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Abstract: In previous works, we developed a self-healing organic coating with dispersed spherical
capsules for corrosion protection. The capsule consisted of a polyurethane shell and healing agent
as the inner. When the coating was damaged physically, the capsules were broken, and the healing
agent was released from the broken capsules to the damaged area. The healing agent could react with
moisture in the air to form the self-healing structure and cover the damaged area of coating. In the
present investigation, a self-healing organic coating with spherical and fibrous capsules was formed
on aluminum alloys. The corrosion behavior of the specimen coated with the self-healing coating
was examined in a Cu2+/Cl− solution after physical damage, and it was found that no corrosion
occurred during the corrosion test. This is discussed in terms of the high healing ability of fibrous
capsules as a result of the high projected area.
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1. Introduction

Metallic materials are widely used for buildings and infrastructure, but they experience
corrosion, leading to a degradation in their performance and safety. The cost of losses due
to corrosion and corrosion protection is high throughout the world. These values have been
reported to be almost 1–5% of the GNP or GDP of many countries [1–5]. One of the strategies
for the improvement of corrosion protection in these materials and for the extension of the
lifetime of products is the formation of protective layers on the surface [6–10]. In particular,
the formation of an organic coating is one of most popular and important techniques
and a considerable amount is spent on it for corrosion protection by all countries [11–14].
However, the high corrosion protection of the metal substrate through the formation of
organic coating layers may be easily lost when the coating is locally broken by mechanical
damage. Local corrosion, including pitting corrosion and filiform corrosion, among others,
occurs due to the exposure of the metal substrate to the corrosive surroundings at the
damaged area of the coating. Recently, in order to compensate for the weak aspects of
corrosion protection through the formation of organic coatings, self-healing coating for
corrosion protection of the metal substrate is attractive as a maintenance-free treatment.
Several kinds of coatings with self-healing abilities have been proposed [15–25]. Here, the
authors focus on a self-healing coating with dispersed capsules containing a healing agent
for the coating [26,27]. This coating can achieve self-healing through the mechanism shown
in Figure 1. Figure 1a shows a corrosion-protective organic coating with dispersed capsules
containing diisocyanate as a healing agent for the coating, on a metal substrate. When
this coating is damaged physically, some capsules dispersed in the coating break and the
healing agent flows out from the broken capsule to the damaged area of the coating, as
shown in Figure 1b. The healing agent reacts with moisture in the air (Equations (1) and (2))
to form a self-healing structure, polyurea, as shown in Figure 1c.
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Figure 1. Schematic illustration of self-healing coating with dispersed capsules containing a healing 
agent. (a) Self-healing coating after aging. (b) Damage to coating caused by a cutter blade and the 
flowing out of the healing agent. (c) Formation of the self-healing structure through the reaction of 
the healing agent with moisture in the air. 

The self-healing structure covers the exposed area of the metal substrate and the cor-
rosion protection of the metal substrate is maintained at a high level after damage to the 
coated layer. 

According to the self-healing mechanism of the coating, the self-healing ability of this 
coating heavily depends on the shape, size, and structure of the capsules dispersed in the 
coating. The capsule containing a healing agent can be synthesized by the process shown 
in Figure 2. First, the organic solvent solution of the prepolymer is synthesized by reacting 
diisocyanate with polyol, as shown in Equation (3). 
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The synthesized prepolymer solution is dripped to the polyol and surfactant solu-
tion. As the prepolymer solution hardly dissolves in the polyol and surfactant solution, 
the droplets of prepolymer solution with a spherical shape are dispersed in the polyol and 
surfactant solution, as shown in Figure 2a. When this mixture is agitated vigorously, the 
droplets of the prepolymer become smaller (Figure 2b) and the surfactant is adsorbed on 
the surface of the micro-droplets, forming an emulsion (Figure 2c). Furthermore, the reac-
tion shown in Equation (4) occurs only at the interface between the oil phase and water 
phase to form spherical polyurethane capsules containing the healing agent, diisocyanate 
(Figure 2d). In a previous study [26,27], the self-healing coating produced by the above 
procedure, however, did not show a high performance for corrosion protection because 
of the formation of only small amounts of the healing structure after being damaged. 
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Figure 1. Schematic illustration of self-healing coating with dispersed capsules containing a healing
agent. (a) Self-healing coating after aging. (b) Damage to coating caused by a cutter blade and the
flowing out of the healing agent. (c) Formation of the self-healing structure through the reaction of
the healing agent with moisture in the air.

The self-healing structure covers the exposed area of the metal substrate and the
corrosion protection of the metal substrate is maintained at a high level after damage to the
coated layer.

According to the self-healing mechanism of the coating, the self-healing ability of this
coating heavily depends on the shape, size, and structure of the capsules dispersed in the
coating. The capsule containing a healing agent can be synthesized by the process shown
in Figure 2. First, the organic solvent solution of the prepolymer is synthesized by reacting
diisocyanate with polyol, as shown in Equation (3).
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Figure 2. Schematic illustration of the formation of spherical capsules containing healing agent.
(a) Polyol and surfactant solution. (b) Formation of prepolymer micelles by dripping prepolymer
solution into (a). (c) Formation of small prepolymer micelles by vigorous agitation. (d) Formation of
spherical capsules consisting of polyurethane shell and self-healing agent content.

The synthesized prepolymer solution is dripped to the polyol and surfactant solution.
As the prepolymer solution hardly dissolves in the polyol and surfactant solution, the
droplets of prepolymer solution with a spherical shape are dispersed in the polyol and
surfactant solution, as shown in Figure 2a. When this mixture is agitated vigorously, the
droplets of the prepolymer become smaller (Figure 2b) and the surfactant is adsorbed
on the surface of the micro-droplets, forming an emulsion (Figure 2c). Furthermore, the
reaction shown in Equation (4) occurs only at the interface between the oil phase and water
phase to form spherical polyurethane capsules containing the healing agent, diisocyanate
(Figure 2d). In a previous study [26,27], the self-healing coating produced by the above
procedure, however, did not show a high performance for corrosion protection because
of the formation of only small amounts of the healing structure after being damaged.
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Therefore, it is necessary to improve the self-healing ability of this coating by dispersing
capsules with different shapes.
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Considering the self-healing mechanism of the coating, the healing ability of the
coating heavily depends on the amount of healing agent that flows out from the broken
capsules to the damaged area, so that this is related to the amount of healing agent contained
in the capsules. The amount of healing agent in the capsules can be changed by changing
shape of the capsules.

The shape of the capsules can be controlled by the condition of the capsule synthesis.
In a previous study [27], mixed capsules with spherical and fibrous shapes were obtained
using concentrated prepolymer solutions. First, the prepolymer solution was heated in
order to concentrate the solution (Figure 3a), and then the concentrated prepolymer solution
was dripped into the polyol and surfactant solution with a low agitation speed such as
300 rpm (Figure 3b). During dripping, some of the prepolymer solution formed small
spherical drops in the polyol and surfactant solution, and the rest became fibrous drops
(Figure 3c). This is because the viscosity of the concentrated polymer solution was high
enough to form fibrous drops at a low agitation speed. Thus, mixed capsules with a
spherical and fibrous shape were obtained by dripping the prepolymer solution with a
high concentration into the polyol and surfactant solution under agitation of 300 rpm
(Figure 3d). However, the ratio of fibrous capsules to all capsules was less than 10% and
there was only a slight difference in self-healing ability between the coating dispersed with
spherical/fibrous capsules and that with spherical capsules. The self-healing ability of the
coating become higher as the ratio of fibrous capsules increased.
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Figure 3. Schematic illustration of the formation of mixed capsules with spherical and fibrous shape,
containing the healing agent. (a) Polyol and surfactant solution. (b) Formation of prepolymer micelles
by dripping prepolymer solution with high viscosity into (a). (c) Formation of spherical and fibrous
micelles by agitation at a low speed. (d) Formation of spherical and fibrous capsules consisting of
polyurethane shell and self-healing agent content.

The purpose of this investigation was to examine the effect of the shape of capsules
dispersed in an organic coating on the progress of corrosion after physical damaging. In the
present investigation, corrosion protection through the formation of self-healing coating
with dispersed capsules on Al alloys was focused on. This is because Al and its alloys are
often used for automobile, aerospace, and so on [28,29], due to their excellent properties,
such as strength, lightness, cost, processability, and recyclability. Three kinds of organic
coatings were formed on Al alloys: polyurethane coating without capsules, with dispersed
spherical capsules, and with dispersed spherical and fibrous capsules. The corrosion
behavior of the specimens covered with the coatings was compared using corrosion tests in
the Cu2+/Cl− solution after physical damage from a cutter blade.

2. Experimental
2.1. Synthesis of Capsules Containing Healing Agent

The procedure of the synthesis of mixed capsules with fibrous and spherical shape is
summarized in Figure 4 [26,27]. The prepolymer solution was synthesized by the reactions
between tolylene-2,4-diisocyanate (TDI) and glycerol in cyclohexanone as a solvent, at
75 ◦C with 600 rpm agitation for 24 h. This reaction is shown in Equation (5).
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This solution was heated at 140 ◦C for 8 min. At this temperature, the cyclohex-
anone evaporated, but prepolymer did not evaporate. Thus, the concentration of pre-
polymer increased and the viscosity of the prepolymer solution also increased. Then,
isophorone diisocyanate (IPDI), as the healing agent of the coating, and xylene, as the
solvent, were mixed to the prepolymer solution. The mass ratios in this solution were
prepolymer:IPDI:cyclohexanone:xylene = 0.4:0.2:0.1:0.3. Next, this solution was dripped to
50 mL of 3 wt%-sodium dodecyl sulfate (SDS) solution added with 0.5 g-glycerol under
agitation of 200 rpm. As described in Section 1, the prepolymer solution formed micelles
with spherical and fibrous shapes, as the prepolymer solution did not dissolve in the
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SDS/glycerol solution. The prepolymer reacted with glycerol, as shown in Equation (6), at
the interface between the prepolymer solution and SDS/glycerol solution, to form the shell
of the capsule [26,27,30,31].
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The size and shape of the synthesized capsules were examined by scanning electron
microscopy (SEM) after filtration and drying of the capsules. For comparison, the capsules
were synthesized from the prepolymer solution without heating. The mass ratios in this
solution were prepolymer:IPDI:cyclohexanone:xylene = 0.13:0.2:0.2:0.47.

2.2. Coating

AA1050-Al alloy (purity: > 99.50%, alloy elements: Si, Fe, Cu, etc.) polished me-
chanically was used as a specimen. The self-healing coating was formed by the following
procedure: 0.75 g of the prepolymer solution, 0.1 g of ethylene glycol, and 10 mg of capsules
synthesized were mixed. This mixture was coated on the pretreated specimen and aged
for 48 h to form a self-healing coating with about 30 µm of the thickness (self-healing
coating). The self-heating coating was classified into the self-heating coating with spherical
capsules (SHC-SC) and the self-healing coating with spherical/fibrous capsules (SHC-SFC).
To compare the effect of the capsules on the corrosion protection, a 30 µm-thick organic
coating without capsules was also coated on the specimen (normal coating (NC)). Optical
observation of the surface of SHC-SC and SHC-SFC showed a uniform dispersion of cap-
sules without agglomeration. As the capsules were mixed with a prepolymer/ethylene
glycol mixture and then coated on the specimen surface, it was assumed that the mixture
adhered to the capsule surface before coating. Thus, small semi-spherical mounds of the
coating could possibly be formed on capsules larger than 30 µm.

2.3. Corrosion Test after Damaging

The specimen with NC, SHC-SC, and SHC-SFC was damaged by the cutter blade
with 3 N of load and was aged for 24 h. In order to evaluate the self-healing ability
of these coatings, the damaged surface was examined by the secondary electron image
from the scanning electron microscopy (SEM; JEOL, JSM-6510LA). Before observation, the
specimen was covered with a thin layer of Au using an ion sputter coater. The corrosion
protection of the damaged Al alloy specimens covered with NC, SHC-SC, and SHC-SFC
was evaluated by a corrosion test in 1.57 mM−CuSO4/0.57 M−KCl solution for 24 h at
room temperature. Details of the corrosion test were described in a previous study [32].
After this test, the specimen was immersed in a commercially available coating remover
and a 10 mass%−phosphoric acid/4 mass%−chromic acid solution, in order to remove the
organic coating, corrosion products, and Cu particles deposited during the corrosion test.
Then, the trail of corrosion produced on the specimen surface was examined using SEM.

3. Results
3.1. Shape of Capsules Synthesized from Prepolymer Solution after Heating

Figure 5 shows SEM images of the capsules synthesized from the prepolymer solution
(a) without and (b) with heating for 8 min at 140 ◦C. There are many spherical capsules with
diameters of 10–150 µm, and irregular shaped debris with 10–30 µm in size in Figure 5a.
Some capsules are indicated by yellow broken circles, and the debris is indicated by white



Materials 2023, 16, 3018 6 of 13

elliptical circles. The shape of all of the capsules is only spherical. In contrast with this,
Figure 5b shows not only spherical capsules with 10–30 µm diameters, but also fibrous
capsules with 150–400 µm length and 5–10 µm width. Some of the spherical capsules are
indicated by yellow broken circles and some of the fibrous capsules are indicated by red
broken elliptical circles.
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Figure 5. SEM image of the capsules synthesized from the prepolymer solution with IPDI and xylene:
(a) without heating and (b) with heating.

The shape of these capsules can be quantified using a parameter of flattening, f. This
can be defined by Equation (7), where the major axis of the projected capsule shape is “a”
and the minor axis is “b”, as shown in Figure 6.

f = 1− b
a

(7)
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Figure 6. Schematic illustration of the capsule shape projected and the definition of “a” and “b”.

From this equation, the value of flattening, f, can be calculated as “0”, when the value
of “a” is the same as that of “b”, namely in the case of the projected capsule shape being
a perfect circle. On the other hand, if the value of “a” is significantly larger than that of
“b”, the value of f is close to “1”. Figure 7 shows the distribution of values of flattening
of capsules synthesized from unheated or heated prepolymer solutions. The flattening
distribution of capsules synthesized from unheated prepolymers (open circle) shows that
most capsules have less than 0.2 for their flattening values and those without a capsule have
f > 0.5. Thus, the projected shapes of most of the capsules are close to a perfect circle, and no
fibrous capsule is synthesized from the prepolymer solution without heating. The flattening
distribution of the capsules synthesized from the prepolymer solution with heating (solid
circle) shows that the ratio of capsules having less than f = 0.2 to all of the capsules occupies
60% and capsules with a f -value larger than 0.6 occupy approximately 30%. Here, the
capsules with a f -value larger than 0.6 are defined as the fibrous ones. Therefore, 70%
of the projected shapes for all the capsules were close to a circular shape and 30% were
of a fibrous shape when the capsule was synthesized from the prepolymer solution after
heating. Conclusively, the ratio of fibrous capsules to all of the capsules increased when
synthesizing from a concentrated prepolymer solution under a mild agitation condition.
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3.2. Self-Healing Ability and Corrosion Protection of Coating Dispersed with Capsules with
Spherical and Fibrous Shapes

Figure 8 shows the SEM images of the surface of the damaged specimen covered with
(a) NC, (b) SHC-SC, and (c) SHC-SFC. On the specimen with NC, the flat surface of the
coating and a sharp scar with 50–70 µm width are observed in Figure 8a. The center of
the scar is dark, presuming a deep scar in the coating. The SHC-SC specimen (Figure 8b)
shows a scar with 60–80 µm width, and a shallower scar (indicated by elliptic white broken
circle) than for the NC specimen. There are narrow black channels (indicated by elliptic,
light-blue broken circles) in the bottom of the scar, suggesting that the scar is repaired
locally by its self-healing structure. The healing agent reacts with moisture in the air to form
a self-healing structure, polyurea, at the damaged area, as shown in Equations (8) and (9).

In Figure 8c, there is a scar with a 50–70 µm width and the scar is shallow. Narrow
black channels did not appear, unlike in Figure 8b. This strongly suggests that SHC-SFC
can be repaired with a self-healing structure in the entire damaged area.
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Figure 8. SEM images of the damaged specimen surface covered with a coating (a) with no capsule
(NC), (b) with spherical capsules (SHC-SC), and (c) with spherical and fibrous capsules (SHC-SFC).

In the next section, the corrosion protection behavior of the specimens with NC, SHC-
SC, and SHC-SFC is shown after damage. The evaluation was carried out by observing
the corrosion morphology after the corrosion test in he Cu2+/Cl− mixed solution for 24 h
at room temperature. In this solution, the corrosion of aluminum occurs by the following
reactions [32].

2Al + 3Cu2+ → 2Al3+ + 3Cu↓ (10)

Al + 3H2O→ Al(OH)3 + (3/2)H2 (11)

From these equations, the corrosion of Al causes the deposition of Cu particles
(Equation (10)) and the formation of aluminum hydroxides (Equation (11)). Cu parti-
cles and Al hydroxides, as well as the organic coating, can be removed by immersion in
a commercially available coating remover and a phosphoric acid/chromic acid solution.
Figure 9 shows SEM images of the specimens after physical damage, corrosion test, and
immersion in the coating remover and the phosphoric acid/chromic acid solution, obtained
for (a) NC, (b) SHC-SC, and (c) SHC-SFC. Figure 9a shows the flat surface of the substrate
and a scar with 60–80 µm in width at the center of image. In and around the scar, a semi-
spherical pit, indicated by a light-red broken circle is also observed. The bottom of the scar
has a rough surface. It can be seen from these results that the scar formed with the cutter
blade formed a cavity in the substrate, and that heavy corrosion of the substrate proceeded,
forming pits during the corrosion tests.
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Figure 9b shows the flat surface of the substrate and a scar with rough surface at the
bottom. Semi-spherical pits, indicated by a light-red broken circle, are also observed in and
around the scar. However, the size of the pit observed on the specimen with the SHC-SC
(Figure 9b) was much smaller than that with NC (Figure 9a). In contrast with these, the
specimen with SHC-SFC showed a flat surface of the substrate and a scar with a smooth
surface at the bottom, indicated by the light-blue broken line (Figure 9c), and no pit was
observed, suggesting no corrosion during the corrosion test. This is because the scar was
repaired thoroughly by the healing agent before the corrosion test.

4. Discussion

As shown in Figure 9, the SHC-SFC specimen had a much higher corrosion protection
than the NC and SHC-SC specimens after physical damage. This was expected because the
scar formed with the cutter blade in SHC-SFC was repaired thoroughly by a self-healing
structure, but the others were not repaired or were repaired locally (see Figure 8). It is
obvious that organic coating (NC) cannot be repaired after physical damaging because
there are no capsules that contain the healing agent. The mechanism of repairing SHC-SC
and SHC-SFC is discussed below.

As described in Section 2.2, the total mass of the capsules dispersed in the organic
coating was the same in both SHC-SC and SHC-SFC. When the prepolymer/ethylene gly-
col/capsules/cyclohexanone mixture was coated on the specimen, the prepolymer reacted
with ethylene glycol to form polyurethane and the solvent, cyclohexanone, evaporated dur-
ing aging. Therefore, SHC-SC became thinner, and the capsule density increased slightly
during the aging of the coating, as shown in Figure 10. Similarly, in the case of SHC-SFC,
the coating became thinner during aging, leading to an increase in capsule density. In
addition, the fibrous capsules were expected to be aligned nearly parallel to the specimen
surface, as shown in Figure 11.
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Figure 10. Schematic illustration of the structural changes of the self-healing coating with dispersed
spherical capsules (SHC-SC) during aging. (a) Just after coating the mixture of prepolymer/ethylene
glycol/spherical capsules/cyclohexanone. (b) While aging, the reaction of the prepolymer with
ethylene glycol and the evaporation of cyclohexanone. (c) In the last stage of aging, polyurethane
and film thinning formed, which led to an increase in capsule density.

As described in Section 3.1, the f value of the fibrous capsule is approximately 0.6–0.9.
Namely, the ratio of the long diameter, a, to the short diameter, b, can be calculated to be
2.5:1 for f = 0.6 and 10:1 for f = 0.9. Assuming that the cross-section of the fibrous capsule
is a circle, the volume Vf is given by Equation (12) and its projected area Sf is given by
Equation (13).

Vf =
4
3

π
( a

2

)( b
2

)2
(12)

S f = π
( a

2

)( b
2

)
(13)
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Assuming b = 1 and f = 0.6, the value of a was calculated to be 2.5, and thus the volume,
Vf, of the fibrous capsule was 1.31, and the projected area, Sf, of this capsule was estimated
to be 1.96. The diameter of the spherical capsule with the same volume (Vf = 1.31) was
calculated to be a = 0.68, so that the projected area Sf of a spherical capsule was calculated
to be 1.45. The projected area of the fibrous capsule was 1.33 times larger than that of the
spherical capsule. In the case of f = 0.9 and b = 1, a was calculated to be 10, and Vf and Sf
were 5.23 and 7.85, respectively. The diameter of the spherical capsule with Vf = 5.23 was
calculated to be a = 2.15, so that the projected area of the spherical capsule was estimated to
be Sf = 3.63. Thus, the projected area of the fibrous capsule was 2.16 times larger than that
of the spherical capsule. The projected areas of the fibrous capsules were larger than those
of the spherical capsules, and the ratio of Sf of fibrous capsules to that of spherical capsules
became larger as the f value increased.
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Figure 11. Schematic illustration of the structural change of the self-healing coating with dispersed
spherical and fibrous capsules (SHC-SFC) during aging. (a) Just after coating the mixture of prepoly-
mer/ethylene glycol/spherical and fibrous capsules/cyclohexanone. (b) During aging, reaction of
prepolymer with ethylene glycol and evaporation of cyclohexanone. (c) In the last stage of aging,
the formation of polyurethane and film thinning, leading to an increase in capsule density as well as
fibrous capsule being aligned parallel to the specimen surface.

Thus, fibrous capsules aligned parallel to the surface were more likely to be broken
than the spherical capsules when the coating was damaged. This is because the projected
area of the fibrous capsules was larger than that of the spherical capsules. SHC-SC was
repaired partly due to a small amount of healing agent that flowed out from the broken
capsules, as shown in Figure 12. In contrast, SHC-SFC was repaired thoroughly due to
the large amount of healing agent that flowed out from the broken capsules, as shown in
Figure 13.
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Figure 12. Schematic illustration of the structural change of SHC-SC by physical damaging. (a) Just
before damaging, polyurethane coating with dispersed spherical capsules. (b) Just after damaging,
flowing-out of healing agent from broken capsules to damaged area. (c) At the last stage of aging,
repairing the coating at part of the damaged area with a self-healing structure.

In previous investigations [26], porous-type anodic oxide films were formed on Al
alloys, and nano-pores were filled with a solution containing a corrosion inhibitor before
being covered with organic coatings. The specimen was physically damaged with a cutter
blade, and corrosion tests were carried out in 1.57 mM–CuSO4/0.57 M–KCl solution for
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24 h at room temperature. The corrosion protection effect appeared just after physical
damage by the inhibitor that flowed out from the nano-pores to the damaged area, but the
system could not achieve thorough protection. This might be due to the fast adsorption of
the inhibitor on the surface of the damaged area at a low concentration.
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Figure 13. Schematic illustration of the structural change in SHC-SFC by physical damage. (a) Just
before damage, polyurethane coating with dispersed spherical and fibrous capsules. (b) Just after
damage, flowing-out of healing agent from broken capsules to damaged area. (c) At the last stage of
aging, repairing the coating in the whole damaged area with a self-healing structure.

Conclusively, the corrosion protection ability of the self-healing coating on the Al alloy
substrate heavily depends on systems and the shape of capsules dispersed in the coating.
Fibrous capsules were aligned parallel to the surface during aging of the coating, and a
large amount of healing agent flowed out from the broken capsules after damage to repair
the scar thoroughly.

5. Conclusions

In the present investigation, three kinds of organic coatings were formed on aluminum
alloys: polyurethane coating without capsules (NC), with dispersed spherical capsules
(SHC-SC), and with dispersed spherical and fibrous capsules (SHC-SFC). The corrosion
behavior of the coatings was compared by corrosion tests in Cu2+/Cl− solution after
physical damage with a cutter blade. The following conclusions were drawn.

1. The specimen with NC corroded heavily at the damaged area, suggesting no self-healing.
2. The specimen with SHC-SC corroded partly at the damaged area, suggesting ap-

preciable self-healing due to a small amount of healing agent flowing out from the
broken capsules.

3. The specimen with SHC-SFC did not corrode during the corrosion test after damage.
This was due to repairing of the scar at the whole damaged area with healing agent,
mainly from the fibrous capsules.
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