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Abstract: Improving the vacuum degree inside the vacuum device is vital to the performance and
lifespan of the vacuum device. The influence of the Ti and ZrCoCe barrier layers on the performance
of ZrCoCe getter films, including sorption performance, anti-vibration performance, and binding
force between the ZrCoCe getter film and the Ge substrate were investigated. In this study, the Ti
and ZrCoCe barrier layers were deposited between the ZrCoCe getter films and Ge substrates. The
microtopographies of barrier layers and the ZrCoCe getter film were analyzed using scanning electron
microscopes. The sorption performance was evaluated using the constant-pressure method. The
surface roughness of the barrier layers and the getter films was analyzed via atomic force microscopy.
The binding force was measured using a nanoscratch tester. The anti-vibration performance was
examined using a vibration test bench. The characterization results revealed that the Ti barrier layer
significantly improved the sorption performance of the ZrCoCe getter film. When the barrier material
was changed from ZrCoCe to Ti, the initial sorption speed of the ZrCoCe getter film increased from
141 to 176 cm3·s−1·cm−2, and the sorption quantity increased from 223 to 289 Pa·cm3·cm−2 in 2 h.
The binding force between the Ge substrate and the ZrCoCe getter film with the Ti barrier layer was
171 mN, whereas that with the ZrCoCe barrier layer was 154 mN. The results showed that the Ti
barrier layer significantly enhanced the sorption performance and binding force between the ZrCoCe
getter film and the Ge substrate, which improved the internal vacuum level and the stability of the
microelectromechanical system vacuum devices.

Keywords: getter film; ZrCoCe; barrier layers; Ge substrate

1. Introduction

Microelectromechanical system (MEMS) devices have been used in aerospace [1],
biomedical [2], automotive [3], communications [4], as well as other high-tech fields [5,6],
many of which use Ge as a substrate [7–9]. Getter films have attracted significant attention
for their sorption performance in maintaining and improving the vacuum degree in MEMS
vacuum devices for extended periods [10–13]. Vacuum package and long-term reliability
are important in MEMS gyroscopes to ensure their detection accuracy [12,14,15]. The
vacuum encapsulation can provide a high-quality factor and reduce noise interference in
MEMS accelerators [16]. Vacuum MEMS devices not only require a high degree of internal
vacuum, but also long-term internal stability. Thus, it is extremely significant to improve
the sorption performance and reliability of the getter films.

ZrCoCe getter films are commonly used, owing to their low activation temperature,
good sorption performance [17], compatibility with the MEMS processes [18], and envi-
ronmental friendliness [19]. A comparison of different gettering film materials is shown in
Table 1. However, during the activation, the substrate releases active gas due to heating. If
the getter film absorbs the active gas, part of the sorption quantity will be consumed. Bu
et al. [20] found that depositing a dense ZrCoCe barrier layer between the ZrCoCe getter
film with a columnar structure and the substrate could effectively eliminate the poisoning
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effect of the active gas released by the substrate on the ZrCoCe getter film. However,
with the development of vacuum devices, higher degrees of internal vacuum are required.
Therefore, it is necessary to find a new barrier material to improve the sorption performance
of the ZrCoCe getter films. For instance, Ti getter films have been widely used because of
their good sorption performance and low activation temperature [21–23]. The densification
of the Ti film can reduce the diffusion channel of active gas within, making Ti film an
effective barrier layer. It is postulated that using Ti and ZrCoCe to deposit dense barrier
layers can effectively prevent the diffusion of the active gas released by the substrate into
the ZrCoCe getter film.

Table 1. Comparison of different gettering materials.

Gettering Materials Activation Temperature/◦C Advantages and Disadvantages

TiZrV 180 Low activation temperature; oxides of V
are toxicZrVFe 300~450

ZrCoRE 250–450
Low activation temperature;
environmental friendliness;

MEMS compatibility

In this study, Ti and ZrCoCe were deposited as barrier layers for getter films. The
Ti was selected as the barrier layer material because of its sorption performance [22,24],
whereas the ZrCoCe was chosen as the barrier layer material to simplify the process. The
sorption performance, binding force, and anti-vibration properties of the ZrCoCe getter
films with different barrier layer materials were studied.

2. Materials and Methods
2.1. Substrate Outgassing Test

A quadrupole mass spectrometer (HIDEN HMT 101, Michigan, US) was used to
measure the gas species released by the Ge substrate at 350 ◦C for 30 min.

2.2. Fabrication of Barrier Layers and ZrCoCe Films

A 2-inch, single-crystal Ge wafer with a thickness of 1000 µm was selected as the
substrate. ZrCoCe and Ti barrier layers of 50 nm thickness were deposited on the Ge
substrates, forming two substrates of (A) ZrCoCe/Ge and (B) Ti/Ge.

After depositing the barrier layer, a 2000 nm ZrCoCe getter film was deposited on
A and B. A 2050 nm ZrCoCe getter film was also deposited on a new Ge substrate. The
process parameters for magnetron sputtering are listed in Table 2. The structure of the
ZrCoCe getter film is illustrated in Figure 1.

Table 2. Magnetron sputtering process parameters.

Parameters
Barrier Layer Getter Film

Ti ZrCoRE ZrCoRE

Power supply DC DC DC
Target to substrate distance/cm 7 7 7

Sputtering power/W 130 130 150
Deposition time/min 10 5 180

Sputtering Ar gas pressure/Pa 0.4 0.4 4.0
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2.3. Characterization

The process of regaining a clean surface by heating the ZrCoCe getter film is known as
activation. The activation parameters for the ZrCoCe getter films were 30 min at 350 ◦C, in
which the temperature was measured using a K-type spot-welded thermocouple attached
to the sample.

The sorption performance of the fabricated ZrCoCe getter films was tested using the
constant-pressure method. The constant-pressure method inhalation performance test
bench was independently developed by Beijing Nonferrous Metals (Beijing, China).

Scanning electron microscopy (SEM) was used to characterize the surface and cross-
sectional morphologies of the ZrCoCe getter films with different barrier layers using
a JSM-7900F scanning electron microscope (JEOL, Akishima, Japan) with a probe current of
7 A and an acceleration voltage of 5 kV.

Energy Dispersive Spectroscopy (EDS) detects various elements with different charac-
teristic X-ray wavelengths for the purpose of elemental analysis. The composition of the
getter films was analyzed by EDS.

The surface roughness of the barrier layer and the getter films was analyzed by Atomic
Force Microscopy (AFM Dimension Icon, Bruker, Billerica, MA, USA).

Nanoindentation was used to analyze the binding force between the Ge substrate and
the getter films using a TI 900 Tribolndenter (Hysitron, Billerica, MA, USA) nanoindentation
loaded in the range of 0–350 mN.

A shock-impact tester (ECON VT-9208, Zhejiang, China) was used to test the anti-
vibration and anti-shock properties of the getter films with the different barrier layers. The
getter films were subjected to an environment with a peak amplitude of 1.5 mm and an
acceleration speed of 9 g, with spanned frequencies of 15–55 Hz [25].

3. Results and Discussion
3.1. Surface and Cross-Sectional Micromorphologies of Barrier Layers and Getter Films
3.1.1. Surface and Cross-Sectional SEM Images of ZrCoCe and Ti Barrier Layers

The surface and cross-sectional micromorphologies of the ZrCoCe and Ti barrier layers
are shown in Figure 2a–d, respectively. The 1µm barrier films were deposited onto the Ge
substrates with the magnetron sputtering process parameters of the barrier layer in Table 1
in order to observe the surface and cross-section morphologies of the barrier layers. Figure 3
shows the surface roughness of the barrier layers and the getter films deposited on the
different barrier layers. Compared with the Ti barrier layers, it can be seen that the surface
of the ZrCoCe barrier layer was very smooth, which was not conducive to the growth of
the columnar ZrCoCe getter film. A rough surface is more conducive to the growth of the
getter films with larger diameter columnar structures [20], which can improve the sorption
performance of the ZrCoCe getter films. Studies by Benvenuti et al. [26] and Xu et al. [27]
have shown that a getter film with a porous columnar structure exhibits better sorption
performance. The barrier layer with the columnar structure cannot effectively prevent the
active gas released by the substrate from diffusing to the getter layer; therefore, the sorption
performance of the getter film was mildly affected. Figure 2d shows that the cross-section
of the Ti barrier layer grew in a disorderly pattern, which effectively prevented the active
gas released by the substrate from diffusing to the getter layer.
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3.1.2. Surface and Cross-Sectional Elements and Micromorphologies of ZrCoCe
Getter Films

Several Energy Dispersive Spectroscopy images of the ZrCoCe getter film are shown
in Figure 4. According to Figure 4, the getter film prepared in this work was Zr74Co20Ce6,
and the element was well distributed. The surface and cross-sectional micromorphologies
of the ZrCoCe/ZrCoCe/Ge (getter film/barrier layer/substrate) and the ZrCoCe/Ti/Ge
are shown in Figure 5. The surface of the ZrCoCe/Ti/Ge was flat, and the diameter of the
columnar structure was continuous. A rough surface and a continuous columnar structure
may be beneficial for improving the sorption performance of the ZrCoCe getter films.
The rough surface of the ZrCoCe getter film had more active sites, and the continuous
columnar structure was more conducive to the diffusion of active gasses in the getter
film [28]. Therefore, both the rough surface and the continuous columnar structure may
have had positive effects on the sorption performance of the ZrCoCe getter films.
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getter film.

3.2. Sorption Performance of the ZrCoCe Getter Films with Different Barrier Layers

Based on the literature, the Ge substrates released H2, CO, H2O, and CO2 during the
heating process [29]. In this study, the hydrogen sorption performance of the fabricated
ZrCoCe getter films was investigated. Figure 6 shows the sorption performance of the
ZrCoCe getter films with different barrier layers. Clearly, compared with the ZrCoCe getter
film without a barrier layer, the sorption performance of the film with a barrier layer was
improved. The sorption performance of the ZrCoCe getter film with the Ti barrier layer
was approximately twice that of the ZrCoCe getter film without a barrier layer, and much
greater than that of the ZrCoCe getter film with the ZrCoCe barrier layer. The data collected
on the sorption performance of the ZrCoCe getter films with different barrier layers and
the ZrCoCe getter films [28] are shown in Table 3. Based on these results, the sorption
performance of the ZrCoCe getter film with the Ti barrier layer was the most effective
solution. This was mainly due to the dense microstructure of the Ti barrier layer, which
effectively prevented the active gas released by the substrate from diffusing into the interior
of the ZrCoCe getter film. The Ti also acted as an effective getter film.
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Table 3. Data of sorption performance of ZrCoCe getter films [28].

Getter Film/2 µm Initial Sorption
Speed/cm3·s−1·cm−2

Sorption Quantity in 2
h/Pa·cm3·cm−2

Ti/ZrCoCe 176 289
ZrCoCe/ZrCoCe 141 223

ZrCoCe in this work 95 182
ZrCoCe in the literature 84 138

Pd/ZrCoCe 100 180

3.3. Sorption Performance of ZrCoCe Getter Films with Ti Barrier Layers

According to the previous results, it can be found that the ZrCoCe getter film with
the Ti barrier layer exhibits the best sorption performance. The diffusion distance of the
active gas released from the Ge substrate to the getter film and the residual impurity gas
that finally reaches the getter film is different because of the influence of the barrier layer
thickness. Figures 7 and 8a show the cross-sectional micromorphology and the sorption
performance of the ZrCoCe getter films with different thicknesses of Ti barrier layers. It
should be noted that, regardless of the thickness of the barrier layer, the total thickness of
the barrier layer and the getter film is about 2.1 µm. It can be seen that thicker Ti barrier
layers lead to better sorption performance of the ZrCoCe getter films. Figure 8b shows the
sorption performance of the ZrCoCe getter films with the 240 nm and 400 nm Ti barrier
layers. The detailed sorption performance data are shown in Table 4. With an increase in
the thickness of the Ti barrier layer, the sorption performance of the ZrCoCe getter film also
increased due to the remarkable sorption performance and the protection property of the
Ti barrier layer.
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Table 4. Data of sorption performance of ZrCoCe getter films with different barrier layers.

The Thickness of Ti/nm Initial Sorption
Speed/cm3·s−1·cm−2

Sorption Quantity in 2
h/Pa·cm3·cm−2

85 190 300
156 200 323
240 213 354
396 221 378

3.4. The Binding Force of ZrCoCe Getter Films with Different Barrier Layers

After the vibration test based on the parameters mentioned above, no small particles
or scratches were observed on the surface of the getter films under a low-power microscope.
SEM was used for further analysis. The SEM images of the ZrCoCe getter films with
different barrier layers after vibration and activation are shown in Figure 9. Figure 9a,c
show SEM images after the vibration test, which are useful for proving the anti-vibration
properties of the getter films, whereas the SEM images of the getter films after activation are
shown in Figure 9b,d. Clearly, no small particles or defects were observed, which correlates
well with the evidence from Choa, S. H. [25]. As shown in Figure 9b,d, cracks caused by
activation were observed on the surface of the getter films [27]. Compared with the Ti
barrier layer, the ZrCoCe getter film with the ZrCoCe barrier layer exhibited more cracks
that were similar to the cracks on the surface after activation. Although those cracks may
have had no impact on the sorption performance of the ZrCoCe getter film, they may have
reduced the binding force between the getter film and the Ge substrate. The analysis of
the anti-vibration performance shows that the combination of the Ge with the ZrCoCe/Ti
getter film results in a strong structure, which ensures that the getter film can withstand
vibration impact to a certain extent.
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A strong binding force was necessary for the ZrCoCe getter films to withstand the
vibration of the MEMS devices. Figure 10 shows the binding force analysis results for the
ZrCoCe getter films prior to activation. The binding force test results obtained using the
nanoindenter are presented in Table 5, and the binding force between the ZrCoCe getter
film with the Ti barrier layer (ZrCoCe/Ti) and the Ge substrate peaked at 171 mN. The
binding force was significantly enhanced by the Ti barrier layer. The binding force between
the ZrCoCe getter films and the Ge substrates is the most critical index for evaluating the
mechanical properties of the getter film, which is important for the reliability of the ZrCoCe
getter films. Small particles were not observed after scratching by the probe, which leads to
difficulties in the measurement of vacuum devices and short circuits [30].
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Table 5. Binding force between ZrCoCe getter film with different barrier layers and Ge substrates.

Materials of Barrier Layer Binding Force/mN Materials of Barrier Layer

Without barrier layer 114 Without barrier layer
ZrCoCe 154 ZrCoCe

Ti 171 Ti

4. Conclusions

Both Ti and ZrCoCe were deposited as barrier layers between the ZrCoCe getter
films and the Ge substrates. The barrier layers improved the sorption performance of the
ZrCoCe getter films and increased the binding force between the ZrCoCe getter films and
the Ge substrates. The Ti barrier layer was more effective than the ZrCoCe barrier layer
for improving the sorption performance of the ZrCoCe getter film because the Ti barrier
layer had a rough surface and a dense internal structure. Accordingly, the thicker the Ti
barrier layer, the better the sorption performance of the ZrCoCe getter film. The thickness
of the Ti barrier layer depended on the space inside the vacuum device. The initial sorption
speed of the ZrCoCe getter film with a 50 nm Ti barrier layer was 176 cm3·s−1·cm−2, and
its sorption quantity within 2 h was 289 Pa·cm3·cm−2. The results showed that, compared
with the ZrCoCe getter film without a barrier layer, the binding force between the ZrCoCe
getter film with a barrier layer and the Ge substrate was significantly improved. Therefore,
the ZrCoCe getter films with the Ti barrier layers are more suitable for MEMS vacuum
packaging devices in harsh environments, which is of great significance for the development
of MEMS vacuum devices.
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