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Abstract: The Pile-beam-arch (PBA) method is a new and effective construction method for the urban
metro station. It is the key to ensuring the safe construction of the station to clarify the influence
of PBA method construction on surface deformation under unfavorable geological and large span
conditions. Based on a station of Beijing subway, this paper studies the surface deformation law
of the large-span PBA method in different construction stages under silty clay–pebble composite
stratum by means of FLAC 3D numerical analysis and field monitoring of level. Then the influence
of the excavation scheme of the pilot tunnel and the construction scheme of the secondary lining
of the arch on the surface deformation is simulated and analyzed. The results show that, through
numerical simulation, the ratio of pilot tunnel excavation: pile-beam construction: vault initial
support construction: vault secondary lining construction is about 5:1.1:3.3:0.6. The settlement
deformation mainly occurs in the excavation stage of the pilot tunnel. Through the comparative
analysis of the field monitoring results and the numerical simulation results, it can be seen that the
two results are highly consistent, which verifies the accuracy of the numerical simulation results. The
pilot tunnel excavation scheme of excavating the middle first and then excavating both sides, first
through the upper layer and then through the lower layer, and the scheme of one-time construction
of the secondary lining of the arch are better. The research results promote the further maturity and
perfection of large-span PBA method construction under unfavorable geology and provide reference
for similar projects.

Keywords: large-span pile-beam-arch; surface deformation; numerical simulation; pilot tunnel
excavation scheme; arch secondary lining construction

1. Introduction

With the increasingly serious problem of urban traffic congestion, the metro as an
effective solution is being widely built in the world’s major cities [1,2]. The metro station is
a key part of metro construction. Most of them are built in dense urban areas with complex
geological conditions. Excessive stratum settlement is easily caused in the construction
process, which adversely affects the safety performance of surrounding buildings [3–11].
Improper construction can even lead to serious accidents such as ground collapse and the
collapse of surrounding buildings. The safe construction of metro stations has always been
a major concern.

At present, the construction methods of metro stations at home and abroad mainly
include the open-cut method, cover excavation method, shield method and shallow cover
excavation method. Compared with other construction methods, the shallow buried
concealed excavation method has become the mainstream choice for the construction of

Materials 2023, 16, 2934. https://doi.org/10.3390/ma16072934 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16072934
https://doi.org/10.3390/ma16072934
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-8063-2221
https://orcid.org/0000-0002-4401-889X
https://doi.org/10.3390/ma16072934
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16072934?type=check_update&version=2


Materials 2023, 16, 2934 2 of 20

metro stations due to its flexible structure and small impact on the city and environment.
The shallow buried excavation method can be divided into full section method, CD method,
CRD method, side cavity method, middle cavity method, PBA method and so on, according
to different construction methods [12]. Among them, the PBA method combines the
advantages of the cover excavation method and subsurface excavation method, which
can greatly control the stratum deformation during the construction of the metro station
while ensuring construction efficiency [13–15]. The PBA method was first applied in
the construction of Dongdan Station of Beijing Metro in 1992 and achieved excellent
application results [16]. At present, it has been widely used in metro station construction in
China [17–20].

Many scholars and engineers have done extensive research on the PBA method.
Through numerical simulation [16,19–23], field monitoring [7,24–26] and model test [20,27],
the construction, support parameters, deformation and mechanical response of PBA metro
station are studied comprehensively. However, with the continuous development of metro
station construction in the direction of large span and large section, new requirements and
challenges have been brought to the PBA method, and the construction difficulty of the
station will be further aggravated when crossing complex strata. At present, the research
on large-span and large-section PBA station under complex stratum conditions is not
sufficient. The influence of different construction stages of the large-span and large-section
PBA station on surface settlement under complex stratum conditions and the optimal
construction steps in key construction stages are not thoroughly studied.

This paper takes the Qinghuadongluxikou Station project of Beijing Metro Line 15 as
the research object. As shown in Figure 1, the single span of the supporting arch reaches
12.3 m, which is nearly twice the span of the supporting arch under conventional conditions,
forming a typical case of large-span PBA. In addition, the station is built in silty clay–pebble
composite strata. The engineering properties of the upper silty clay stratum and the lower
pebble stratum are very different. Among them, the upper silty clay has poor self-stability
and is prone to collapse during construction. The lower pebble stratum has small cohesion
and is prone to collapse [28]. The composite stratum is a typical bad geological condition,
and the station under this stratum is easy to cause excessive subsidence of the surface
during construction. Therefore, it is the key to ensure the safe construction of the station
to clarify the influence of PBA method construction on surface deformation under bad
geological and large span conditions. In this paper, the influence of each construction stage
of the large-span PBA method on surface deformation under silty clay–pebble composite
stratum is explored by combining numerical simulation with field measurement. Then the
key construction stage, which is easy to cause surface deformation, is studied; that is, the
influence of three different excavation factors on surface deformation in the construction
stage of the pilot tunnel is simulated and analyzed, and the optimal excavation sequence of
the pilot tunnel is obtained. Finally, according to the engineering characteristics of the large-
span PBA method, the two construction schemes of the arch secondary lining are simulated
and compared. The research results enrich the relevant knowledge of the influence of
large-span PBA method construction on the surface deformation of subway stations under
bad geology. The optimal construction scheme obtained in this paper provides a reference
for the design and construction of subway stations similar to the PBA method.
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2. Project Overview
2.1. Overview of Station Structure

Qinghuadongluxikou Station is the terminal station of Beijing Metro Line 15, which
is located along Tsing Hua East Road in an east–west direction. The station measures a
total of 236.4 m in length, 24.6 m in width for a standard double-arch section, 16.78 m
in height, 9.5 m in thickness for the soil that covers the roof plate and about 26.0 m in
depth for the bottom slab. Additionally, the main body of the station is a one-column,
two-span, double-deck, lateral platform structure. The station hall is located on the first
underground floor, while the platform is located on the second underground floor. A
schematic showing the location of the station is presented in Figure 2, and the standard
cross-sectional dimensions of the station are shown in Figure 3.
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According to the preliminary survey results of the construction area, the stratum
where the main structure of Qinghuadongluxikou Station is located (from the surface
into the ground) can be divided into the (a) artificial soil layer, (b) Quaternary Holocene
alluvial–pluvial deposit and (c) Quaternary Late Pleistocene alluvial–pluvial deposit based



Materials 2023, 16, 2934 4 of 20

on the sedimentary strata ages and genetic types. In addition, the project can be divided
into eight soil layers, and the specific parameters are shown in Table 1. The terrain and
climate characteristics of the area where the subway station is located are shown in Table 2.

Table 1. Soil properties.

Soil Thickness
(mm)

Density
ρ (kg/m3)

Bulk Modulus
K (MPa)

Shear Modulus
G (MPa)

Cohesion
C (kPa)

Internal Friction Angle
ϕ (◦)

Filling 2300 1750 10.3 3.9 10 10
Silty clay 6540 1970 14.5 6.3 19 17
Silty clay 7270 1960 25.0 10.2 22 16
Silty clay 7800 1980 31.6 13.7 26 18
Pebbles 6000 2020 27.8 18.3 10 40

Silt 8000 1980 25.0 11.5 25 22
Pebbles 11,800 2050 29.8 20.5 10 40
Pebbles 30,290 2080 30.0 20.6 10 45

Table 2. The terrain and climate characteristics of the area where the subway station is located.

Terrain Impact of Unfavorable Geology Climate Climatic Characteristics Weather Disaster

Plain card
country

The partially saturated sand and silt
layers at the top of the station are prone to

quicksand and quicksand.

Temperate
monsoon

Summer is hot and rainy;
winter is cold and dry.

Precipitation, low
temperature

2.2. Station Construction Procedure

Qinghuadongluxikou Station is a two-story and two-span station, and the main
construction procedure adopted to build it can be divided into nine stages. The detailed
construction steps are explained below and can be observed in Figure 4. The Schematic of
the main construction process of Qinghuadongluxikou Station is shown in Figure 5.
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3. Construction of Numerical Model

In this study, FLAC 3D 6.0 numerical analysis software was used to simulate the
subway station. To simulate all the engineering procedures more accurately and to improve
the efficiency of the numerical model analysis as much as possible, this study makes
some reasonable assumptions and simplifications of the actual engineering during the
construction of the numerical analysis model:

1. The numerical model assumes that the soil is homogeneous and isotropic, and the
same stratum in the soil is uniform, of equal thickness, and horizontal.

2. In this study, the load mainly includes the soil, structure weight and ground based on
the addition of overload of 20 kPa.

3. In the pre-grouting consolidation simulation, the material parameters of the surround-
ing soil around the tunnel face were improved to simulate its effect equivalently. First,
the pre-grouting part of the pilot tunnel was equivalent to the fan-shaped reinforce-
ment with a thickness of 1 m combined with the actual construction situation. Second,
the deep-hole grouting part of the arch is equivalent to the fan-shaped reinforcement
of the 2-m thickness in consideration of the actual construction situation.
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4. Grid mechanics simulation: As this is a steel, grid-shotcrete, composite supporting
structure, its mechanical properties are relatively complex. Typically, it is usually
simplified by the equivalent stiffness method in simulations,

E = E0 +
Sg × Eg

S0
(1)

where E is the elastic modulus of the entire structure; E0 is the elastic modulus of the
concrete; Eg is the elastic modulus of steel; and S0 is the area of the concrete per unit
area.

5. Supporting structure simulations of the CD method: The joint steel is used for support,
and the horizontal interval is the excavation spacing. The force is mainly based on the
vertical load and transversal flexure, so it can serve as an equivalent wall based on
the principle of equal flexural rigidity,

Es Is = Ew Iw =
1

12
bh3 (2)

where Es is the elastic modulus of steel; Is is the moment of inertia of steel; Ew is the
elastic modulus of the equivalent diaphragmatic wall; Iw is the moment of inertia of
the equivalent diaphragmatic wall; b is the I-beam erection span; and h is the thickness
of the equivalent diaphragmatic wall.

6. In the numerical simulation of this study, the Mohr-Coulomb model was selected
as the constitutive model of the soil, and each soil layer was considered as an ideal
elastoplastic body. The lining, beam and plate all adopted the elastic model. In
addition, the mechanical characteristics of the side piles were simulated by the pile
element. The interior column was mainly subjected to vertical loads, and there was no
coupling effect with the surrounding soil after construction. However, the two ends
of the column have similar constraints to those of the beam element. Thus, the beam
element is used to simulate the interior column.

In this study, the main body of the station between shafts No. 1 and No. 2 was
used, according to this numerical simulation section. The model selected a range that
was equal to three times the excavation range as the model boundary, and the model size
was 150 m × 90 m × 80 m. The model boundary conditions were all set as displacement
boundary conditions, whereby the upper surface was a free boundary. Additionally, the
bottom boundary of the model had a fixed displacement in the x, y and z directions; the
displacement in the x direction of the right boundary was fixed, and the displacements in
the y direction of the front and rear boundaries of the model were also fixed. Figures 6 and 7
are schematics of the model boundaries and the model itself, respectively. The simulated
construction steps are shown in Figure 8.
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In the numerical simulation, the soil mechanical parameters were selected based on
the parameters suggested by the reconnaissance report of this engineering structure. The
parameters of the supporting structure are determined, according to the actual materials
and design specifications. The detailed parameters of each supporting structure involved
in the numerical simulation of the station are presented in Table 3.

Table 3. Physical and mechanical parameters of supporting structure.

Structural Material Type Structure Elastic Modulus E (MPa) Poisson’s Ratio ν Density (kg/m3)

Pregrouting Grouting reinforcement ring 15,000 0.28 2300

C20 concrete Concrete backfill 25,500 0.20 2400

C20 grid steel frame
Reinforced concrete

Pilot tunnel support
26,000 0.20 2500

Primary lining

I-beam (equivalent to the wall) Middle wall steel support 6000 (equivalent to the wall) 0.29 7900

C30 concrete

Crown beam

30,000 0.20 2500Strip foundation

Side pile

C40 concrete

Top stringer

32,500 0.20 2500

Bottom stringer

Secondary lining

Middle floor slab

Station floor slab

Steel pipe pile and C50 concrete Center column 59,000 0.20 3200
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In the numerical simulation, to avoid the influence of the model boundary on the
simulation results, the influencing scope of the excavation face at 45◦ was considered in
conjunction with relevant soil mechanical principles, and the middle part of the model was
generally selected as the monitoring range part. The surface monitoring site arrangement
of the model is illustrated in Figure 9.
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4. Results
4.1. Analysis of the Surface Displacement in the Entire Construction
4.1.1. Vertical Displacement Analysis of Ground Surface

The surface subsidence variation curve during pilot tunnel excavation is shown in
Figure 10. The surface settlement curve of each stage of the station construction is shown
in Figure 11. The relationship between surface subsidence and construction steps is shown
in Figure 12.
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Through Figures 10 and 12, we can see the surface subsidence law of the pilot tunnel
excavation stage:

1. When the pilot tunnel is excavated for 4, 6→5→1, 3→2, the maximum ground set-
tlement is 3.4 mm, 10.64 mm, 23.75 mm and 36.71 mm, respectively. It indicates that
the excavation of the upper pilot tunnel has more obvious influence on the surface
settlement than that of the lower pilot tunnel.

2. In the excavation stage of the pilot tunnel on both sides, the maximum point of the
entire ground settlement is not on the medial axis of the station, which is a unique
feature of large-span PBA construction. However, single-groove settlement usually
occurs in the construction of the PBA with the conventional span. The main reason
for this difference is that the pilot tunnel spacing of the same layer in the large-span
PBA method is larger than that in other cases, and the multicavern effect between
pilot tunnels is weaker than that for the small pilot tunnel with clear spacing.

From Figures 11 and 12, we can see the law of surface subsidence in each stage of
station construction:

1. During the entire building period of the station, the maximum value of surface
settlement always appears at the middle line of the station structure. The settlement
in the range of 30 m around the central line of the station has obvious changes with
different construction stages. The surface deformation outside 30 m does not change
significantly with different construction stages. The overall variation trend of the
settlement trough curve is generally consistent with the Peck formula.
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2. During the entire construction period, the ground settlement in the first four construc-
tion stages exhibits an increasing trend, and the range of the settlement groove exhibits
a widening trend. In the last two construction stages, the ground settlement depicts a
decreasing trend, and the range of the settlement groove also appears to be narrowing.
This shows that in the large-span pile-beam-arch method’s construction process, the
process prior to the arch secondary lining is the primary stage that contributes to
surface deformation due to settlement, and the platform layer and station hall layer
construction are the primary stages that contribute to surface uplift.

3. With the exception of the uplift stage, the ground settlement brought on by the
building of the pilot tunnel makes up 50% of the total station settlement, while the
ground settlement brought on by the construction of the pile-beam supporting system
makes up 11% of the total. The ground settlement generated by the second lining
of the arch construction accounts for 6% of the overall settlement, while the ground
settlement induced by the initial arch supporting construction accounts for 33% of
the total station settlement. The findings indicate that the settlement ratio of the
excavation of the pilot tunnel: pile-beam construction: arch initial support: arch
secondary lining is about 5:1.1:3.3:0.6. Settlement deformation mainly occurs in the
pilot tunnel excavation stage. Therefore, the actual construction should focus on the
prevention and control of the ground subsidence pilot tunnel excavation stage.

4.1.2. Horizontal Displacement Analysis of Ground Surface

As shown in Figure 13, in each stage of the construction of the large-span PBA method,
the horizontal displacement of the ground surface yields an antisymmetric figure with
the ground center as the center of symmetry. In the first four phases, the horizontal
displacement of the ground surface gradually increases as the construction progresses, and
the peak value gradually draws closer to the midline of the station structure. The peak
value of surface horizontal displacement in each stage is distributed between 15–18 m
from the midline of the station structure. After the second lining of the arch was built, the
horizontal displacement of the ground surface reached the maximum value of 25.2 mm.
Additionally, the ground surface’s horizontal displacement gradually decreased in the last
two stages. This is attributed to the fact that the structure exhibits an uplifting trend after
the excavation of the station and the extrusion of the overlaying soil, which results in the
rebounding of the ground surface horizontal displacement value.
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4.2. Comparison of Field Measurements and Simulation Results

In the field monitoring project of the subway station, the surface subsidence is moni-
tored for a long time by the level. As can be observed from the comparison in Figure 14,
numerical simulation analysis results are relatively good in the first construction stages. In
the last two construction stages, because of the unloading of soil pressure in the tunnel, the
simulated value shows an upward trend, while the field measurement values still decrease
slightly. The reasons for this phenomenon are the following: (a) the displacement caused
by earth pressure unloading in the tunnel is difficult to transfer to the surface; (b) soil is
not elastomer; and (c) in the numerical simulation, the time effect of soil excavation and
support structure sealing loop cannot be considered.
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layer construction.

Figure 15 shows the ground settlement variation results over the course of the station’s
building and compares the numerical simulation results at the critical time nodes. The slope
of the curve indicates that the pilot tunnel and arch constructions were significant stages
of the surface deformation process brought on by the PBA method during construction,
whereas the deformations during the other stages were quite smooth. In addition, with the
exception of the station’s construction stage, the variation trend of ground settlement over
the entire period was more in line with the calculated outcomes of the numerical model.
The previous paragraph fully analyzed the reasons for the relevant differences.
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4.3. Comparative Study on Different Excavation Schemes of Pilot Tunnels

The excavation of the pilot tunnel is the crucial construction phase that results in
surface subsidence, according to the analysis of Section 4.2. Therefore, the following is a
comparative analysis of the excavation schemes for the pilot tunnel using the principle
of the control variable method. This paper systematically studies the effect of three main
factors on the ground subsidence law when excavating the large-span PBA pilot tunnel,
which is respectively through construction or synchronous stagger construction, horizontal
excavation sequence and vertical excavation sequence. Finally, the optimal pilot tunnel
excavation scheme, suitable for the large-span PBA method, is selected. The specific
research plan is shown in Table 4.

Table 4. Specific scheme of working conditions.

Plan Number Detailed Construction Plan Influencing Factor

Plan 1 (4, 6→5) after penetration→(1, 3→2) after penetration Whether the pilot tunnel of each layer is through
construction respectively: (1) plan 1 contrast plan 2;

(2) plan 3 contrast plan 4
Horizontal excavation sequence: plan 2 contrast plan

5 contrast plan 6
Vertical excavation sequence: plan 2 contrast plan 4

Plan 2 4, 6→5→1, 3→2
Plan 3 (1, 3→2) after penetration→(4, 6→5) after penetration
Plan 4 1, 3→2→4, 6→5
Plan 5 5→4, 6→2→1, 3
Plan 6 4→6→5→1→3→2

Figure 16 displays the plan for excavating the six pilot tunnels. Figure 17 shows
the vertical displacement cloud diagram for the six pilot tunnel excavation schemes. The
deformation curve of the six plans in Figure 18 is drawn by extracting the model monitoring
site data.
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Figure 18. Comparison of surface settlements of different schemes.

1. Whether the pilot tunnel of each layer is constructed separately.
It can be learned from the vertical displacement clouds of plans 1–4 that the settlement

contour range of plan 1 and plan 2, which excavate the lower pilot tunnel first, is wider
than that of plan 3 and plan 4, which excavate the upper pilot tunnel first. From the surface
settlement curves of plans 1–4, it can be learned that the maximum surface settlement of
plans 1–4 is 34.98 mm, 36.69 mm, 32.33 mm and 34.09 mm, respectively. Control univariate
for comparative analysis, respectively, compared plan 1 and plan 2, plan 3 and plan 4.
It can be concluded that during the construction process of the pilot tunnel, the surface
settlement value caused by constructing another layer of the pilot tunnel after completing
the construction of one layer of the pilot tunnel will be smaller than the surface settlement
value caused by the simultaneous construction of a certain staggered distance between
pilot tunnels. Comparing plan 1 with plan 3, it can be concluded that if the scheme of
constructing another layer of the pilot tunnel after the completion of the first layer of the
pilot tunnel is adopted. So, first through the upper guide hole will be smaller than the
ground settlement value caused by first through the lower guide hole.

2. Horizontal excavation sequence
Control single variables for comparative analysis, comparison plan 2, plan 5 and plan

6. Plan 2 and plan 5 had approximately the same range of surface settlement, and plan 6
had a slightly wider range of surface settlement than the first two. It is also evident that
the surface subsidence range of plan 5 is the widest; plan 6 is the second; and plan 2 is the
narrowest. Through the surface subsidence curve of plans 2, 5 and 6, it can be known that
the maximum surface subsidence of plans 2, 5 and 6 is 36.69 mm, 35.32 mm and 38.07 mm,
respectively. It shows that plan 5 is better than plans 2 and 6. It can be concluded that, in
the construction of the large-span PBA method, the same layer of the pilot tunnel is better
to adopt the symmetrical excavation method of first middle and later sides.

3. Vertical excavation sequence
Control single variables for comparative analysis, comparison plan 2, plan 4. The

surface settlement curves of plan 2 and plan 4 show that the maximum surface settlement
of plan 2 and plan 4 are 36.69 mm and 34.09 mm, respectively, which indicates that plan 4
is better than plan 2. It can be concluded that, in the construction of the large-span PBA
method, the plan of excavating the upper guide hole first is better than that of excavating
the lower guide hole first.

For the results of the numerical simulation of six different plans, the theoretical
maximum surface settlement value and settlement trough width are obtained by fitting,
and the ground loss rate caused by each construction scheme is calculated. The results are
shown in Table 5.
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Table 5. Summary of fitting results.

Plan Number Maximum Surface Settlement
Smax (mm)

Backbend Distance
i (m)

Fitting Correlation Coefficient
R2

Formation Loss Rate
V1 (%)

Plan 1 −37.221 12.655 0.9802 0.00906
Plan 2 −38.735 12.926 0.9840 0.00963
Plan 3 −34.536 12.304 0.9764 0.00817
Plan 4 −36.021 12.524 0.9769 0.00869
Plan 5 −37.962 12.905 0.9796 0.00942
Plan 6 −39.979 13.125 0.9838 0.01009

Through the above numerical simulation results analysis, surface subsidence curve fit-
ting analysis and formation loss rate analysis, it can be clearly concluded that the following.

1. It is better to control the development of surface settlement after the construction of
one layer of pilot tunnel first and then another layer of pilot tunnel than the staggered
construction plan of two layers of pilot tunnels at the same time, and the plan of
penetrating the upper layer of pilot tunnel first is better than the plan of penetrating
the lower layer of pilot tunnel first in construction.

2. For the excavation sequence of the same layer pilot tunnel, the symmetrical excavation
method of first middle and then side is better than the symmetrical excavation method
of first side and then middle. The method of staggered excavation of single pilot
tunnel has the worst effect on controlling ground settlement deformation and will
cause uneven settlement on both sides of the station.

The above analysis results, first the middle and then the side, first through the construc-
tion of the upper layer and then the construction of the lower layer, is the best construction
plan for the excavation of the pilot tunnel.

4.4. Comparative Study on Different Construction Schemes of the Second Arch Lining

After the initial arch support is completed, the side wall of the pilot tunnel is broken
to construct the second lining of the arch. Given that the supporting arch span of this case
is very large and reaches 12.3 m, there are two types of construction of the second lining of
the arch. The first is the use of the inverted support method to construct the second lining
of the arches in two times according to parts I and II divided by central partition wall in
the initial arch support period. The second is the completion of the second lining of the
arch in a single attempt after the removal of the central partition wall in the CD method.
This part will simulate the above second lining of arch construction methods separately
and compare the differences between the two construction methods. The simulations of
the two methods are presented in Figure 19.
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Figure 19. Schematic of different schemes for second lining simulation of arch: Second lining of the 
arch was completed in (a) one attempt and (b) two attempts to complete the program simulation. 

  

Figure 19. Schematic of different schemes for second lining simulation of arch: Second lining of the
arch was completed in (a) one attempt and (b) two attempts to complete the program simulation.

4.4.1. Analysis of the Difference of the Influences on Surface Displacement

According to the vertical displacement clouds shown in Figure 20, after completing
the two types of the second lining of arch construction, the vertical displacement cloud
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diagrams are very similar after the completion of the two schemes. Furthermore, the ground
settlement range does not change significantly. This shows that the initial supporting
structure yields a good supporting effect, and the two schemes of the second lining of
the arch have minor influences on the ground settlement. Following the extraction of the
model monitoring site data of the two schemes, the relevant ground settlement curves are
plotted in Figure 21. As shown, the ground settlement curves caused by the construction of
the two schemes are very similar, and the differences are only reflected within distances
of 9 m from the midline of the structure. Accordingly, the ground settlement value of the
arch completed in one attempt is slightly greater than that of the arch completed in two
attempts. Outside the 9 m range, the results are opposite. The reason for this difference is
attributed to the fact that the supporting arch cross-section of the arch completed once is
larger than that of the arch completed twice, so the maximum ground settlement value is
slightly larger. However, based on comparisons, it can be concluded that the influences of
the two different schemes on the changes of the ground settlement value are approximately
the same.
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4.4.2. Analysis of Structural Stability Differences

The maximum principal stress clouds (Figure 22) are completed by the second lining
of the arch construction. It is obvious that, in the scheme of the arch completed once, the
arch stress is evenly distributed; the arch is mainly in a compressed state; and the foot of
both arch ends has the highest compressive stress value. In addition, the regions in which
the positive and negative stresses occur are at the junction of the arch, top stringer and
side pilot tunnel. However, the scheme of construction completed in two attempts presents
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an uneven distribution of stress. The primary disadvantage is that there is an obvious
tension stress zone in the supporting part of the original central partition wall, which will
have a very adverse effect on the stability of the concrete structure. In the process of the
construction of the structure with the PBA method, the top plate adopts an arch structure
to benefit maximally from the compression advantages so that the enforced load can be
transmitted to both sides of the arch foot and so that the arch structure focuses on the
compressive stress. Therefore, in terms of the force angle, the scheme of the construction
completed in two attempts is significantly worse than the scheme of the arch completed in
a single attempt.
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From the vertical displacement clouds of the arch shown in Figure 23, the scheme of the
arch completed in a single attempt yields a uniform deformation. The average settlement
is approximately 3 mm, which also confirms the uniformity of the aforementioned stress
distribution, thereby indicating that the force and deformation in the scheme of the arch
completed in one attempt are credible. In contrast, the biggest feature pertaining to the
construction scheme completed in two attempts is that the constructed arch structure will
produce uneven deformation in the original central partition of the wall area, and the
settlement in this area will increase significantly after the central partition wall is removed.
This is attributed primarily to the scheme of construction completed in two attempts. From
one viewpoint, the deformation at the joints of the arches constructed in two attempts will
be inconsistent, thus resulting in construction joints. From another viewpoint, the arch
cannot completely transfer the load to the arch feet on both sides under the support of
the central partition wall. Therefore, a larger deformation will inevitably appear at the
supporting part after the two parts of the arch have been shut and the central partition wall
has been removed.
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From the above analysis, it can be inferred that the second lining of the arch completed
in one attempt is better than that completed in two attempts in the case of the large-span
PBA method. Although the effects of the two schemes on the ground deformation are
almost similar, in terms of the stability of the arch structure, the scheme completed in
two attempts is inferior to the scheme completed once. Therefore, in the construction of
the large-span PBA method, the second lining of the arch construction should adopt the
scheme of the arch completed in a single attempt.

5. Conclusions

Based on the large-span PBA method project of Qinghuadongluxikou Station of Beijing
Metro Line 15, this paper systematically studies the response characteristics of surface
deformation under different construction stages by numerical simulation combined with
field measurement. Then the influence of three different excavation factors on surface
deformation in the construction stage of the pilot tunnel is simulated and analyzed. Finally,
two schemes of arch secondary lining structure are simulated and compared. The following
are the primary conclusions:

1. During the excavation of the pilot tunnel of the station, the development of the set-
tlement groove yields the obvious multicavern effect, and dual and single grooves
appear alternately after different pilot tunnel excavations. Compared with the lower
pilot tunnel excavation, the effects of upper pilot tunnel excavation on ground settle-
ment and surface deformation are more apparent, and the development of settlement
groove is more severe.

2. It is obvious that the development of ground settlement groove progresses in stages
during the construction of the large-span PBA method. Through the numerical
simulation, it is concluded that the settlement ratio of pilot tunnel excavation: pile-
beam construction: arch initial support: arch secondary lining is about 5:1.1:3.3:0.6.
Settlement deformation mainly occurs in pilot tunnel excavation stage. Therefore, the
actual construction should focus on the prevention and control of ground subsidence
during the excavation stage of the pilot tunnel.

3. The comparison of the field monitoring findings and the numerical simulation results
reveal that the two are extremely compatible, confirming the accuracy of the numerical
simulation results.

4. By comparing and analyzing six groups of pilot tunnel excavation schemes, the
optimal pilot tunnel excavation scheme of large span PBA method is established,
which excavates the middle first and then excavates both sides, and first through the
upper layer and then through the lower layer.

5. The second lining of the arch completed in a single attempt was better than that
completed in two attempts in the case of the large-span PBA method. Although the
effects of the two schemes on the ground deformation are almost similar, in terms of
the stability of the arch structure, the scheme completed in two attempts will lead to
an uneven distribution of stress. In addition, greater ground deformation is caused
by the removal of the central partition wall and will result in the construction of arch
joints in the case in which construction was completed in two attempts.

This study accurately simulates the ground deformation law caused by the construc-
tion of large-span PBA method. Therefore, the numerical model proposed in this paper can
be used in similar engineering applications. The research results enrich the knowledge of
the influence of large-span PBA construction on the surface deformation of subway stations
in silty clay–pebble composite strata. The optimal pilot tunnel construction scheme and
buckle arch construction scheme obtained in this paper provide a reference for the design
and construction of similar PBA subway stations.
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