load–displacement curves, and corresponding failure modes.

The tensile shear failure load of the joints as a function of welding time is presented in
Figure 10a. When the welding time was 75 ms, there was no actual joint formed, and a few
welded joints failed during the loading process with the preload (40 N). As the welding
time increased from 100 to 400 ms, the failure load gradually increased. After then, the
average failure load reached a plateau of 1663–1820 N, which was approximately 89–97%
of that of the Al-base material. However, the fracture mode changed from interfacial
debonding to base material fracture as the welding time exceeded 600 ms. Figure 10b
shows the typical load–displacement behaviors for the two different failure modes. In
the case of base material fracture, the load first increased up to the maximum, remained
almost stable, and then decreased until the Al was completely separated into two pieces. In
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contrast, the interfacial debonding was characterized by purely elastic deformation and an
abrupt separation between the two joining partners as the load increased.
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Figure 11 shows the representative fracture surfaces from the Cu side for the Al/Cu
joints at different welding times. When the welding time was less than 600 ms, the failure
passed through the welding interface, and some residual Al was observed on the Cu surface.
However, this residual Al could be attributed to the generation of the attached Al fragment
during USMW or fracture during the tensile shear test.
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It can be seen that the morphology of the residual Al changed with increasing welding
time. When the welding time was 75 ms, minimal residual Al remained on the Cu surface,
and traces of Al oriented in line with the RD. Because no actual joint was formed at this
time, this residual Al should have been the attached Al fragments shown in Figure 6. This
suggests that the initial Al/Cu bonding mainly concentrated on the microasperities. As the
welding duration increased, the microwelds grew in the OD, and large continuous welded
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areas were formed. However, the welded area propagated extremely inhomogeneously
during the welding process, as can be seen in Figure 11b–d. Generally, most welded areas
were located close to the edges of the weld zone, while some unbonded areas could still be
observed at the center of the welding zone. This heterogeneous welded area could have
been caused by the temperature, stress distribution, or surface morphology of the individual
joining partners during USMW. When the welding time exceeded 600 ms, the bonding
strength at the weld interface was stronger than the strength of the Al base material. Here,
the failure crack propagated across the width of the aluminum, as illustrated in Figure 11e.
Owing to the penetration of the sonotrode, extensive plastic deformation occurred at the
aluminum surface and resulted in material thinning, which reduced the failure load of the
Al base material.

To quantitatively analyze the fracture surface, a basic image processing techniques
(IPT) was used and implemented in Python. The Python script was developed to measure
the welded area by identifying the color code associated with each pixel and then marking
the pixels within certain color codes as the welded area. Here, the green (G) value was
used as the threshold value.

An example of the fracture surface from an Al/Cu joint welded at 500 ms is shown in
Figure 12a–d. The marked area reduced with an increase in the intensity of the G value
from 70 to 210. The measured results for all fracture surfaces after tensile shear tests are
summarized in Figure 12e. It can be seen that the welded area initially expanded with an
increase in welding time and then remained almost stable in the time of 300 to 500 ms.
Approximate 92% and 64% of the welding zone were identified as the real welded area for
G = 70 and G = 140, respectively.
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image processing technique (b) G = 70, (c) G = 140, and (d) G = 210. Variation in (e) welded area and
(f) lap shear tensile strength with welding time.

An interesting phenomenon was observed in case of G = 210. The welded area reached
a maximum around 150–200 ms and then continuously decreased. As the welding process
proceeded, the enhanced joint strength led to the increased thickness of the residual Al on
the Cu surface after the tensile shear test. This caused a high gradient of the brightness
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contrast in OM images. As a result, more areas were marked as a “welded area” after a
short welding time, although no strong bonding had formed in such regions.

Based on the tensile shear failure load (Fts) and the welded area (Aw), the lap shear
tensile strength (τ = Fts/Aw) was calculated and is plotted in Figure 12f. It can be seen that
the tensile strength remained nearly constant after 150 ms, which was closer to the limits of
the Al base material. Because there was no significant improvement in the tensile strength,
the increase in the failure load was likely the result of the expansion of the welded area,
especially in the center of the weld zone. In contrast, the tensile strength reached a low
point of approximately 5 MPa at a welding time of 100 ms, which suggested that most of
the residual Al was the attached Al fragments.

SEM was used to reveal more detail on the fracture surfaces, as shown in Figure 13a.
Figure 13b,c show the higher magnification SEM images for Region I from the copper and
aluminum sides, respectively. It can be seen that the fracture surface generally consisted
of three different regions: unbonded region, scratched region, and welded region. In the
unbonded region, some flat-looking type areas with the rolling marks of the base materials
were observed. The scratched region mainly localized at the edges of the weld zone, and
some attached aluminum debris was found here. Figure 13d,e show the magnified area
of the box indicated in Figure 13b,c. Typical cleavage planes, shear ridges, and fracture
dimples were observed in the welded region, revealing that a ductile–brittle hybrid fracture
occurred in the tensile shear test. This may have been caused by the inhomogeneous
temperature and stress distribution at the weld interface.
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Furthermore, Figure 14 shows the higher-magnification SEM images for Region II in
Figure 13a. Few unbonded regions were clearly observed and were surrounded by fracture
dimples. To characterize the chemical composition, the EDX analysis was performed and is
presented in Figure 14c,d. It can be seen that the Cu side exhibited Al in the welded region,
while no Al was detected in the unbonded region. In contrast, minimal Cu was found on
the Al side and was located at the border between unbonded region and welded region,
which suggested that plastic deformation also occurred on the Cu side at the weld interface
during USMW.
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3.5. Correlation between USMW Process and Mechanical Performance

In previous subsections, the plastic deformation and microstructural evolution during
USMW were discussed. Both of them had a significant influence on the weld formation as
well as the joint strength. The plastic deformation was induced by the welding force and
the relative motion due to the ultrasonic oscillation. The results implied an inhomogeneous
pressure distribution. Generally, higher pressure was located at the edge of the weld zone,
which accelerated the formation process of joints. The examination of the fracture surfaces
after the tensile shear test further confirmed that strong bonding formed initially at the edge
and then expanded to the center, as illustrated in Figure 11. Based on the microstructural
characterization, weld formation involved several substages: In the early stage, attached
Al fragments were generated on the Cu surface thought the formation and fracture of
the Al/Cu bonding. As the welding progressed, more and more unbonded regions on
the Cu surface were covered by attached Al fragments. Simultaneously, metallurgical
bonding formed between the Al and Al fragments. With further increases in welding time,
microwelds spread across the weld interface, resulting in an increased welded area.
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The mechanical properties of welded joints are strongly associated with the weld
formation process. As illustrated in Figure 10, the failure load gradually increased until 400
ms and then remained almost stable. When combined with the plastic deformation and joint
formation process, this change in the failure load could be deduced as follows: In Stage I
(<200 ms), the strong bonding located mostly at the edge of the weld zone. The generation
of attached Al fragments occurred mainly before 150 ms, which was characterized by the
first increase in the welded area. However, the Al/Al fragments’ bonding gradually formed
after 100 ms and led to a significant rise in the failure load. In Stage II (200–400 ms), the
weld formation process mainly occurred at the center of the weld zone. Similar substages
were observed: the generation of Al fragments from 200 ms to 300 ms and the formation
of Al/Al fragments’ bonding after 300 ms. In Stage III (>400 ms), the weld area was
completely formed with no more significant improvement in the failure load. Nevertheless,
longer welding time was attributed to severe plastic deformation of the Al, which led to a
change in the fracture mode from interfacial debonding to base material fracture.

4. Conclusions

In this study, the ultrasonic metal welding of Al/Cu joint was conducted for different
welding durations. The plastic deformation of the joining partners and the microstructure
evolution at the weld interface were qualitatively and quantitatively investigated. The
main conclusions can be summarized as follows:

1. Owing to the welding force and ultrasonic oscillation, Al simultaneously deformed
in the vertical and horizontal directions during USMW. After 400 ms, the sonotrode
completely penetrated the upper joining partner, and the final postweld thickness was
about 77% of the base material thickness. An inhomogeneous pressure distribution
was observed, which affected the joint formation process and led to a heterogeneous
distribution of the welded areas at the weld interface.

2. Microstructural characterization demonstrated that the joint formation process in-
volves several substages: formation of Al/Cu bonding, generation of attached Al
fragments, and formation of Al/Al fragment bonding. Additionally, the analysis of
fracture surfaces showed that strong bonding was initially localized at the edge and
then expanded to the center of the weld zone.

3. EBSD analysis showed that dynamic recrystallization occurred during USMW. The Al
significantly deformed near the weld interface, and a recrystallized microstructure
with a {111} <110> shear texture was formed at 200 ms. As the welding process
proceeded, the recrystallized grains grew and showed a {110} <001> Goss texture near
the weld interface.

4. The combined results from EBSD, SE and EDX revealed that a nanosized Al layer
formed at the weld interface and confirmed the bonding process between Al and
Al fragments. Furthermore, no obvious IMC layer was generated, even for a long
welding duration.

5. The tensile shear failure load of joints gradually until 400 ms and then remained
almost constant. The welded joint could achieve more than 80% of the mechanical
performance of the base materials.
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