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Abstract: Lightweight high-entropy alloys (HEAs) are a new class of low-density, high strength-
to-weight ratio metallic structural material. Understanding their corrosion behavior is crucial for
designing microstructures for their practical applications. This work investigates the electrochemical
corrosion behavior of lightweight HEAs AlCrTiV0.5Cux (x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0) in a 0.6 M
NaCl solution. These HEAs were produced by vacuum arc melting. In contrast to 304L stainless
steel, all of the alloys exhibited lower current density levels caused by self-corrosion, with AlCrTiV0.5

demonstrating the highest corrosion resistance (0.131 µA/cm2). Corrosion resistance decreased
along with the content of copper because copper segregation accelerated local corrosion throughout
the alloy.

Keywords: corrosion resistance; high entropy alloys; microstructure; lightweight

1. Introduction

High-entropy alloys, also known as HEAs, are generally composed of five or more
elements in equimolar or near-equimolar ratios. These alloys are stable in a disordered solid
solution state owing to a high mixing entropy [1,2]. Over the past twenty years, there has
been an explosion of interest in a novel concept of alloy design that allows for the creation
of materials with superior mechanical or physical properties. These properties include high
yield strengths, ductility, and fracture toughness, in addition to superior high-temperature
oxidation resistance and corrosion resistance. As a result of these features, HEAs have
found applications in a huge range of different fields [3–13].

However, despite the application potential being high, the high density of many
HEAs greatly inhibits the actual deployment of these applications. For example, the
density of a CoCrFeNiMn HEA is 8.1 g/cm3, while the density of refractory high-enthalpy
alloys (HEAs) is more than 10 g/cm3. Both of these HEAs have a mass density that
is higher than that of steel, which has a density of 7.9 g per cubic centimeter. For the
purpose of increasing the effectiveness of systems that convert energy, it is necessary
to reduce the weight. This necessitates the use of building and engineering materials
that have a low density [14–20]. Recent studies have shown a significant interest in the
development of high-entropy alloys that are also lightweight. While making lightweight
HEAs, it is common practice to incorporate significant amounts of light components
such as aluminium, titanium, magnesium, and lithium. The incorporation of Al (also for
the purpose of alloy strengthening) changes the phase composition and microstructure
of HEAs to produce a multiphase microstructure that can include FCC, BCC, and B2
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structures [21,22], and the incorporation of Ti can easily lead to the production of secondary
phases. Single-phase equiatomic AlCrTiV HEA has a low density of 5.06 g/cm3 and a
hardness of 498 HV. The AlCrTiV quaternary system was selected by Huang et al. [23],
who further increased the material’s hardness by including lightweight microalloying
components. Microalloyed AlCrTiV alloys have a maximum hardness of 710 HV and a
density of around 4.5 g per cubic centimeter. In addition to their mechanical advantages,
high-performance additives provide excellent resistance to corrosion, which is an important
factor in the application of engineering and structural materials.

The microstructure, alloying components, and production procedure of lightweight
HEAs are the primary factors that decide the corrosion behavior in general. Tseng and col-
leagues [24] have developed a lightweight HEA material with the formula Al20Be20Fe10Si15Ti35
that has a low density of 3.91 g/cm3 and a high hardness of 911 HV. At temperatures of
700 and 900 ◦C, the alloy had an oxidation resistance that was remarkable and was much
superior to that of Ti6Al4V. Ji et al. [25] conducted a study in which they manufactured a
low-cost Al35Mg30-xZn30Cu5Six HEA that had a low density. They found that the resistance
of as-cast alloys to corrosion in a solution containing 3.5 wt% NaCl may be improved by
increasing the Si/Mg ratio. They also found that corrosion occurred primarily at the grain
boundaries and gradually spread into the eutectic and intermetallic phases that included
magnesium. This was a new finding for them. According to the findings of Qiu et al. [26],
AlTiVCr HEA exhibited remarkable resistance to corrosion in 0.6 M NaCl, much higher
than that of pure Al and 304SS.

It is possible to improve the qualities of a material by designing the formation of
secondary phases and intermetallic phases inside the substance. The same strategy for
strengthening materials, namely alloying, was used in the development of HEAs. The
addition of Cu to HEAs is a practical method that may be used to achieve improved
properties [15,27]. Yet, when exposed to aqueous environments, the heterogeneous mi-
crostructures of HEAs have the potential to cause localized corrosion. It is very necessary
to investigate the impact that Cu concentration has on the corrosion resistance of HEAs
in order to guarantee the consistency of industrial applications. In this study, lightweight
HEAs made of AlCrTiV0.5Cux were created by vacuum arc melting. Their electrochemical
corrosion behavior in 0.6 M NaCl solution, composition homogeneity, and multi-scale
microstructure were investigated.

2. Experimental Materials and Methods
2.1. Material Preparation

The AlCrTiV0.5Cux lightweight HEAs were manufactured in a graphite crucible by the
process of vacuum arc melting under the protection of an Ar atmosphere. We picked raw
minerals that had an extremely high level of purity, such as aluminum (99.5%), chromium
(99.95%), titanium (99.95%), vanadium (99.95%), and copper (99.95%). Each sample was
remelted at least six times in an ingot to ensure that the chemical composition remained
consistent throughout the melting process and to decrease the amount of oxidation that
occurred. A specimen measuring 5 mm × 5 mm × 5 mm was extracted from the selected
area in the middle of the ingot by using a wire cutter that was coupled to an electric
discharge machine. Every sample was given a grit-2000 grinding on SiC sandpaper before
being subjected to ultrasonic cleaning in ethanol.

2.2. Microstructural Characterization

In order to determine the phase structure of the samples, a Rigaku SMARTLAB9 X-ray
diffractometer was used with Cu-Kα radiation across a range of 10◦ to 90◦ and at a scanning rate
of 10◦/min. The microstructure and corrosion morphologies were investigated using scanning
electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS), respectively.
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2.3. Electrochemical Corrosion Measurements

Electrochemical corrosion tests were carried out at a temperature of 25 ◦C in 0.6 M
NaCl in the presence of air. In order to carry out these measurements, a diamond polishing
paste with particles of 1.5 µm in size was applied to specimens that had a cross-sectional
area of 0.25 cm2. Using a CHI760 electrochemical workstation that was supplied with a
standard three-electrode setup, polarization curves and electrochemical impedance spectra
(EIS) were measured. The corroded samples were used as working electrodes, a AgCl
electrode was used as the reference electrode, and a sheet of platinum was used as the
counter electrode in this experiment. The open circuit potential (OCP) was monitored for
a period of thirty minutes prior to the EIS and polarization studies in order to guarantee
a consistent potential for the duration of the tests. The EIS measurements were collected
with a potential amplitude of 5 mV and with frequencies ranging from 100 kHz to 10 MHz.
Potentiodynamic polarization curves were obtained with a scan rate of 3 mV/s, with a
starting potential of −0.9 VSHE and an ending potential of 1.1 VSHE. In order to guarantee
the accuracy of the results, more than three measurements were obtained for each different
test situation. When the potentiodynamic polarization studies were finished, the samples
were wiped clean with ethanol and then left to dry in the air. When the electrochemical
tests were completed, the surface morphology of the samples was analyzed using a field
emission scanning electron microscope (FEI Nova Nano450) (FESEM).

3. Results and Discussion
3.1. Microstructure Characterization

Cu has a positive binary enthalpy of mixing and relatively high valence electron
concentration (VEC) with other constitutional elements. Figure 1 shows that the mixing
enthalpy, VE, and mixing entropy ∆Smix of the AlCrTiV0.5Cux HEAs increased with the
increase in Cu content, while the atomic size difference δ decreased with Cu addition.
Hence, the microstructure and phase stability of AlCrTiV0.5Cux HEAs may vary with the
composition. Cu tends to segregate out of the matrix due to a positive binary enthalpy of
mixing of Cu with other constitutional elements. The AlCrTiV0.5Cux HEAs have a relatively
large atomic size difference. Based on the solid-solution phase formation rules of high
entropy alloys [28], there are probably ordered phases such as intermetallic compounds
in the matrix. According to the VEC criterion [29], the phase composition of AlCrTiV0.5
is mainly BCC phase. The content of FCC phase increases with the addition of Cu, and
AlCrTiV0.5Cu is mainly FCC phase. Figure 2 shows XRD patterns of AlCrTiV0.5Cux samples.
In summary, with the addition of Cu, the phase composition of AlCrTiV0.5Cux HEAs may
gradually change from BCC phase to FCC phase, and there may be intermetallic compounds.
The segregation of Cu between grains increases with the copper content.

Figure 3 shows the SEM images of the AlCrTiV0.5Cux lightweight HEAs. AlCrTiV0.5
exhibits a typical equiaxed crystal structure with uniform composition and without obvious
precipitation phases. With the addition of Cu, the alloys AlCrTiV0.5Cu0.2, AlCrTiV0.5Cu0.4,
AlCrTiV0.5Cu0.6, and AlCrTiV0.5Cu0.8 show an equiaxed dendritic structure with more
obvious grain boundaries. Moreover, the grain size gradually decreased with increasing
Cu content, When the Cu content is further increased, AlCrTiV0.5Cu shows a non-equiaxial
dendritic structure with a further reduction in grain size. We presented the X-ray diffraction
pattern of lightweight AlCrTiV0.5Cux HEAs in a previous work [15].
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Figure 3. SEM micrographs of the AlCrTiV0.5Cux lightweight HEAs. (a) x = 0; (b) x = 0.2; (c) x = 0.4;
(d) x = 0.6; (e) x = 0.8; (f) x = 1.0.

Further in-depth research on the elemental composition and dispersion of lightweight
AlCrTiV0.5Cux HEAs was conducted. The EDS maps of an enlarged portion of the samples
are shown in Figure 4 (which shows both the grains and grain borders). The findings
indicate that the components are dispersed throughout the samples in an even manner on
a microscopic scale. Since Cu is missing, there is no segregation of the elements, and they
are all distributed in the same manner. Nevertheless, the results of the XRD investigation
reveal that the segregation gets more prominent with increasing Cu concentration. This
results in the development of an Al-Ti-Cu-rich HCP phase as well as a V-Cr-rich FCC phase.
The inclusion of copper is largely responsible for this kind of alloy having the dendritic
structure that is so distinctive in other alloys of this type.
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3.2. Electrochemical Corrosion Behavior in NaCl solution

The potentiodynamic polarization curves of the AlCrTiV0.5Cux lightweight HEAs
in 0.6 M NaCl solution are shown in Figure 5 and the results of the calculations used to
determine the electrochemical corrosion parameters are shown in Table 1. The open-circuit
potential of a material is referred to as its corrosion potential, or Ecorr. It is possible to
determine the corrosion rates of materials by utilizing the corrosion current density (Icorr).
In order to calculate Icorr from the Tafel diagram, the linear portion of the polarization
curve located close to Ecorr. is extrapolated. It is clear from both the fitting parameters
and the potentiodynamic polarization curves of the alloys that, as the concentration of
copper increases, the corrosion current density (Icorr) also increases, but the resistance
to corrosion decreases. AlCrTiV0.5 (0.131 A/cm2) had the lowest value of Icorr and the
maximum corrosion resistance out of the six alloys that were tested. This is because the
addition of Cu to the alloy will cause segregation at the grain boundaries. Dendrites may be
produced by combining a Cu-depleted region with a Cu-rich region. If there is a significant
potential difference between the two phases, galvanic coupling can result in corrosion, with
the interdendritic area corroding first and increasing the local corrosion of the alloy [30,31].
If there is a significant potential difference between the two phases, galvanic coupling
can also result in corrosion. Because of this, the corrosion resistance of the AlCrTiV0.5Cux
lightweight HEAs in NaCl solution gradually decreases as the content of Cu increases.
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Figure 5. Potentiodynamic polarization curves of AlCrTiV0.5Cux lightweight HEAs in 0.6 M NaCl
solution.

Table 1. Electrochemical corrosion parameters of AlCrTiV0.5Cux lightweight HEAs obtained from
potentiodynamic polarization curve measured in 0.6 M NaCl solution.

Samples Ecorr(V) Icorr(µA/cm2)

x = 0 −0.411 0.131
x = 0.2 −0.572 0.499
x = 0.4 −0.526 0.695
x = 0.6 −0.389 1.145
x = 0.8 −0.407 2.182
x = 1.0 −0.239 2.778
304 L −0.415 4.7

Figure 6 displays the Nyquist, Bode, and phase-angle charts of the lightweight
AlCrTiV0.5Cux HEAs at a range of temperatures corresponding to varied operating condi-
tions. Z-view was used in order to evaluate the fitted parameters, and Figure 6 presents the
equivalent circuit that was produced as a consequence.

A larger semicircle radius indicates that the interface has a higher resistance for
the charge transfer and is a more protective passive film [32–35]. Figure 6a depicts the
Nyquist plot, and it has the shape of an incomplete semicircle, which indicates that the
charge transfer process is in control of the corrosion process. In the high-frequency range,
incomplete capacitive arcs are shown by the AlCrTiV0.5Cux lightweight HEAs. This is
evidenced by Figure 6a, which makes it abundantly clear that the incomplete capacitance
arcs are caused by charge transfer at inhomogeneous surfaces. As the concentration of
copper in the alloy increases, its resistance to corrosion diminishes, and the radius of the
capacitive semicircle becomes smaller.

Figure 6b,c show the Bode and phase angle charts of the alloys’ electrochemical
corrosion, respectively. As can be seen, the impedance modulus and phase-angle change
with frequency. The Bode plot shown in Figure 6b demonstrates that the passive films
have a pseudocapacitive character since the slopes are less than −1 and the phase angle
is smaller than −90◦. In Figure 6c, the phase angle is getting close to 90◦, and the value
of the impedance modulus is linear from 1 Hz all the way up to 103 Hz. The phase angle
of the AlCrTiV0.5Cux alloys decreases from 103 Hz, achieves a tiny value at 104 Hz, and
then continues to rise and reaches a high value at 105 Hz. A low value is reached again at
104 Hz, and a high value again at 105 Hz.
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The data on the impedance are used in the production of an equivalent electric cir-
cuit (EEC) (shown in Figure 7). R1 represents the resistance of the solution in the EEC
model, R2 represents the resistance of the passivated layer, and R3 represents the charge
transfer resistance of the limited corrosion zone. In the zone that has been passivated, the
capacitance is represented by CPE1, and in the zone that has been partly corroded, it is
represented by CPE2. A constant phase-angle element, also known as a CPE, is used in
place of a traditional capacitor so that flaws in capacitive components, such as surface inho-
mogeneities, may be taken into consideration. If the value of the charge transfer resistance,
or R3, is lowered, then a greater number of electrons and ions will be able to flow through
the passivation layer created by the alloy, which will result in a reduction in the alloy’s
resistance to corrosion [36–39].
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Table 2 presents some example parameters for EEC fitting that were generated while
operating under OCP conditions. When the value of CPE1-P is close to 0.9, this indicates
that the properties of the component are between those of a typical capacitor and those of a
Warburg impedance [40–44]. The charge transfer resistance, denoted by R3, will decrease in
proportion to the amount of copper that is present. We discover that AlCrTiV0.5 has a high
charge transfer resistance of 437,920 Ω·cm2 (and strong corrosion resistance in 0.6 M NaCl
solution), while AlCrTiV0.5Cu possesses the lowest charge transfer resistance of 31,276
Ω·cm2. According to the data presented above, the corrosion process of AlCrTiV0.5Cux
HEAs is regulated not only by the transfer of charge but also by the regulation of diffusion.

Table 2. Impedance fitting parameters of AlCrTiV0.5Cux lightweight HEAs.

Samples R1(Ω·cm2)
CPE1-T

(µF·cm−2) CPE1-P R2(Ω·cm2)
CPE2-T

(µF·cm−2) CPE2-P R3(Ω·cm2)

x = 0 3.183 0.0383 0.967 15.09 34.954 0.747 437,920
x = 0.2 2.444 0.0359 0.962 6.416 28.217 0.770 255,620
x = 0.4 3.106 0.0659 0.994 18.17 38.641 0.817 75,311
x = 0.6 2.818 0.0462 0.959 10.8 33.676 0.775 70,653
x = 0.8 5.808 0.0344 0.977 59.19 30.418 0.782 45,098
x = 1.0 1.934 0.0862 0.871 10.56 37.656 0.790 31,276

3.3. Corrosion Morphology Analysis

Figure 8 depicts the surface morphology of the AlCrTiV0.5Cux lightweight HEAs after
they were subjected to polarization tests in a solution containing 0.6 M NaCl. The corrosion
has reached such an advanced stage that the surfaces are severely exfoliated and are in no
way uniform. The fact that there are just a few pits on the surface is evidence of limited
corrosion; hence, the samples were not fully ruined. The surface roughness was not on the
nanoscale scale in the regions of the material that did not include corrosion pits.

Figure 8a depicts the surface morphology of the lightweight AlCrTiV0.5 HEA, which
demonstrates that the surface is smooth and flat after corrosion and does not exhibit
any obvious corrosion pits. The prior results that the AlCrTiV0.5 alloy exhibited greater
corrosion resistance than the other five HEAs are supported by these new data, which
are consistent with those findings. AlCrTiV0.5 lightweight HEA has high resistance to
corrosion as a result of its uniform composition, single BCC phase structure, and lack
of composition segregation at grain boundaries. These characteristics contribute to the
material’s outstanding uniformity. When AlCrTiV0.5Cux is corroded (where x may be any
of the values 0.2, 0.4, 0.6, 0.8, or 1.0), substantial aggregation of Cu elements occurs in the
dendritic intergranular region (see Figure 8), and enormous corrosion pits also develop.
When there is a higher percentage of copper in the alloy, the surface corrosion of the alloy
becomes worse.

In general, the AlCrTiV0.5 lightweight HEAs show good corrosion resistance in the
testing environment. Increased Cu content enhanced Cu segregation, which could induce
localized corrosion susceptibility in Cu-added HEAs. The addition of Cu also increases the
mixing entropy of the system, thus the effect of the high-entropy effect on the corrosion
resistance of the alloys should be considered. The corrosion behavior also seemed to relate
to the sluggish diffusion. Dissolution of Cu was dominant in the competitive process of
formation of the passive film. Sluggish diffusion can inhibit the migration of Cu, reduce
the defects in the passive film, and inhibit the formation of cation vacancies, thereby
improving corrosion behavior [35]. In this study, due to the segregation of Cu and Cu-
rich areas exposed to the surface, the effect of slow diffusion was not obvious. Only
in AlCrTiV0.5Cu0.2 HEA, in which the segregation of Cu structure was lower, was the
corrosion resistance reduced slowly. When the content of Cu is higher and the degree of
segregation is greater, the high-entropy effect has little effect, and the corrosion resistance
is significantly reduced.
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4. Conclusions

(1) In a solution of 0.6 M NaCl, the electrochemical behavior of AlCrTiV0.5Cux lightweight
HEAs changes depending on the proportion of Cu. While AlCrTiV0.5 has the best
corrosion resistance and the lowest self-corrosion current density at 0.131 µA/cm2,
AlCrTiV0.5Cu has the greatest self-corrosion current density at 2.778 µA/cm2 and the
poorest corrosion resistance. AlCrTiV0.5 has the lowest self-corrosion current density
and the best corrosion resistance.

(2) When Cu is added to the HEAs, it is polarised between the dendrites, forming a
Cu-rich phase. A higher Cu content leads to more pronounced polarization. The
segregation of Cu lead to a large potential difference between the Cu-rich and Cu-poor
phases that formed between and within the dendrites, making the area between the
dendrites more susceptible to galvanic coupling corrosion.
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