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Abstract: To solve the problem of insufficient predictability in the classical models for the Ti6242s
alloy, a new constitutive model was proposed, based on the partial derivatives from experimental
data and the Taylor series. Firstly, hot compression experiments on the Ti6242s alloy at different
temperatures and different strain rates were carried out, and the Arrhenius model and Hensel-Spittel
model were constructed. Secondly, the partial derivatives of logarithmic stress with respect to
temperature and logarithmic strain rate at low, medium and high strain levels were analyzed. Thirdly,
two new constitutive models with first- and second-order approximation were proposed to meet the
requirements of high precision. In this new model, by analyzing the high-order differential data of
experimental data and combining the Taylor series theory, the minimum number of terms that can
accurately approximate the experimental rheological data was found, thereby achieving an accurate
prediction of flow stress with minimal material parameters. In the new model, by analyzing the
high-order differential of the experimental data and combining the theory of the Taylor series, the
minimum number of terms that can accurately approximate the experimental rheological data was
found, thereby achieving an accurate prediction of flow stress with minimal material parameters.
Finally, the prediction accuracies for the classical model and the new model were compared, and the
predictabilities for the classical models and the new model were proved by mathematical means. The
results show that the prediction accuracies of the Arrhenius model and the Hensel-Spittel model
are low in the single-phase region and high in the two-phase region. In addition, second-order
approximation is required between the logarithmic stress and logarithmic strain rate, and first-order
approximation is required between logarithmic stress and temperature to establish a high-precision
model. The order of prediction accuracy of the four models from high to low is the quadratic model,
Arrhenius model, linear model and HS model. The prediction accuracy of the quadratic model in all
temperatures and strain rates had no significant difference, and was higher than the other models.
The quadratic model can greatly improve prediction accuracy without significantly increasing the

material parameters.

Keywords: Taylor series; partial derivative; hot compression; prediction accuracy; quadratic model

1. Introduction

The Ti6242s alloy, a typical high-temperature titanium alloy, is widely used in high-
pressure compressor disks and blades in aeroengines; these parts are usually manufactured
by a hot-working process [1,2], such as hot forging, hot extrusion, hot roll forging, etc. The
most important purpose of hot-working processes is that metals are deformed into the
desired shapes under certain thermomechanical processing conditions to obtain the appro-
priate microstructure and mechanical performance [3]. Numerical simulation technology
is an important technical means for achieving the accurate control of shape and perfor-
mance, and one of the cores of accurate numerical simulation is to build a high-precision
constitutive model [4].
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In past decades, many scholars have studied the constitutive model of titanium alloy.
Three main categories of constitutive models are utilized to predict the flow behavior
of metallic alloys, which are based on physical, phenomenological and artificial neural
network constitutive models [5-9]. The most widely used constitutive models in numer-
ical simulation software are the Arrhenius (AH) model [10,11], the Johnson-Cook (JC)
model [12], the Hensel-Spittel (HS) model [13,14] and so on. Since these constitutive mod-
els were proposed, many subsequent studies have attempted to improve these classical
models. For example, Kotkunde et al. [15] used four constitutive models (a modified
JC model, modified AH model, modified Zerilli-Armstrong and the Rusinek—Klepaczko
model) to analyze the accuracy of the rheological behavior of the Ti-6Al-4V alloy. The re-
sults showed that the modified AH model had high accuracy. Zhang et al. [16] proposed the
strain-compensated AH and modified Norton—-Hoff constitutive models for the Ti-6Al-4V
alloy. The results showed that the Norton-Hoff model had higher accuracy. Xiao et al. [17]
proposed a new constitutive model of the TiNiNb alloy, in which the effects of temperature
and strain rate on stress were considered. The regression results of the experimental data
showed that the predicted accuracy of the proposed constitutive model was very high.
Luo et al. [18] analyzed the Kocks—-Mecking constitutive model of the Ti-6Al-4V alloy, and
the average relative error was about 6.13%. Cai et al. [19] conducted a constitutive analysis
of the Ti-6Al-4V alloy by using the stress—strain data obtained from an isothermal hot
compression experiment. Considering the independent effects of strain, strain rate and
temperature, a modified Arrhenius constitutive model was proposed. The results showed
that the modified parallel constitutive model based on multiple regression could better
predict the flow stress of the Ti-6Al-4V alloy, and had good correlation and generalization
ability. Ming et al. [20] compared the prediction errors of the modified AH model and the
modified JC model for the Ti-6Al-4V alloy. The results showed that the modified AH model
with strain compensation was more accurate than the modified JC model. Ga et al. [21]
compared the prediction accuracy of five constitutive models for the flow data of the Ti-
6Al-4V alloy. The results showed that the modified HS model had the highest accuracy and
the JC model had the worst accuracy. Recently, an artificial neural network model was also
introduced into the prediction of rheological data. For example, Ahmed et al. [22] compared
the prediction accuracy between the AH model and an artificial neural network (ANN)
model. The results showed that the predictability of the artificial neural network model was
higher than that of the AH model for the Ti-2.5A1-1.8Mn alloy. Sun et al. [23] proposed a BP
neural network constitutive model of the Ti40 alloy, and the results showed that this model
had a high prediction accuracy for flow stress. Reddy et al. [24] established a BP neural
network constitutive model to predict the flow stress of the Ti-6Al-4V alloy. This model was
successfully trained by using experimental flow data in both the double phase o + 3 region
and the single phase (f3) region. This model seemed to have a higher prediction accuracy
than the classical models. However, there are many obvious disadvantages for the neural
network model, such as many offset and weight parameters, no gradient information
(simple expression), over fitting, etc. In addition, compared with the traditional models,
the calculation efficiency of the artificial neural network model is extremely low. For finite
element simulation with a strict speed requirement, the artificial neural network model
will obviously not be adopted by the mainstream commercial simulation software. Because
the AH, JC and HS models have the characteristics of simple structure and high accuracy,
they are currently the mainstream models.

However, it is difficult for classical models to accurately predict the flow stress in
both the « + 3 phase and (3 phase regions due to the phase transition of the Ti6242s alloy
within the hot forming temperature range. In addition, the second-order approximation
is required between the logarithmic stress and logarithmic strain rate, and first-order
approximation is required between logarithmic stress and temperature to establish a high-
precision model. However, the classical constitutive models have only first-order accuracy;
therefore, these modifications and enhancements conducted by the above researchers
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have limited improvement in the prediction accuracy, only within the range of the first-
order accuracy.

To solve the problem of insufficient predictability in the classical constitutive models, a
novel constitutive model of the Ti6242 alloy was established based on the partial derivative
and Taylor series. The novel constitutive model can predict the high-temperature flow
stress of the Ti6242s alloy in both the « + 3 phase and single 3 phase regions more precisely.
Firstly, the isothermal hot compression tests were completed in the temperature range of
900~1100 °C and a strain rate range of 0.001~10 s! on a Gleeble-3500 simulator. Secondly,
two new constitutive models based on the Taylor series were proposed without significantly
increasing the material parameters. In this novel building method, the minimum number
of terms that can accurately approximate the experimental rheological data was found by
analyzing the high-order differentials of experimental data and combining the theory of the
Taylor series, thereby achieving an accurate prediction of flow stress with minimal material
parameters. Finally, the prediction accuracy of the proposed constitutive equation was
evaluated by comparing with classical constitutive models. The results showed that the
prediction accuracy of the classical models was low in the single-phase region and high
in the two-phase region. The order of prediction accuracy of the four models from high
to low is quadratic model, Arrhenius model, linear model and HS model. The prediction
accuracy of the quadratic model in all temperatures and strain rates is higher than the other
models and it can greatly improve the prediction accuracy without significantly increasing
the material parameters.

2. Materials and Experiments
2.1. Material

The experimental material was the Ti6242s alloy and its nominal chemical composition
is shown in Table 1. The main alloy elements of the experimental material were Al, Sn, Zr
and Mo. It is a kind of near-« titanium alloy with a service temperature between 450 °C
and 500 °C. This material is mainly used for medium and high pressure compressor discs
and blades in aircraft engines [25]. It has excellent high temperature durability, weldability
and processability.

Table 1. The normal chemical composition of Ti6242s alloy (wt, %).

Al Sn Zr Mo Si Fe (@] N C
6.13 1.93 4.16 1.90 0.090 0.020 0.09 0.01 0.010

Figure 1 shows the original forged microstructure of the material. It can be seen
that the primary microstructure of the material displays the typical bimodal morphology
which is mainly composed of massive equiaxed primary « phase (more than 50%), lamellar
secondary o phase and a small amount of transformed phase 3.

Figure 1. The microstructure of the Ti6242s alloy.
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The hot processing or heat treatment of the titanium alloy is carried out in a two-phase
zone or a single-phase zone, which has a certain impact on the structure and properties.
Therefore, the phase transformation point of the titanium alloy is an important parameter
in its processing specifications. For the Ti6242s alloy, the phase transform temperature from
o to B is 1015 °C.

2.2. Experimental Details and Results

Generally, the range of the forming temperature of titanium alloy is located in a double
phase region [26-28]. Therefore, in the isothermal hot compression, the temperatures
located in both the double phase region (900, 950, 1000 °C) and single phase region (1050 and
1100 °C) were selected to build a complete database. Twenty-five experimental specimens
were machined from the original metal. The size of the specimens was 8 mm in diameter
and 12 mm in height. As shown in Table 2, 25 samples were heated to 900, 950, 1000, 1050
and 1100 °C at the rate of 5 °C/s and then subjected to isothermal compression on the
Geeble-3500 thermal simulation testing machine. The compression deformation rates were
0.001, 0.01,0.1,1and 10s7}, respectively, and the compression amounts were 60% (the true
strain was 0.916). To retain the microstructure, the specimens were immediately placed
in water. To eliminate the friction, tantalum foil with a thickness of 0.1 mm was placed
between die and specimen before hot compression.

Table 2. Parameters used in isothermal compression test.

Heating Temperature . L Heating Rate Quenchin; Amount of
Number g(T/OC) Strain Rate (¢/s™1) (°C§s) Mediumg Deformation
1-5 900
6-10 950
11-15 1000 0.001,0.01,0.1,1,10 5 water 60%
1620 1050
21-25 1100

Figure 2 shows the stress—strain curves at various strain rates and temperatures. The
following rules can be obtained from Figure 2: (1) the flow stress decreases with the increase
in temperature under the same strain rate. The higher the temperature is, the stronger
the atomic activity and the stronger the dislocation motion ability are, and the speed of
mutual cancellation between dislocations is accelerated. Meanwhile, with the increase
in temperature, x—f3 phase transformation is triggered. The slip system of 3 phase is
more than o phase. Then, this phase transformation causes deformation to occur more
easily. In addition, the increase in temperature accelerates the nucleation and growth rate
of recrystallization, and the softening effect is enhanced. (2) In the temperature range of
both o + 3 phase region (900~1000 °C), a significant stress drop can be observed at all strain
rates, and the flow softening phenomenon is more obvious when the temperature lowers.
(3) In single 3 phase zone (1050~1100 °C), the curve will soften only when the strain rate
is low, and the curve will decline slightly or remain basically unchanged after reaching
the peak value at the high strain rate. The reason is that the temperature rises above the
recrystallization termination temperature of the material; recrystallization stops in the
grains, and the softening effect of dynamic recovery is not obvious; under the counteraction
of deformation hardening, it shows relatively stable flow stress.
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Figure 2. Flow stress-strain curves of Ti6242s alloy during hot compression at strain rates of (a) 0.01s™;
1) 01s () 1s71(d)10s7L; (e) 105 L.

2.3. Strain Dispersion

In order to regress the constitutive model easily, the flow stress curve was divided into
10 equal parts according to the strain from 0.04 to 0.9. It is worth noting that the accuracy
increases with more divided parts in a certain range. In order to eliminate the influence of
the number of equal parts on the accuracy of the model, all subsequent models used the
same number of equal parts, that is, the data in Table 3. The data in Table 3 can be obtained
by linear interpolation using each rheological curve in Figure 2.



Materials 2023, 16, 2928

6 of 26

Table 3. Stress matrix corresponding to different strain levels (The units of strain rate, temperature

and stress are s~ 1, K and MPa, respectively).

Temperature Temperature

€ € 1173 1223 1273 1323 1373 € € 1173 1223 1273 1323 1373
0.001 88.27 6194 3340 23.68  15.63 0.001 90.86 6045 3299 2293 14.75

0.01 10719 93.10 5579 3953  27.93 0.01 15347 8916  56.73  39.22 2494

0.04 010  180.23 12729 8820 6456  41.71 0.14 010 22210 13527 89.12 6750 4031
1 216.19 190.22 126.78 9159  71.24 1 279.70 19235 12248 9412  69.67
10 287.08 230.64 162.64 128.04 104.78 10 347.07 246.11 169.92 132.68 105.52

€ € 1173 1223 1273 1323 1373 € € 1173 1223 1273 1323 1373
0.001 85.79 5654 3149 2193 13.72 0.001 80.82 5274 2954  21.03 12.68

0.01 14471 8346  53.69 3827  23.90 0.01 136.61 78.17 5175 3734 2337

0.23 010 217.10 13347 8532 6579 3891 0.33 0.10 20528 130.52 8228  63.50 3747
1 27649 190.86 118.68 9153  67.65 1 26237 186.65 117.12 88.00  65.71

10 357.03 239.83 166.90 12826 102.92 10 350.95 233.02 16030 12253  97.28

€ € 1173 1223 1273 1323 1373 € € 1173 1223 1273 1323 1373
0.001 7554  49.08 2710 2007 1222 0.001 7244 4562  25.59 19.60 12.22

0.01 13027 7416 5055  36.18  23.11 0.01 12277 7014 4821  34.61 22.85

0.42 010 19580 127.88 7937 61.76  35.64 0.52 010 18698 125.00 7593  60.19  34.22
1 250.85 183.04 115,53 84.06  62.75 1 240.83 179.25 11250 80.59  61.77

10 336.61 22579 15549 120.14  94.07 10 316.86 216.11 151.21 11828  92.16

€ € 1173 1223 1273 1323 1373 € € 1173 1223 1273 1323 1373
0.001 69.56 4327  23.88 18.76  11.31 0.001 6754 4151 2215 1827  10.59

0.01 11643 66.80 4577  33.83  22.06 0.01 11094 6439 4504 3279 2138

0.61 010 178.63 122.68 7359 5857 3341 0.71 010 17154 11985 7196  58.17  33.00
1 231.14 175.09 11075 79.28  61.07 1 22291 169.64 109.76 7825  60.79

10 299.39 210.62 14826 117.06  91.55 10 283.90 206.85 14562 116.98  92.55

€ € 1173 1223 1273 1323 1373 € € 1173 1223 1273 1323 1373
0.001 6631 4044  21.25 1772 10.46 0.001 6570  39.61  20.61 17.45 10.42

0.01 106.63 6232 4261 3278  20.84 0.01 10412  61.01 4245  33.38 19.86

0.80 010 167.04 11742 7237  59.36  33.00 0.90 010 16531 11823 7200 5885 3219
1 21697 163.66 108.31  78.01 61.28 1 21239  160.23 106.84 77.44  60.30

10 270.08 200.75 143.65 11529  93.98 10 260.68 19434 140.07 10996  92.97

3. Classical Constitutive Model

The accurate construction of the prediction model of the flow curve is the premise of
accurate numerical simulation. Before proposing a new phenomenological constitutive
model, two classical constitutive models, namely the Arrhenius model and the Hensel-
Spittel (HS) model, were analyzed.

3.1. Arrhenius Model

The Arrhenius constitutive model has been widely used due to its high accuracy and
wide generalizability. The model was first proposed by Sellars and McTegart [29], and its
specific form is presented in Equation (1).

i= Aok exp(—%), (ao <0.8)
e = Aexp(Bo) exp(—%), (oo >1.2) (1)
¢ = Alsinh(ac)]" exp (—R—QT), (for all)

where A, «, n and B are material parameters, Q is the activation energy of thermal defor-

mation (J-mol~1), R is the universal gas constant (8.314 J-’ K~ 1-mol~1), T is the absolute
temperature (K), ¢ is the strain rate (s71), o is flow stress (MPa). In Equation (1), the effect
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of strain on flow stress was not considered. In recent years, most scholars consider how
to take the effect of strain into account [20]. Equation (2) can be obtained by logarithmic

transform in Equation (1).

Iné=InA+Lino— &, (a0 <08)

Ine=InA+ po— %, (o >1.2)
Ine =InA + nlnsinh(ac) — R—QT, (for all)

@

The material parameters of InA, «, n, Q at different strain levels can be obtained
by multivariate nonlinear regression of equation In¢ = In A 4+ nInsinh(ac) — Q/(RT)
using flow stress data (shown in Figure 2). For example, the strain has been divided into
10 parts between 0.04 and 0.9. Then, the stress matrix (shown in Table 3), corresponding to
different strain levels, was obtained by interpolation. The material parameters of InA, &, n

and Q corresponding to different strain levels can be obtained by multivariate nonlinear
= In A + nlnsinh(ac) — Q/(RT).

regression using the stress matrix and equation Ine
Then, the polynomial fittings of In A-¢, a-¢, n-¢ and Q-e curves (shown in Figure 3) were

performed, respectively, to obtain the constitutive equation with strain compensation.

-3
(2)sg (b)4 10
o
/ o\ )
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Figure 3. Nonlinear regression values of material parameters at different strain levels and their
polynomial fitting: (a) InA-¢; (b) o-¢; (c) n-¢; (d) Q-e.

As shown in Figure 3, the ten points in each subgraph correspond to strains of 0.04,
0.14,0.23, ..., 0.90. The fifth-degree polynomial is used to fit these data, and expression of
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each parameters is obtained. The degree of polynomial can be determined according to the
regression accuracy, but too much will lead to overfitting.

In A = 43.91 4 192.62¢ — 969.19¢? + 2137.32¢3 — 2236.13¢* + 887.20¢°

a = 0.01 — 0.05¢ + 0.22¢2 — 0.45¢% + 0.47¢* — 0.19¢°

n = 4.61 —3.33¢ — 18.75¢2 + 46.38¢3 — 57.78¢* + 26.69¢°

Q = 491161 + 1703450¢ — 9111853¢% + 205918373 — 21622908¢* + 8542954¢°

®)

The Arrhenius constitutive equation of the Ti6242s alloy can be obtained by introduc-
ing Formula (3) into (1). In order to observe the prediction accuracy of the model more
intuitively, the experimental data and the prediction data of the Arrhenius constitutive
equation were plotted in the same figure.

As shown in Figure 4, the prediction accuracy of the Arrhenius constitutive equation is
significantly different in different temperatures and strain rates. The prediction accuracy of
the Arrhenius constitutive equation is low in the single-phase region (900, 950 and 100 °C)
and high in the two-phase region (1050 and 1100 °C), where the prediction accuracy does not
conform to this rule when the strain rate is 0.1 s~! and the temperature is 1050 °C. An ideal
constitutive model should have the same prediction accuracy at different temperatures
and strain rates. Therefore, the standard Arrhenius constitutive equation needs to be
improved when the prediction accuracy of the rheological properties of a+f3 titanium
alloys is required to be high.
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Figure 4. Comparison of prediction flow stress and experimental flow stress for Arrhenius model:
(@) 0.01s7 L () 01571 () 1571 (d) 10571 (e) 10571

3.2. Hensel-Spittel Model

The Hensel-Spittel (HS) constitutive model, which has been used in famous commer-
cial software (Forge NxT), is frequently used in hot forming simulation. Its form is simple
and its parameters can be obtained easily [30,31]. The general form of the HS model is
exhibited in Equation (4).

o = Aexp(miT)e™e"™ exp (%) (1+¢)msT exp(m6s)ém7TT’"8 4)

where ¢, 0, ¢, T are strain, flow stress, strain rate and temperature, A and m;—mg are material
constants. Equation (5) can be obtained by taking the natural logarithm of Equation (4).

Inc =InA+mT+mylne+mzlne+my/e+msTIn(l+¢) + mge+myTIne+mgInT (5)
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In (%]
In (%)
In 03

Inoy,

There is a linear relationship between Ino, T, In¢, In¢, 1/¢, TIn(1 +¢), ¢, Tln¢, and
InT. Then, the solving problem of the material constants in Equation (5) is a typical multiple
linear regression problem. Similarly, the strain has been divided into 10 parts between
0.04 and 0.9. Then, the flow stress at each strain level can be obtained by interpolating the
original compressed data (shown in Figure 1). The stress, strain, temperature and strain
rate corresponding to all of the strain levels should approximately satisfy Equation (5) (not
absolutely satisfied due to regression error). All strains are brought into Equation (5) and a
random error factor is introduced to obtain linear simultaneous Equation (6).

1 T; Ingg Ingg 1/eg T 11’1(1 +81> g1 Tilngg InTy
1 T, Ine, Inée 1/en Ty 11‘1(1 +€2) & Thlng InT
1 T3 Iney Inegg 1/es Tzln(l+4e3) e3 Tzlnes InTs Y+pu (6)

1 T, Ine, Ine, 1/ey Tyln(l+4e,) e Tplneg, InTy

where n =5 X 5 x 10 (5 temperatures, 5 strain rates and 10 strain levels), ¢ =
[In A my my mz my ms mg my mg)’, u is the error vector with size of n x 1, which follows
the normal distribution with the mean value of zero. Equation (6) is an overdetermined
equation in which the number of variables is fewer than the number of equations. The least
square method is a classical method used to solve this overdetermined equation. The v
can be solved by using function of “y = regress(Y, X)” in the software of MATLAB. The
multiple linear regression results of the material parameters are listed in Table 4, and the
comparisons of the HS model prediction flow stress and experimental flow stress are shown
in Figure 5.

Table 4. Multiple linear regression results of material parameters.

InA mq

ny ms my ms me my mg

120.3377 0.0069

—0.1544 —0.2426 —0.0135 0.0001 —0.1581 0.0003 —17.4000
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Figure 5. Comparison of prediction flow stress and experimental flow stress for HS model: (a) 0.01 s7;
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As shown in Figure 5, the prediction accuracy of the HS constitutive equation is low
in the single-phase region (900, 950 and 100 °C) and high in the two-phase region (1050
and 1100 °C). This rule is the same as for the Arrhenius model. The prediction accuracy
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of the HS model is lower than that of the Arrhenius model, but the HS model has only
9 material parameters and the Arrhenius model has 24 material parameters. Generally, the
more parameters of the model, the higher the prediction accuracy. So far, it is difficult to
improve the prediction accuracy of either model. Based on this, a new constitutive model
is urgently needed.

4. New Constitutive Model
4.1. Mathematical Principles

An idea can be drawn from the Arrhenius model; that is, when the strain is fixed, the
core of building the constitutive model of materials is to build the functional relationship
between stress, strain rate and temperature. The Arrhenius model is an implicit equation,
which is complicated in practical application. In addition, the prediction accuracy of this
model is also low for the Ti6242s alloy. In fact, the relationship between stress, strain rate and
temperature can be defined as 0 = g (¢, T). However, when considering the large nonlinear
relationship among stress, strain rate and temperature, this function is not used. The effects
of strain rate and temperature on stress were analyzed before proposing a new constitutive
model. The data for low (¢ = 0.04), medium (¢ = 0.23) and high (¢ = 0.90) strain levels in
Table 2 were selected for analysis. In order to study the relationship between logarithmic
stress, logarithmic strain rate and temperature, the partial derivatives of logarithmic stress
with respect to temperature and logarithmic strain rate can be calculated by discrete
formula, that is, the difference quotient replacing the derivative. The discrete formulas
of derivatives include forward difference, backward difference and central difference. In
order to improve the accuracy, forward and backward difference are used at the boundary,
and central difference is used in the middle region. Then, the nth-order partial derivatives
of logarithmic stress with respect to the temperature and logarithmic strain rate for the
experimental flow stress curves can be calculated by Equation (7).

3" ling _ o lme
?"Inc a1l lije1  arnL lija
aT" i Tijs1=Tij—1
@)
a”_llna1 7 a”_llna1
- -
P ino o a(lna) P41 Q(Ina) i1
a(lné)” i lné,grl/j—lnéi,l,j

where 7 is the order of the partial derivative, i and j are indices of the strain rate and the
temperature in the stress matrix, respectively (Table 3). For example, wheni=1and j =1,
In 0; ; represents the logarithmic stress with a strain rate of 0.001 s~ ! and a temperature of
900 °C. The maximum values of i and j, which are both five in this study, are the number of
strain rates and temperatures corresponding to the experiment, respectively. Equation (7)
can be replaced by Equation (8) wheni=1and j=1.

" ling _ " ling
dInc ot 1 Jijp1 a1
o i Tijr1—Ti;
" ling " line (8)
n—1 n—1
P ann _ B(lns) _i+1,j B<ln£) ij
a(lné) i, Ing;qj—Ing;;
Equation (7) can be replaced by Equation (9) wheni =5 and j = 5.
" ling| _ 3" ling
dng| _ ol L amT lij
aT" i,j Ti/]'_Ti,jfl
9" ling " lme (9)
N—1 an—1
Pino B 9(In¢) i d(In¢) i1,
a(lng)" i 1n€i,j*1n5i—1,j
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Equation (8) can be replaced by Equation (10) when n = 1.
dlng| _ Inoijpi—Inc g
o i Tijt1—Tij—1 (10)
dlne| _ IMoipyj—Ingiy;
dlneé 1,] - In éi+1,j71n éi—l,j

In fact, the greater the number of the temperatures and the strain rates in the experiment,
the higher the calculation accuracy of Equations (7)—(10) is. As shown in Tables 5 and 6, the
first, second and third partial derivatives of logarithmic stress with respect to the temperature
and logarithmic strain rate at low (¢ = 0.04), medium (¢ = 0.23) and high (¢ = 0.90) strain
levels were calculated, using Equations (7)—(10). The redder the color in the figure, the smaller
the value represented.

Table 5. The first, second and third partial derivatives of logarithmic stress with respect to temperature
at low (¢ = 0.04), medium (¢ = 0.23) and high (¢ = 0.90) strain levels for the experiments’ flow
stress curves.

Order of Partial Derivatives of Logarithmic Stress with Respect to Temperature
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Table 6. The first, second and third partial derivatives of logarithmic stress with respect to the variable
logarithmic strain rate at low (¢ = 0.04), medium (¢ = 0.23) and high (¢ = 0.90) strain levels for
experiment flow stress curves.

Order of Partial Derivative of Logarithmic Stress with Respect to the Variable Logarithmic Strain Rate

. . 2 . 3
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There are several phenomena that can be found from Table 5: (1) with the increase
in temperature, the logarithmic stress has a monotonic decreasing characteristic for all
strain levels (Table 5 a, e and i). (2) The difference of the first (dInc/0T) partial derivative
of logarithmic stress with respect to the temperature is small for a certain strain level
(Table 5 b, f, and j). (3) The second (9 In¢/9T?) and third (9% In¢/9T?) partial derivatives
of logarithmic stress with respect to the temperature is close to zero for all strain levels
(Table 5 ¢, g, k, d, h and 1). According to calculus theory and the above phenomena, a basic
conclusion can be derived; that is, the linear model can construct the relationship between
logarithmic stress and temperature with high accuracy.

Similarly, there are several phenomena that can be found from Table 6 as follows:
(1) with the increase in logarithmic strain rate, the logarithmic stress has a monotonic
decreasing characteristic for all strain levels (see a, e and i in Table 6). (2) The difference in
the first (9 In o /0 1In¢) partial derivative of logarithmic stress with respect to the logarithmic
strain rate is relatively large for all strain levels (Table 6 b, f and j), and with the increase
in temperature and logarithmic strain rate, the first (9lnc/dIn¢) partial derivative is

increased. (3) The second (0%Inc/ a(ln é)z) partial derivative of logarithmic stress with
respect to the logarithmic strain rate is relatively large for all strain levels (Table 6 ¢, g and
k), and the third (0°*In¢/9(In é)3) partial derivative of logarithmic stress with respect to
the logarithmic strain rate is very small (Table 6 d, h and 1). According to calculus theory
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and the above phenomena, a basic conclusion can be derived; that is, the quadratic model
can construct the relationship between logarithmic stress and logarithmic strain rate with
high accuracy.

The function of logarithmic stress, logarithmic strain rate and temperature has been
defined as Ino = f(In¢, T). According to the binary Taylor expansion formula, f(In¢, T)
is expanded at (Iné = 0, T = 0) to obtain Equation (11).

m m m
Ino=) i' Yo [ Cr(ng) T "f

_ 11
i=0 m: n=0 a(lné)naT”’_” ( )

(0,0)

where m is the number of terms, C};, is a combination operator and 9" is m-order partial
derivative operator. Equation (11) shows that function f can be approximated by polynomi-
als. The more complex the nonlinear relationship is, the more items are needed to build the
same precision model. It is a linear model when m =1, it is a quadratic model when m =2,
and so on. The greater the m is, the higher the accuracy is. It can be predicted that if the
rheological data of the materials are relatively complex (such as including single-phase and
two-phase microstructures, especially for o+f3 titanium alloy), m should be appropriately
increased. According to Tables 5 and 6, 3*Inc /9T and 8°In¢/dIn & of Ti6242s alloy
are both close to zero. It can be asserted that the quadratic model can be used to build a
high-precision constitutive model f(In¢, T) of this material.

4.2. Linear Model

First, the accuracy of the first-order model (linear model) was analyzed. Whenm =1,
the constitutive Equation (11) is simplified to Equation (12).

Inc=ko+kiT+kylne (12)

where kg, k1 and k; are material parameters, which can be obtained by using multiple
linear regression based on Table 3. The linear regression expression of material parameters
corresponding to each strain is shown in Equation (13).

In (5] 1 Tl In él

In (%] 1 Tz In éz kO

Inos | — |1 T3 Ing ki | +m (13)
: |k

In oy 1 T, Ingy

where w is the combined number of temperatures and strain rates when the strain is fixed
(w =5 x 5in this study), and p; is an error variable and follows the normal distribution
with the mean value of zero. Ten groups of material parameters can be obtained by linear
regression for each strain datum, which are shown as points in Figure 6.
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Figure 6. Linear regression values of material parameters at different strain levels and their polynomial
fitting: (a) Material parameter of ky; (b) Material parameter of ky; (c) Material parameter of k.
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The expression of each material parameter and strain can be obtained by fitting the
data points of linear regression with a fifth-order polynomial. Then, the expression of each
material is shown in Equation (14).

ko = 10.7957 + 26.6315¢ — 124.7369¢> + 261.1311¢> — 285.3326¢* + 97.1624¢>
ki = —0.0060 — 0.0249¢ + 0.1154¢% — 0.2428¢3 + 0.2519¢* — 0.0916¢° (14)
ky = 0.1634 + 0.1248¢ — 0.2586¢% + 0.1393¢> + 0.2671* — 0.2520¢°

The linear constitutive equation of the titanium alloy can be obtained by bringing
Equation (14) into Equation (12). The comparisons of prediction flow stress and experi-
mental flow stress for the linear model are shown in Figure 7.
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Figure 7. Comparison of prediction flow stress and experimental flow stress for linear model: (a) 0.01 s~ ;
b)01s L ()15 L (d)10s7 L (e) 105 L

This model has a similar phenomenon to the Arrhenius model and HS model, that is,
the prediction accuracy is poor in the low temperature region (900, 950 and 1000 °C) and
higher in the high temperature region (1050 and 1100 °C). The model has the following
advantages: fewer material parameters, a simple form and easy solution of material
parameters (multiple linear regression only). In order to further improve the accuracy, a
high-order constitutive model was proposed.

4.3. Quadratic Model

The linear model has low prediction accuracy for low temperature regions. Therefore,
a quadratic model was proposed, in which the m is equal to two. The equation of the
quadratic model is as follows:

1ncr:ao+a1lné+a2T+a3(1né)2+u4T2+a5T1né (15)

where ag ~ a5 are material parameters, which can be obtained by multiple linear regression,
based on Table 3. The linear regression expression of the material parameters corresponding
to each strain is shown in Equation (16).
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ao
ay
a
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a4 = 0.000008 + 0.000218e — 0.001061¢> + 0.002284¢> — 0.002263¢* + 0.0008400¢>
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(16)

where w is the combined number of temperatures and strain rates when the strain is fixed
(w =5 x 5 in this study), and u, is an error variable and follows the normal distribution
with the mean value of zero. Ten groups of material parameters can be obtained by linear
regression for each strain data, which are shown as points in Figure 8.
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Figure 8. Linear regression values of material parameters at different strain levels and their polyno-

mial fitting for the quadratic model.

The expression of each material parameter and strain can be obtained by fitting the
data points of linear regression with a fifth-order polynomial. Then, the expression of each
material is shown in Equation (17).

= 1.58977 + 243.78788¢ — 1176.81606¢% + 2530.31159¢> — 2516.33047¢* + 939.51775¢°
= —0.217555 — 0.222702¢ + 2.174965¢2 — 2.618603¢> — 1.456050¢* + 2.177008¢>
= 0.011670 — 0.461668¢ + 2.234179¢2 — 4.807239¢> + 4.773571¢* — 1.777977¢>
= —0.004285 — 0.022862¢ — 0.075039¢2 — 0.146988¢> + 0.141039¢* — 0.053276¢°

a5 = 0.000361 + 0.000242¢ — 0.002088¢2 + 0.002081¢> + 0.002373¢* — 0.002674¢°

(17)

Similarly, we inserted (17) into (15) to obtain the constitutive equation of the quadratic
model, and compared the predicted values of the model with the experimental values to
give Figure 9.
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Figure 9. Comparison of prediction flow stress and experimental flow stress for the quadratic model:
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Compared with the linear model (see Figures 7 and 9), the prediction accuracy of the
quadratic model was improved significantly. In addition, the prediction accuracy of the
quadratic model is significantly higher than that of the HS model and the Arrhenius model.
Contrary to the previous models, the prediction accuracy of the model is high in both the
single-phase region (900, 950 and 1000 °C) and the two-phase region (1050 and 1100 °C).

5. Predictability Analysis
5.1. Prediction Accuracy
5.1.1. Overall Accuracy

In order to analyze the overall prediction accuracy, the accuracy of the classical mod-
els and the new models was quantified in terms of standard statistical parameters such
as correlation coefficient (R), root mean square error (RMSE), sum of squares for error
(SSE), and sum of absolute error (SAE). The formulas of these parameters are shown in
Equations (18)—(21).

YN, (6;—0)(0; —0)

R— (18)
VEN (0 -3) LN (0 - 97
_ L EN 8 — )
RMSE 5 (19)
N
SSE=Y (6;—0;)* (20)
i=1
N
SAE =) _|0; — o] (21)
i=1

where 0; is the ith prediction value of the flow stress, 0; is the ith experiment value of
flow stress, & is the mean value of the prediction flow stress, o is the mean value of the
experiment flow stress, and N is the number of comparison points (N =5 x 5 x 10).
The quantitative comparison of the prediction accuracy of the different models is listed
in Table 7.
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Table 7. Quantitative comparison of predictability of different models.
Arrhenius . Quadratic

Indexs Model HS Model Linear Model Model

R 0.9939 0.9874 0.9814 0.9980

RMSE 8.433 12.609 16.897 4.3737

SSE 17640 39430 70810 5565
SAE (MPa) 1422.52 2097.60 2827.67 884.17

As can be seen from Table 7, the order of prediction accuracy from high to low is the
quadratic model, Arrhenius model, HS model and linear model. The SSE of the quadratic
model (1.0E3) is one order of magnitude smaller than the other models (1.0E5). The RMSE of
the quadratic model is 1/2 of the Arrhenius model, 1/3 of the HS model and 1/4 of the linear
model. The correlation coefficients of the quadratic model are significantly higher than the
other models. The sum of absolute error of the quadratic model is 884.17 MPa, which is
much less than the other models (1422.53 MPa for the Arrhenius model, 2097.60 MPa for
the HS model and 2827.67 MPa for the linear model). Therefore, the overall accuracy of the
quadratic model is significantly higher than the other models.

As can be seen from Figure 10, the data points of the quadratic model are distributed
on both sides of the centerline and more concentrated than the other models. In addition,
the square of the correlation coefficient between experimental stress and predicted stress
in the quadratic model, Arrhenius model and Hensel-Spittel model are 0.9961, 0.988 and
0.9751, respectively. This also shows that the prediction accuracy of the quadratic model is
higher than that of the other models.
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Figure 10. Predictability of flow stress by (a) Arrhenius model; (b) HS model; (c) linear Model; (d)
quadratic model.

"1

As shown in Figure 11, the “o” symbol represents the predictive value of the Arrhe-
nius model, the “[J” symbol represents the predictive value of the linear model, the “x”
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represents the predictive value of the HS model, the “+” represents the predictive value
of the quadratic model, and the solid line represents the experimental curve. Almost all
the prediction points of the quadratic model are closer to the experimental curve than the
other models. The precision of the quadratic model is significantly higher than that of the
other models.

(@) 100 - (b) 160 - (c) -
* §=0001 (@ Amhenks N\ E=001 O Anhenis 2~ €=01 @ Amhenis
90 b N3 Linear Model [+ Linear Model [+ +\ Linear Model
X Hensel-Spittel 140 “‘ s PN X Hensel-Spittel 200} [ PN X Hensel-Spittel
. + Quadratic Model | 'F + Quadratic Model | 5 ;\\ + Quadratic Model
80 < 3 N\ 180 Hf e
g 120 ‘\ % I + . F
X 1N f F— wm<c
70 [ Ty 160 | ++
= T30 = 100} N0°C = | X
= 140
S e S S
~ ik # ~ <
) s R S 120 p
7 50 NS 71 + 7 o 950 °C
% Bg X x o 3 X x 3
2 é x 2 - 2 100
@ 40 g o0 D60y 4 950 C a b,
F %% 0 _ fa 801 Fdi s
of T+ iwa +++v++m‘c ] Ed 4 jmec
- + 4 40 [P . A ooff w £ 3 o —— 5
) + R r— v t + 1050 °C
206\?&"4‘-:*~‘ - + F owec T g ggg 0C I EEEE
FE S Yo i 40 £+ +
M«F + 20 1100 < 1100 °C
3 5 9 9uwc
10 4t 20
0 0.2 04 0.6 08 1 0 02 04 0.6 08 1 0 02 04 0.6 08 1
Strain(e) Strain(e) Strain(e)
(d) 300 - (€) 40 -
® £=1 @ Arrhenius =10 © Arrhenius
AN & Linear Model Linear Model
el 58 g N X Hensel-Spittel 400 } % Hensel-Spittel
250 "" < ¢ + Quadratic Model . -+ Quadratic Model
| S 301
+ P A N
| —~t % / +
| 7 %0°C / *
= 200 = 300 + +\t
g = ¥ E | ) N
s M S 250 [} 900 <C
% gy 0 4 |
2 150 2
= R R & 200 950 °C
L R ++++;r"‘~
100}, 150 fl, % £+ £
| [l B4R d ¥ X x o = X
F-F-E—% 1050c L P45 wsec
1100 °C 100 ; 1100 C
50
0 0.2 04 0.6 08 1 0 0.2 04 0.6 08 1
Strain(e) Strain(e)

Figure 11. Comparison of prediction flow stress and experimental flow stress for Arrhenius, HS,
linear and quadratic models: (a) 0.001 s7L () 0.01s71;(c)0.1s71;(d) 1571 (e) 10571

5.1.2. Local Accuracy

In order to analyze the prediction accuracy under different temperatures and strain
rates, the correlation coefficient (R) and sum of absolute error (SAE) were calculated. The
distribution of the correlation coefficient between predicted flow stress and experimental
flow stress on temperature and strain rate is shown in Figure 12.

As shown in Figure 12, the difference from high to low in the correlation coefficient
with temperature gives the ranking order as the HS model, Arrhenius model, linear model
and quadratic model. The difference between the maximum value and the minimum value
of the correlation coefficient for the quadratic model was 0.073, which was significantly less
than that of the other models (0.2486 for HS model, 0.1228 for linear model and 0.1199 for
Arrhenius model). The rules in Figure 12 show that the prediction accuracy of Arrhenius
model and Hensel-Spittel model in the two phase region (« + 3) and single phase () is
significantly different. The prediction accuracy of the quadratic model remains high in
both the single phase region and the two phase region, and the prediction accuracy of the
quadratic model is significantly higher than the other models. The prediction accuracy
of the linear model in the single phase region and the two phase region is also similar to
the quadratic model, but the prediction accuracy is lower. In addition, the distribution of
the correlation coefficient on the strain rate for all models also has the above rules, that
is, the distribution of the correlation coefficient on strain rate for the Hensel-Spittel and
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Arrhenius models is very different. The correlation coefficient of the quadratic model at
different strain rates and temperatures is large, and the difference is small.

(a) 1 (b) 1
0.001 | 0.977 |0.9831| 0.999 |0.9975|0.9862 0.001 |0.9894 |0.9755 |0.9867 | 0.9688 | 0.9405
. 095
! 0.9616 | 0.9868 | 0.9845|0.9718 0. 0.9659 |0.9905 | 0.9667
: 0.9854|0.9782 |0.9944 |0.9212 | 0.9851 . X 0.95130.9792 | 0.9601 | 0.9523 09
=~ 1.000 | 0.969 |0.9269 0.966 |0.9694 0.971 |0.9388 | 0.9832 |0.9259 i

(=]
o
-
o

(=]
-
o
o

Strain Rate (é/5°')

10.00 |0.9965 [0.9202 | 0.961 | 0.9792|0.9358 0.9819 |0.9943 [ 0.9789

. 0.8
900 950 1000 1050 1100 900 950 1000 1050 1100
Temperature (7/°C) Temperature (7/°C)
(©) Y 1
0.001 {0.9685 (0.9783 |0.9979 | 0.997 |0.9861 0.001 |0.9773|0.9962 |0.9878 | 0.9949 | 0.9918
0.95 0.85
2~0.010 0.9446 | 0.9937 |0.9847 | 0.9707 2~0.010 |0.9231 | 0.959 |0.9891 | 0.9818 |0.9527
w w
8 8
#'-é 0.100 |0.9771|0.9902|0.9822 |0.9418 | 0.9888 0.9 %0,100 0.996 (0.9927 |0.9929 [ 0.936 |0.9965 0.9
~ ~
g |
£1.000 (0.9638 | 0.9382 0.9915 0.9904 £1.000 (0.98940.94420.9433 | 0.984 | 0.992
@ 085 @0 0.85
10.00 {0.9771 |0.9328 | 0.9715|0.9796 | 0.9557 10.00 {0.9936 |0.9804 |0.9937 | 0.9605 | 0.993
0.8 0.8
900 950 1000 1050 1100 900 950 1000 1050 1100
Temperature (7/°C) Temperature (7/°C)

Figure 12. The distribution of the correlation coefficient between predicted flow stress and exper-
imental flow stress on temperature and strain rate: (a) Arrhenius model; (b) HS model; (c) linear
model; (d) quadratic model.

The distribution of the sum of absolute error between predicted flow stress and
experimental flow stress on temperature and strain rate is shown in Figure 13.

As shown in Figure 13, the maximum absolute error sums of the Arrhenius model, HS
model, linear model and quadratic model are 237.4, 274.3, 727.2, and 95.53 MPa, respectively.
This also shows that the accuracy of the quadratic model is significantly higher than that of
the other models. In addition, the maximum and minimum values of the sum of absolute
error for the Arrhenius model, HS model and linear model differ greatly, which indicates
that the prediction accuracy of these three models for specific strain rate and temperature is
poor. The distribution of the absolute error sum of the quadratic model is relatively uniform,
which shows that the quadratic model has good prediction ability for all temperatures and
strain rates.
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Figure 13. The distribution of the sum of absolute error between predicted flow stress and experimen-
tal flow stress on temperature and strain rate: (a) Arrhenius constitutive model, (b) HS constitutive
model, (c) linear model, and (d) quadratic model.

5.2. Predictability of Model

Generally, linear and non-linear multiple regression can be used to obtain the global
optimal material parameters for classical models and the linear model. However, the
classical models and the linear model still produce large errors. Therefore, the reason for
the large error could be that the classical models and the linear model have insufficient
predictability. In this section, mathematical means are used to study the reasons for the
insufficient precision of the classical models and the linear model.

5.2.1. Analytic Formula of Partial Differential

It can be seen from Tables 5 and 6 that the third derivative of the logarithmic stress
with respect to the logarithmic strain rate of the material is close to zero, and the second
derivative of the logarithmic stress with respect to the temperature is close to zero. There-
fore, the analytical partial derivatives of all models are derived first. The first-, second-
and third-order partial derivatives of the logarithmic stress with respect to the logarithmic
strain rate and temperature for all constitutive models can be solved by Equation (22).
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;m((}‘éexp(%))i + \/(}‘éexp(RQT))i + 1), for Arrhenius Model

= Aexp(my T)e"e™ exp (74) (1 +¢)™s" exp(mge)e™ T, for HS Model ~ (23)
exp (ko + k1T + ko In¢), for Linear Model
exp (a9 + a1 Iné+ ax T + a3 (In é)z +a4T? + asTIn¢), for Quadratic Model

where A, #, n and Q are quintic polynomials of € shown in Equation (3), In A and m-mg
are constants shown in Table 4. ko—k; are quintic polynomials of € shown in Equation (14)
and ag—a5 are quintic polynomials of € shown in Equation (17). When the strain value is
fixed, these parameters are constants.

5.2.2. Results of Partial Differential

The first, second and third partial derivatives of logarithmic stress with respect to
temperature for experimental data and different models are listed in Table 8 when strain
is equal to 0.04 by using Equations (22) and (23). The redder the color in the figure, the
smaller the value represented.

There are several rules that can be drawn from Table 8: (1) the second and third
partial derivatives of all models are close to zero, which are in good agreement with the
experimental data (Table 8 ¢, g, k, 0,5, d, h, 1, p and t). (2) The first partial derivatives
for the Arrhenius model and the HS model have great regularity with temperature. The
partial differential decreases with the increase in temperature for the Arrhenius model and
the law is the opposite for the HS model (Table 8 f and j). (3) The first partial derivative
for the linear model is not related to temperature or strain rate (Table 8 n). (4) The first
partial derivative for the quadratic model is less dependent on temperature, but strongly
dependent on strain rate (Table 8 r). (5) The first partial derivative for the experimental
data is less dependent on temperature, but slightly dependent strain rate (Table 8 b). The
above phenomena show that the experimental data can be approximated well only by one
order accuracy, and all models meet the first-order accuracy. However, the quadratic model
has second-order accuracy between logarithmic stress and temperature. Considering that
all models have first-order accuracy for temperature, another error source is the strain
rate factor.

The first, second and third partial derivatives of logarithmic stress with respect to
logarithmic strain rate for experimental data and different models are listed in Table 9,
when strain is equal to 0.04, by using Equations (22) and (23). The redder the color in
the figure, the smaller the value represented. It can be seen from Table 9 that the second-
order partial derivatives of logarithmic stress with respect to logarithmic strain rate for
the Arrhenius model, the HS model and the linear model are close to zero. It is worth
noting that the third partial differential of logarithmic stress with respect to logarithmic
strain rate for the quadratic model is close to zero. This phenomenon is determined by the
equation of the constitutive model and is independent of the regression error, because the
partial derivatives are calculated by analytical formulas. However, the second derivative of
logarithmic stress with respect to logarithmic strain rate for the experimental data is not
close to zero. This proves that the Arrhenius model, the HS model and the linear model
cannot make a second-order approximation to the experimental data at logarithmic strain
rate, while the quadratic model can.
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Table 8. The first, second and third partial derivative of logarithmic stress with respect to temperature
for different models at ¢ = 0.04.

Order of Partial Derivatives of Logarithmic Stress with Respect to Temperature
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Table 9. The first, second and third partial derivatives of logarithmic stress with respect to strain rate
for different models at ¢ = 0.04.

Order of Partial Derivatives of Logarithmic Stress with Respect to Temperature
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By comparing the first, second and third partial derivatives of all models, the following
conclusions can be drawn: (1) the predictabilities of the classical models are only the first-
order accuracy in the logarithmic stress, logarithmic strain rate and temperature space.
(2) In essence, the predictabilities of the Arrhenius model, the HS model and the linear
model are in the same order of magnitude, because they are linear approximations of the
logarithmic stress, logarithmic strain rate and temperature space. (3) The predictability of
the quadratic model is one level higher than that of the Arrhenius model, the HS model and
the linear model, because it is a quadratic approximation. (4) The traditional modification
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methods for the Arrhenius and HS models cannot significantly improve the predictability of
the models, because these model modifications are carried out within the linear level in the
logarithmic stress, logarithmic strain rate and temperature space. (5) Due to the existence
of the cross term of temperature and logarithmic strain rate (T In ¢) and the quadratic term
of temperature (T?), the quadratic model can largely eliminate the predictability difference
between the classical model and the linear model at different temperatures.

6. Conclusions

In this paper, hot compression tests under different strain rates and temperatures were
carried out. A new constitutive model based on the Taylor series and partial derivatives of
the experimental data is proposed without significantly increasing the material parameters.
The predictabilities of the new model and the classical models (Arrhenius and HS models)
were analyzed. The reason for the lack of predictability in the classical models is proved
mathematically. The main conclusions are as follows:

(1) The prediction accuracies of the Arrhenius model and HS model are significantly
different in different temperatures and with different strain rates. The prediction accuracies
of the Arrhenius model and the HS model are low in the single-phase region (900, 950 and
100 °C) and high in the two-phase region (1050 and 1100 °C). The prediction accuracy of the
quadratic model in all temperatures and with all strain rates has no significant difference,
and is higher than the other models. The order of prediction accuracy from high to low is
the quadratic model, the Arrhenius model, the HS model and the linear model. The SSE of
the quadratic model (1.0 x 10?) is one order of magnitude smaller than the other models
(1.0 x 10°). The RMSE of the quadratic model is 1/2 of the Arrhenius model, 1/3 of the HS
model and 1/4 of the linear model. The correlation coefficients of the quadratic model are
significantly high than the other models. The sum of absolute error of the quadratic model
is 884.17 MPa which is much less than the other models (1422.53 MPa for the Arrhenius
model, 2097.60 MPa for the HS model and 2827.67 MPa for the linear model). The square of
the correlation coefficient between experimental stress and predicted stress in the quadratic
model, Arrhenius model and Hensel-Spittel model is 0.9961, 0.988 and 0.9751, respectively.
This also shows that the prediction accuracy of the quadratic model is higher than that of
the other models.

(2) The second and third partial derivatives of logarithmic stress with respect to
temperature for the experimental data is close to zero. The third partial derivatives of
logarithmic stress with respect to logarithmic strain rate for the experimental data is
close to zero. This phenomena indicates that second-order approximation is required
between logarithmic stress and logarithmic strain rate, and first-order approximation is
required between logarithmic stress and temperature to establish a high-precision model.
The Arrhenius model, HS model and linear model meet the first-order approximation
requirements between logarithmic stress and temperature, but do not meet the second-
order approximation requirements between logarithmic stress and logarithmic strain rate.
The quadratic model meets these two requirements and thus has higher prediction accuracy
than the other models.

(3) The order of prediction accuracy for the four models from high to low is the
quadratic model, Arrhenius model, linear model and HS model. The material parameters
of the quadratic model can be solved only by multiple linear regression, while the Arrhenius
model needs to use multiple nonlinear regression. Compared with the Arrhenius model,
the prediction accuracy of the quadratic model can be improved significantly by adding
only a few parameters, and the parameter solution is simpler. The prediction accuracy of
the new model can be further improved by adding the number of items.
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