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Abstract: A π-conjugated polymer (PBQT) containing bis-(2-ethylhexyloxy)-benzo [1,2-b’] bithio-
phene (BDT) units alternated with a quinoline-vinylene trimer was obtained by the Stille reaction.
The chemical structure of the polymer was verified by nuclear magnetic resonance (1H NMR), Fourier
transform infrared (FT-IR), and mass spectroscopy (MALDI-TOF). The intrinsic photophysical proper-
ties of the solution were evaluated by absorption and (static and dynamic) fluorescence. The polymer
PBQT exhibits photochromism with a change in absorption from blue (449 nm) to burgundy (545 nm)
and a change in fluorescence emission from green (513 nm) to orange (605 nm) due to conformational
photoisomerization from the trans to the cis isomer, which was supported by theoretical calculations
DFT and TD-DFT. This optical response can be used in optical sensors, security elements, or optical
switches. Furthermore, the polymer forms spin-coated films with absorption properties that cover
the entire visible range, with a maximum near the solar emission maximum. The frontier molecular
orbitals, HOMO and LUMO, were calculated by cyclic voltammetry, and values of −5.29 eV and
−3.69, respectively, and a bandgap of 1.6 eV were obtained, making this material a semiconductor
with a good energetic match. These properties could suggest its use in photovoltaic applications.

Keywords: optoelectronics; photochromic polymer; configurational isomerism; optical properties

1. Introduction

In recent decades, interest in the development and research of organic semiconductor
materials, such as small molecules [1,2] and conjugated polymers [3,4] has gained great
interest in the scientific community [5–7]. This is due to the attractive photophysical and
processing properties of this type of material, which have been tuned and adapted for their
application in optoelectronic devices such as organic light-emitting diodes (OLEDs) [8,9],
organic solar cells (OSC) [1,10], organic field-effect transistors OFETs [11,12], perovskite so-
lar cells [13,14], sensors [15–17], nonlinear optics materials [18,19], molecular switches [20],
optical data storage [21], and others. The optical and electrical properties of organic semi-
conductors derive from their chemical structure [6], and thanks to the versatility of organic
chemical synthesis, it is possible to tune them by molecular design [22], using different
acceptor or donor segments to promote and favor intramolecular charge transfer (ICT) [23].
ICT denotes the charge transfer between donor-acceptor (D-A) groups located within a
molecule during the excited state [24], which increases the electric transition dipole mo-
ments between the ground and excited states [25]. Intramolecular charge transfer processes
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result in bandgap (Eg) reduction [26], which is an important property for applications in
solar cells [27], but also in other emerging applications such as environmental ones [28].
The optimal values are between 1.0 and 1.7 eV [26]. Although in the case of polymers, it
depends on the reference point that is taken [29], low bandgap polymers are considered
those with Eg less than 1.6 eV [30].

Conjugated polymers are particularly advantageous because of their processability,
which enables the fabrication of high-performance, large-area devices [7]. Quinoline, a
weakly basic compound, is one of the most interesting compounds for the development
of organic materials for optoelectronics [31]. Quinoline and its derivatives [32–34] exhibit
high thermal and oxidative stability, good processability in films, high photoluminescence
performance (PL), and excellent electron transport properties [35]. Quinoline-based poly-
mers with photochromic properties have been reported [36]. In these materials, quinoline
enables modulation of the optical and electronic properties of the polymers [37], which have
been shown to be excellent electron acceptors and transport materials [38–40]. Another
interesting unit is benzodithiophene (BDT); this moiety has a rigid fused ring structure
that makes it an electron-rich donor building block [41]. Therefore, benzodithiophene and
its derivatives [42–45] have planar conjugated structures, tight and regular stacking, and
excellent carrier transfer properties [46,47]. Optoelectronic devices based on BDT polymer
donors often exhibit high performance, especially in photovoltaic devices [41,42,48,49].

Modulation of the optoelectronic properties of conjugated polymers by external stimuli
such as light, heat, pH, and mechanical forces is a challenge for modern organic electron-
ics [50,51]. Photochromic molecules are attractive, dynamically responsive systems for the
fabrication of smart materials used in molecular switches and advanced photonic devices
such as photodetectors and organic field-effect transistors (OFETs) [20,51,52]. Photochromic
molecules can exhibit reversible photoinduced transformations between two photoswitch-
able states [53,54]. Therefore, photochromic molecules can be based on reversible [55],
trans/cis [56,57] photoisomerization, or ring-opening/ring-closing photocyclization reac-
tions [20,53]. Reversible switching between these binary states can be brought about by
illumination with UV-visible light, which involves reversible changes in physical properties
such as π-conjugation, dipole moment, ionic state, steric conformation, optical absorption,
emission, the energy level of the highest occupied molecular orbital (HOMO) and the
lowest unoccupied molecular orbital (LUMO), and others [20,54]. For photoisomerization
to occur, there must be enough free space for the fragment to freely rotate [55,56]. The
molecular design allows the photoisomerization behavior of a polymer to be modulated
and controlled, ensuring a tunable photoreaction [52]. Photochromic polymers are often
designed to promote a conformational change in the pendant groups of the polymer [50,58].
Most of the reported molecules with molecular transformation (trans→ cis→ trans) are
based on an azo fragment [36,58–60], but this is not the only option [61].

In this work, we report the synthesis of a BDT-alternated quinoline-vinylene polymer
that exhibits photochromism due to photoisomerization, causing a conformal change from
trans to cis of the conjugated backbone. Quinoline and benzodithiophene segments were
used for the design and synthesis of the polymer. The obtained results were supported
by theoretical studies that helped to explain the change in optical properties caused by
conformational isomerism.

2. Materials and Methods

The solvents used in the synthesis were distilled from desiccants before use. All chemicals
were commercially available under the Sigma-Aldrich brand (St. Louis, MO, USA).

2.1. Synthesis
2.1.1. 1,4- bis (octyloxy)-2,5-bis [(4-(6-bromoquinolin-2-vinyl)-yl)] benzene (3)

It was synthesized according to the reference [9].



Materials 2023, 16, 2908 3 of 15

2.1.2. Polymer PBQT

Into a two-necked round-bottomed flask containing 129 mg (0.162 mmol) of 3, 105 mg
(0.135 mmol) of 2,6-bis(trimethyl tin)-4,8-bis(2-ethylhexyl)benzo[1,2-b:4,5b′]bithiophene
(BDT), and 10 mg (0.015 mmol) of tetrakis(triphenylphosphine)palladium (Pd (0)) were
added under nitrogen to 5 mL anhydrous toluene via cannula. The flask was subjected
to three cycles of vacuum/N2 and allowed to react under stirring at 90 ◦C for two days.
After cooling, 5 mL of distilled water was added, and the organic phase was extracted with
CH2Cl2. The solvent was evaporated to its minimum volume, precipitated in methanol,
centrifuged, and dried in a vacuum oven at 80 ◦C for 3 h. A violet solid with a melting
point of 230 ◦C was obtained. 1H NMR (400 MHz, CDCl3, δ ppm): 8.86–6.93 (aromatic
protons), 8.11 (d, J = 16), 7.14 (d, J = 16), 4.79 (protons bridging oxygen), 3.51 (α protons to
oxygen), 1.63 (aliphatic protons), and 1.28 (s, CH3). FT-IR (cm−1): 3051, 2917, 2850, 1732,
1592, 1492, 1311, 1191, 1010, 964, 823, 715, 542, 455. UV-Vis (nm): λmax = 446.

2.2. Molecular Design and Theoretical Calculations

Density functional theory (DFT) calculations were performed using Gaussian 09w [62]
at the B3LYP/6-31G (d) level of theory in vacuum. The calculations of the frontier molec-
ular orbitals were performed with the optimized geometry. The linear transitions of the
absorption were estimated from the optimized molecular structures using TD-DFT at the
BH and HLYP/6-31G (d, p) level of theory in vacuum.

2.3. Characterization

Structural characterization of the synthesized compounds was performed using a
Bruker Ascend, an Oxford Varian, and a Bruker Biospin nuclear magnetic resonance spec-
trometer (Billerica, MA, USA), all operating at 400 Hz and analyzing the 1H nucleus. A
PerkinElmer Spectrum GX Fourier transform infrared spectrophotometer (FT-IR) was used
in transmission mode (Waltham, MA, USA), on powder samples, and at room temperature.
The photophysical properties were determined in HPLC-grade chloroform. UV-vis absorp-
tion was performed using a PerkinElmer LAMBDA XLS spectrophotometer. Fluorescence
spectroscopy was performed using a PerkinElmer LS55 and a Horiba PTI Quantamaster
QM-8450-22-c spectrofluorimeter. In the latter case, the slits were fixed in such an order
that the uncorrected spectra remained below the linear detection range (106 counts). The
fluorescence quantum yield was calculated from the emission spectra obtained with the
integrating sphere (K petite sphere) of the same instrument. The excitation wavelength was
set at 10 nm below the main absorption peak. At least four solutions with an absorbance
value at the excitation wavelength of less than 0.1 were analyzed. The following optical
properties were calculated from the spectra: (1) the half-height bandwidth (HHBW, nm) of
absorption and emission as the distance in nanometers at 0.5 intensity in the normalized
spectra; (2) the Stokes shift (cm−1) as the difference between the emission maximum and
the absorption maximum of the normalized spectra, both first converted to cm−1; (3) the
energy of the first excited state (E1.0, eV) as the point where the normalized absorption
and emission spectra intersect; (4) the optical bandgap (Egopt, eV) was calculated from
the optical absorption set point, following the methodology applied to π-conjugated sys-
tems [63]. A Bruker Autoflex Max mass spectrometer MALDI-TOF was used to determine
the molecular weight of the macromolecules. Cyclic voltammetry (CV) measurements were
performed on a PARSTAT® 2273 electrochemical instrument at room temperature under a
nitrogen atmosphere with a scan rate of 50 mV/s serving as the reference electrode, with
a 3-electrode cell (an Ag/AgCl reference electrode, a Pt filament as a counter electrode,
and as the working electrode, ITO covered with the film of the compound) in a solution of
0.1 M tetrabutylammonium hexafluorophosphate (Bu4NPF6) in anhydrous acetonitrile.
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3. Results
3.1. Synthesis

The chemical route for the synthesis of the polymer (PBQT) is shown in Scheme 1.
The synthesized compounds were characterized by 1H NMR and FT-IR. Figure 1 shows
the NMR spectra of 3 and PBQT. The 1H NMR spectrum of 3 shows the signals of quino-
line protons ranging from 8.08 to 7.68 ppm, along with those of phenyl protons in 2,5-
bisoctyloxyvinylidene. The vinyl protons are centered at 7.48 and 7.31 ppm, both of which
are doublets integrating for two protons with coupling J constants of 16 Hz, indicating
an E isomer. The protons from the methylene alpha of the alkoxy are shown at 4.11 ppm
as triplets integrating to four protons. The rest of the methylenes of the aliphatic chains
are shown in the range from 1.94 to 1.33 ppm as three signals integrating to 28 protons,
while the triplet at 0.90 ppm is of the methyl. The proton signals of the polymer PBQT
are broader than those of the corresponding monomers. It was observed that the signal
of the trimethylstannyl protons centered at 0.45 ppm disappeared and, in contrast, the
resonant protons could be identified near the bromine, indicating that all the chains are
bromine terminated. Two other characteristic signals of the BDT that are visible are the
alpha protons of the ethylhexyl chains at 4.23 ppm (2) and the one at 1.88 ppm (5).
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Scheme 1. Reaction route to obtain PBQT. Compounds 1 (2,5-bis(octyloxy)terephthalaldehyde) and 2
(6-bromo-2-methylquinoline) are the reagents to obtain compound 3 by a Knoevenagel condensation.
The Stille coupling is carried out between compounds 3 and 4 to obtain the PBQT copolymer.

The FTIR spectra of trimer 3 and PBQT are shown in Figure 2. In general, both com-
pounds show common signals: the vibrational modes of the C-O-C bond are at 1204 cm−1

and 1057 cm−1, while those of the vinyl bond C=C appear at 1586 cm−1, and the char-
acteristic band of the disubstituted trans bond is found at 977 cm−1. The vibration of
C-H out of the plane of the aromatic ring is at 823 cm−1, while that of the C-C bond is at
1492 cm−1. In addition, the vibrational modes of the C-H bond of the aliphatic chains are
found at 2917 and 2850 cm−1. The band at 474 cm−1 is assigned to the C-Br vibration of
the quinolines in trimer 3, while the low intensity of this band in the spectrum of PBQT
confirms that polymer chains are bromine terminated. The band observed at 715 cm−1 in
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the IR spectrum of PBQT corresponds to the C-S bond of thiophene, which is not present in
trimer 3, from which it is derived. The FTIR spectrum of PBQT FTIR (Figure 2) also shows
the vibration of the C-N bond of the heteroatom at 1317 cm−1 and that of the C-S bond
of the thiophene at 715 cm−1. The calculated average molecular weight (Mw) of PBQT,
number average molecular mass (Mn), and polydispersity index (PI) using PS standards
and the refraction index as detector are Mw = 4.466 Da, Mn = 2284 Da, and PI = 1.95.
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3.2. DFT Study

The HOMO and LUMO energy levels for PBQT were calculated using the B3LYP/6-
31G+ (d, p) level, and the visual representations of the HOMO and LUMO orbitals were
calculated to visualize the electron density distribution as shown in Figure 3. Table 1
shows the vertical excitation energy Etr (eV), the theoretical absorption λmax(nm), the
oscillator strength (O.S, ƒ), and the molecular orbital character (MO/character) together
with the main excitation configuration for the repeating unit of (E)-PBQT, (EZ)-PBQT, and
(Z)-PBQT polymer conformations. These values were calculated using the method TD-
DFT/BhandHLYP/6-31 G+ (d, p) from the optimized structures obtained at the B3LYP/6-
31G+ (d, p) level. The obtained bands for the electronic transitions show that the lowest
electronic singlet excitation is characterized as a typical π-π*-transition. Note that when cis
and trans conformations are combined, the structure is distorted, affecting the electronic
delocalization of the repeating unit. This would not only have a negative effect on the
optical and electronic properties, but it would also be less stable.
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Figure 3. Isoimages of the molecular orbitals of PBQT, lateral chains were omitted for computa-
tional purposes.

Figure 4 shows the absorption spectra obtained from the TD-DFT calculation for the
repeating unit of (E)-PBQT, (EZ)-PBQT, and (Z)-PBQT polymer conformations. These
spectra show two absorption bands, the first at 280 nm and the second at 417 nm for
(E)-PBQT, 426 nm for (EZ)-PBQT, and 433 nm for (Z)-PBQT. It can be observed that the
theoretical and experimental spectra coincide at the main electronic transition. According
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to Table 1, the predominant transition is between the HOMO–LUMO orbitals. The first
absorption band is attributed to a transition between HOMO-5 and LUMO for (E)-PBQT
and (EZ)-PBQT, according to the TD-DFT study, and between HOMO-2 and LUMO energy
levels for (Z)-PBQT. The second band is attributed to the transition between HOMO and
LUMO energy levels. In the theoretical spectra, a red shift is observed when a conforma-
tional change from trans to cis occurs. This suggests that in the case of conformational
isomerism caused by light exposure, there would be a shift in the absorption spectrum to-
wards red. It should be noted that this shift may be even more pronounced in the presence
of intermolecular interactions. This behavior is consistent with the experimental spectra
(see further). Table 1 shows the estimated electronic transitions for PBQT; the total of
the molecular orbital characters and the absorption spectra obtained from the TD-DFT
calculation for trimer 3 can be found in the Supplementary Material.

Table 1. Electronic transition data obtained by the BhandHLYP/6-31G (d, p) method calculated for
(E)-PBQT, (EZ)-PBQT, and (Z)-PBQT.

(E)-PBQT (EZ)-PBQT (Z)-PBQT

λab
(nm)

E(tr)
(eV)

OS
(ƒ) MO/Character λab

(nm)
E(tr)
(eV)

OS
(ƒ) MO/Character λab

(nm)
E(tr)
(eV)

OS
(ƒ) MO/Character

417.62 2.9688 3.7759 H→L (0.81) 426.33 2.9082 2.5552 H→L (0.81) 433.55 2.8597 2.6086 H→L (0.86)

325.3 3.8114 0.2114 H-2→L (0.48),
H-1→L (0.25) 349.92 3.5432 0.6365 H-1→L (0.33),

H→L + 1 (41%) 339.22 3.6549 0.4401 H-4→L (0.29),
H-2→L (0.41)

297.19 4.1719 0.0222
H-3→L (0.34),

H-1→L + 2 (0.12),
H→L + 1 (0.13)

331.35 3.7418 0.2530
H-4→L (0.10),
H-2→L (0.49),

H-1→L + 1 (0.15)
318.7 3.8903 0.07

H-4→L (0.35),
H-2→L (0.14),

H-1→L + 1 (0.13)

282.4 4.3904 0.1939
H-3→L + 1 (0.13),

H-2→L (0.13),
H→L + 2 (0.18)

285.79 4.3382 0.3516

H-5→L (0.24),
H-3→L + 1 (0.07)

H-2→L (0.11),
H-2→L + 2 (0.12),
H-1→L + 3 (0.12)

287.95 4.3058 0.3897 H-5→L (0.23),
H-1→L + 3 (0.16)

282.01 4.3965 0.577
H-5→L (0.27),
H-2→L (0.17),

H-1→L + 3 (0.14)
284.15 4.3633 0.2777

H-3→L + 1 (0.14)
H-3→L (0.17),

H-1→L + 1 (0.15),
H→L + 2 (0.13)

285 4.3504 0.5477
H-2→L (0.21),

H-1→L + 1 (0.15),
H→L + 2 (0.16)
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Figure 4. TDDFT absorption spectra of polymer PBQT obtained by applying BHandHLYP/6-31 (d, p)
functional. At the right, Frontier molecular orbitals of PBQT in its cis ((Z) PBQT), trans ((Z)-PBQT),
and intermediate ((EZ) PBQT) conformations.
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3.3. Optical Properties

Figure 5a shows the evolution of the absorption spectrum of PBQT in chloroform
when irradiated with white light from the LED. At time 0, the absorption spectrum presents
a maximum absorption wavelength of 449 nm due to the extended conjugation (HOMO-
LUMO electronic transition). Furthermore, a shoulder appears at 542 nm, which can be
attributed to intramolecular charge transfer—as reported for donor-acceptor polymers [64].
However, along with the irradiation, this latter increases in intensity, converting to the
main peak after 10 min, the time in which the optical change is practically complete. This
indicates photochromism, and this type of response is attributed to diastereoselective
photochromism, i.e., a photoinduced change in the absorption spectrum between two
diastereoisomers due to cis and trans conformations in their molecular structure. This
indicates photochromism, and this type of response is attributed to diastereoselective
photochromism, i.e., a photoinduced change in the absorption spectrum between two dia-
stereoisomers due to cis and trans conformations in their molecular structure. In agreement
with the theoretical studies, the spectrum before irradiation is attributed to (E)-PBQT and
after irradiation to (Z)-PBQT, as shown in Figure 5b. Theoretical calculations also suggest a
distortion in the backbone that affects the electronic delocalization when there is a mixture
of the two conformations, which explains the presence of both peaks in the intermediate
times. Therefore, it is proposed that the most stable states are those in which the bulk
of the polymer chain is accommodated in one conformation, either the cis or the trans.
Accordingly, the optical bandgap Eg, which always has a value in the semiconductor
range, decreases from (E)-PBQT to (Z)-PBQT. Photochromism can be used to apply these
compounds in the manufacture of sensors, security tags and optical switches, as well as
other advancing optoelectronic devices.
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Figure 5. (a) Absorption spectra of PBQT in chloroform at different irradiation times; as the irradi-
ation time increases, a bathochromic shift in the absorption of PBQT is observed. (b) Absorption
spectra of PBQT in chloroform before and after irradiation; (c) PBQT solutions before being irradiated
and in their final state after irradiation, an evident colorimetric change can be observed.

Both isomers of the polymer could be deposited in thin films by spin coating. Figure 6
shows the corresponding absorption spectra. In both cases, the spectra cover most of the
visible range, with the absorption maximum at 482 nm for the trans-form and at 545 nm for
the cis-form, maintaining the same trend observed in the solutions and with a red shift due
to solid state effects.
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Table 2 summarizes the absorption properties of the molecules in chloroform and in
film for both isomers. The small optical band gap (Egopt~1.6 eV), the broad absorption spec-
trum with large values of the half-height bandwidth (HHBWabs~500 nm), and the position
of the absorption maximum (λabs~500 nm) near the maximum emission wavelength of the
solar spectrum in uniform films indicate that PBQT could also be an excellent candidate
for application in organic solar cells as a donor material.

Table 2. Absorption optical properties in solution and film of the polymer PBQT.

Molecule
λabs

Solution
HHBWabs
Solution

Egopt
Solution ε (λmax) λabs film HHBWabs Film Egopt

Film

[nm] [nm] [eV] ε [Lg−1 cm−1] [nm] [nm] [eV]

PBQT
(E)-PBQT 350, 449

(max) 230 1.8 37.4 482 307 1.63

(Z)-PBQT 400, 545
(max) 262 1.7 — 560 301 1.58

Figure 7a shows the change in the emission spectrum at different times of irradiation.
Just as with the absorption spectrum, there is a red shift in the spectrum when it is irradiated.
The emission change is around 13 min. The total of the absorption and emission spectra
taken at each minute is reported in the Supplementary Material. Figure 7b shows the
comparison between the absorption and emission spectra in the chloroform solution of
PBQT in the two possible conformations. It is evident that the bathochromic shift observed
in the absorption is also present in the emission. (E)-PBQT shows narrower, stronger, and
better-resolved emissions compared to (Z)-PBQT. In general, the polymer exhibits weaker
emission compared to trimer 3 [9,65], which is likely due to intramolecular charge transfer
attributed to the donor-acceptor character and this is enhanced in the Z conformation.
As a consequence of the intramolecular charge transfer, the fluorescence spectra of both
conformations are broad and not specular to their absorption counterparts. All fluorescence
properties are summarized in Table 3. In resume, this polymer shows not only a colorimetric
but also a fluorometric response. The change is reflected not only in the emission color,
which turns from green to red, as shown in Figure 7c, but also in the fluorescence intensity,
as evidenced by the 4.5-fold decrease in fluorescence quantum yield for the Z compared to
the original E conformation.
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Figure 7. (a) PBQT emission spectra at different irradiation times, it is observed that when the
solution is irradiated, the fluorescence intensity decreases and the red shifts. (b) Fluorescence spectra
of PBQT in chloroform before and after irradiation; (c) PBQT solutions under the UV lamp before
and after irradiation; note an evident change in the emission colour of PBQT.

Table 3. Fluorescence optical properties in CHCl3 of the polymer PBQT.

Molecule λem (λexc)
[nm]

HHBWem
[nm]

∆υ

[cm−1]
E1,0 (λexc)

[eV]
Φ (λexc)

[%]
τ (λexc)

[ns]
Krad

10−11 [s−1]
Knr

10−11 [s−1]

(E)-PBQT 513 (442) 134 (442) 2587 2.54 (442) 7.8 (442) 1.6 (455) 4.9 57.6

(Z)-PBQT 605 (538) 114 (538) 2893 2.05 (538) 1.7 (538) 0.5 (563) 3.4 196.7

3.4. Electrochemical Characterization

Cyclic voltammetry was used to evaluate the redox process on thin films deposited
on ITO electrodes. The electrochemical data are summarized in Table 4. To obtain the
values of the frontier orbitals (HOMO, LUMO), the oxidation and reduction potentials
were determined at the onset (see Figure 8), which is defined as the potential at which the
injection of holes or electrons into the HOMO or LUMO orbitals begins. An electrochemical
band gap of 1.60 and 1.66 eV for (E)-PBQT and (Z)-PBQT, respectively.

Table 4. Electrochemical properties of PBQT.

Molecule Onset
Reduction (V)

Onset
Oxidation (V)

IP HOMO
(eV)

EA LUMO
(eV)

Band Gap
(eV)

(E)-PBQT 0.89 −0.77 −5.29 −3.63 1.66

(Z)-PBQT 0.89 −0.71 −5.29 −3.69 1.60

PBQT is a polymer that exhibits photochromism due to a trans→cis isomerization
in its backbone, which distinguishes it from other reports, as most macromolecules with
photochromism attribute their response to transformations due to intramolecular reactions
(cyclizations, ring openings, etc.) [66–69] and/or trans→cis transformations in the of the
polymer’s pendant groups [50,58,70]. It also differs from some quinoline polymers with op-
tical properties in that the quinoline segment is not located in the pendant group [36,71,72].
There is only one report of polymers with the quinoline sequenced in the backbone and
with photoisomerism, but in that case, it causes a hypsochromic shift [73], whereas PBQT
shows a bathochromic shift, which allows its possible use as a colorimetric or fluorimetric
sensor. Its optical bandgap of 1.63 to 1.58 eV broadens the range of potential applications
for this material, such as chemosensors [74], photoswitches [67], smart biomaterials [75],
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environmental applications [76,77], and optoelectronic devices in general [78,79]. In all
these areas, both the absorption and emission properties of PBQT could have profited.
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Figure 8. Voltammogram of (E)-PBQT in film vs. Ag/AgCl2, Eonset (Ox) = 0.89 V, Eonset (Red) = −0.77 V,
EgapE = 1.66 eV, and (Z)-PBQT in film vs. Ag/AgCl, Eonset (Ox) = 0.89 V, Eonset (Red) = −0.71 V,
EgapE = 1.60 Ev.

4. Conclusions

A semiconducting polymer bearing quinoline and bithiophene (BDT) units was syn-
thesized by the Stille reaction and presents photochromism in both absorption and emission
spectra. According to DFT and TD-DFT theoretical calculations, this is due to a conforma-
tional change from E to Z forms, i.e., a conformational change that occurs in the polymer
backbone, not in the pendant groups as in most polymers described in the literature. More-
over, this behavior is seen in both solution and film, suggesting that the intramolecular
spacing necessary for the transition between trans and cis is maintained. This makes PBQT
a very interesting material to investigate for the fabrication of optical devices, in particular
optical switches and colorimetric sensors. In addition to the photochromism that PBQT
exhibits, it has a wide range of absorption covering from 400 to 800 nm, with a maximum at
≈500 nm that is close to the maximum solar emission, a low optical bandgap of ≈1.6 eV as
found by UV-Vis spectroscopy, DFT, and cyclic voltammetry, and excellent film processing.
Based on all of these properties, it is not excluded that it can also be used as an electron
donor material in organic solar cells.
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