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Abstract: An integrated process by coupling hydrothermal reactions, including CO2 reduction and
H2O dissociation with metals, is proposed. The hydrogen could be rapidly produced under hy-
drothermal conditions, owing to the special characteristics of high temperature water, generating
metal hydrides as intermediates. Hydrogen production from the H2O dissociation under hydrother-
mal conditions is one of the most ideal processes due to its environmentally friendly impact. Recent
experimental and theoretical studies on the hydrothermal reduction of CO2 to value-added products
by in situ generated metal hydrides are introduced, including the production of formic acid, methanol,
methane, and long-chain hydrocarbons. These results indicate that this process holds promise in
respect to the conversion of CO2 to useful chemicals and fuels, and for hydrogen storage, which
could help alleviate the problems of climate change and energy shortage.
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1. Introduction

The utilization of renewable resources is considered as one of the most promising
pathways due to humankinds’ vast demands for energy and resources [1–3]. However, large
amounts of energy are necessary in order to utilize renewable resources [4,5]. Hydrothermal
hydrogen generation from water is one of the most ideal methods due to its environmental
friendly impact [6,7]. Nevertheless, the utilization of hydrogen has high storage and
transportation costs because hydrogen is gaseous under ambient conditions. Extensive
studies of potential hydrogen storage solutions have been examined, such as metal hydrides
and organic frameworks [8]. However, the efficiency is always low, and the systems are
complicated. High efficiency remains a big challenge [9].

The popular term “hydrothermal” has been used broadly to refer to water under
high temperature and high pressure. Hydrothermal reactions have been considered as
an important process in the formation of fossil fuels [10,11]. Generally, the hydrothermal
alteration of minerals could induce the formation of abiotic chemicals, which arise from
the dissolved CO2. The abiotic synthesis of organics means that CO2 reduction could
be realized with metals under hydrothermal conditions. Then, an integrated process by
coupling hydrothermal reactions, including CO2 reduction and H2O dissociation, with
metals is proposed, as shown in Scheme 1. In the right half of the circular process, metal
oxides could be reduced by the renewable thermochemical reduction process. As we know,
the rapid increase of the concentration of CO2 in the air has caused some adverse effects
for humankind and the environment [12–14]. Thus, if a cycle that included hydrogen
storage and CO2 conversion to organics [15] was achieved industrially, the concept of
hydrogen storage and CO2 utilization could help alleviate the problems of climate change
and energy shortage.
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Scheme 1. Proposed process of CO2 reduction and hydrogen utilization [15].

2. Characteristics of Water under Hydrothermal Conditions

Hydrothermal reactions are important because water possesses some special characteris-
tics under hydrothermal conditions. In the following sections, the representative characteristics
of water under high-temperature and high-pressure conditions are introduced.

2.1. Ion Product

The product of the H+ and OH− concentrations is denoted as the ion product (Kw), the
unit of which is mol2/kg2. As the temperature increases, the ion product increases from
Kw = 10−14 mol2/kg2 at about 20 ◦C to approximately 10−11 mol2/kg2 at around 300 ◦C [16].
When the Kw value is bigger, water may show enhanced acidic or basic catalytic activity
for reactions, owing to the high H+ and OH− concentrations [17]. Therefore, the hydrogen
production under hydrothermal conditions would be influenced by the H+ ion, especially
under high temperature.

2.2. Water Density

Water density is another important property that can change significantly with tem-
perature and pressure. When the temperature increases, the water density decreases. Water
density decreases from about 800 kg/m3 to about 150 kg/m3 during the transition from
liquid phase to gas phase. A change of water density means a variation at the molecular
level, including hydrogen bonding, dielectric strength, etc. [18] Therefore, we can see that
the change of water density is also related to the temperature.

2.3. Dielectric Constant

The dielectric constant also decreases sharply when the water temperature increases.
The dielectric constant is 78.5 under ambient conditions [19]. Water near the critical point
has properties like organic solvents, which can dissolve some organic compounds. The
advantage of supercritical water is that higher concentrations of reactants can be attained.

2.4. Hydrogen Bonding

The number of hydrogen bonds at different temperatures and densities is shown in
Figure 1. It can be concluded that hydrogen bonding becomes weaker and less persistent
while increasing the temperature and decreasing the density [20,21]. The hydrogen bonding
network exists as large, percolating clusters under ambient conditions [22–24]. When the
temperature increased and the density decreased, the average cluster size always decreased.
These results indicated that less hydrogen bonding results in much less order than ambient
conditions. Individual molecules can join the elementary reaction as a hydrogen source in
the hydrothermal reactions.
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Figure 1. Number of hydrogen bonds per water molecule [Mizan, 1996]. 

3. Hydrogen Production Using Metal 
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Figure 1. Number of hydrogen bonds per water molecule [20].

3. Hydrogen Production Using Metal

Yavor et al. [25] introduced some hydrothermal reaction systems with metal powder.
It was found that hydrogen production was related to the reaction temperature, including
the properties of the metal powders. The authors reported that the metals, such as Al, Mn,
and Mg, could serve as energy carriers for hydrogen storage. The theoretical amount of
hydrogen could be calculated as shown in Equations (1) and (2):

xM + yH2O→ MxOy + y H2 (1)

xM + 2yH2O→ xM(OH)2y/x + yH2 (2)

As shown in Figure 2, the theoretical hydrogen production for each metal is presented.
The estimated activation energy is also calculated. The results reasonably fit the Arrhenius
equation, with an approximately linear behavior. The slope of the trend line curve is
similar to that of Ea. These results suggested that hydrogen could be easily produced with
metals under hydrothermal conditions, which can join the integrated process of the H2O
dissociation and the CO2 reduction with the reduction of metal oxides to metals, as shown
in Scheme 1.
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4. Experimental Studies of CO2 Reduction to Formic Acid

In this section, recent experimental studies on the hydrothermal reduction of CO2
to formic acid by Zn, Al, Fe, and Mn were introduced. These selected metals, which are
not noble, are common and cheap. In addition, these metals exhibited high efficiency for
hydrogen production, which can be seen in Section 3. Therefore, the selected metals show
promise for the reduction of CO2. The detection of metal hydrides by IR analysis was also
introduced in this section.

For the hydrothermal reduction of CO2, experiments were conducted using a series
of batch SUS 316 tubing reactors with end fittings, providing an inner volume of 5.7 mL.
NaHCO3 was used as a CO2 resource to simplify handling. The zero-valent metals were
in powder form with a particle size of 200 mesh without any further treatment. All the
reagents were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China),
and were of analytical grade. The experimental procedure was conducted as follows [14].
The desired amounts of metal powder, NaHCO3, and deionized water were added to the
reactor. Then, the reactor was sealed and put into a salt bath that had been preheated to
desired temperature. After the preset reaction time, the reactor was taken out and placed
into a cold water bath to quench the reaction. After cooling to room temperature, the
reaction mixture was collected and filtered through a 0.22 µm syringe for analysis. The
water filling was defined as the ratio of the volume of the water put into the reactor to the
inner volume of the reactor, and the reaction time was defined as the duration of time that
the reactor was kept in the bath.

4.1. CO2 Reduction by Zinc

Highly efficient hydrothermal reduction of CO2 to formate by zinc was reported [14].
As shown in Figure 3a, the highest yield of formate, approximately 80%, was acquired
after 60 min at 325 ◦C. The yield reached up to about 45% after 10 min at 300 ◦C. At
250 ◦C, the yield, near 25%, was obtained after 10 min. These results illustrated that CO2
could be reduced to formate with high efficiency under hydrothermal conditions with
zinc. The effects of reaction temperature illustrated that higher reaction temperature is very
favorable for the production of formate. To verify that a reaction temperature of 325 ◦C
was necessary for the high yield, experiments were conducted with a longer reaction time
at 250 ◦C. As shown in Figure 3b, the formate yield was only about 60% with a reaction
time of 400 min. These results suggest that the highest formate yield from each reaction
was determined by the reaction temperature. Interestingly, these phenomena are related
to the maximal ion-product constant of high-temperature water occurring between 280
and 300 ◦C [25,26], which suggests that the equilibrium was related to the characteristics of
high-temperature water.
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The oxidation product of zinc was subsequently investigated. As shown in Figure 4a,
zinc was oxidized to ZnO after the hydrothermal reaction. In Figure 4b, it can be seen that
all zinc was oxidized to ZnO after 10 min, which illustrated that zinc could be oxidized
rapidly. It should be noted that almost all of the Zn was oxidized to ZnO within 10 min.
After 10 min, the increased rate of formic acid yield decreased significantly. When the
reaction of Zn with H2O was almost finished, the yield of formic acid increased slowly.
Thus, it can be concluded that the efficient reduction of CO2 should be primarily attributed
to the reaction of Zn with H2O.
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4.2. Detection of Zinc Hydrides

The infrared spectrum method was adopted to detect the intermediates, to investigate
the reaction mechanism in detail [14]. As shown in Figure 5a, a peak at 3336.8 cm−1

appeared by the stretching mode of the O–H complexes [27–29], which was clearly observed
in the produced samples. However, almost no extra IR absorption peaks were found (see
Figure 5b). These results suggest that the intermediate involves the structure of species of
H–Zn . . . O–H.
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Zinc hydrides have been reported to be a possible sources of active hydrogen for hy-
drogenation [30] and the synthesis of the mononuclear alkyl Zn-H complex [31]. Therefore,
the IR absorption peak indicates that the zinc hydrides were produced as the intermediates,
which gives some information for the explanation of the reaction mechanism.

4.3. CO2 Reduction by Aluminum

Al, which possesses an excellent ability to reduce the hydrogen production from H2O,
is one of the most abundant metals in the crust of earth. Therefore, if CO2 could be reduced
efficiently by the hydrogen produced with Al under hydrothermal conditions, a novel facile
pathway for CO2 utilization could be developed, along with the utilization of abundant
aluminum. Furthermore, the Al oxides also can be reduced to Al, which is similar to the
reduction of ZnO by using concentrated solar energy. Therefore, Al exhibited promising
prospects for the hydrothermal reduction of CO2.

Yao et al. studied the CO2 reduction by Al under hydrothermal conditions [32]. It was
reported that Al can enhance the reduction of NaHCO3 to formate by in situ hydrogen.
The highest yield of formate 64% was achieved. As shown in Figure 6, the formate yield
significantly increased with the increase of reductant amount. However, the yield decreased
gradually with the increase of NaHCO3 amount. The reason may be that the increase of
the amount of NaHCO3 induced the decrease of the ratio of reductant and CO2. Therefore,
the reductant amount should be sufficient to acquire a higher formate yield. These results
illustrated that a suitable balance existed for high efficiency between the amounts of
reductant and CO2.
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The yield of formic acid increases with the increase of the reaction time (see Figure 7).
Although the formic acid yield increased with longer time, 2 h is a better choice for
considering the energy cost. As shown in Figure 7, the results also showed that formic acid
yields increased significantly when the reaction temperature increased from 250 to 300 ◦C.
It was very interesting that the yield decreased to 34% at 325 ◦C. The reason is probably
that the decomposition of formic acid was sped up under higher temperature. Therefore,
the preferred reaction temperature is 300 ◦C. The variation trend of the formic acid yields
with Al is similar to the results of Zn. The reason for that may be the decomposition of
the formate under higher temperature with Al and Zn. Therefore, it is better to control the
reaction temperature at 300 ◦C. For the reaction time, perhaps the reaction time of 2 h is a
better choice. In our previous study on the hydrothermal oxidation of biomass, we found
that the suitable reaction temperature was also 300 ◦C. This was likely related to the special
characteristics of water under high temperature.
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4.4. CO2 Reduction by Iron

The metal Fe is one of the most abundant metals in the Earth’s crust. In our previous
study, it was reported that iron oxide after oxidation can be reduced easily by bio-derived
chemicals such as glycerin [26]. Therefore, the cycle could be realized when Fe was used for
the hydrothermal reduction of CO2. For this reason, the experiments with Fe as a reductant
for the CO2 reduction were performed [33]. As shown in Figure 8, kinetic curves of the
formic acid production based on the parameters of reaction temperature and time were
exhibited [34]. In the beginning, the yield increased slowly, and then increased rapidly with
the extension of reaction time. At 300 ◦C and 325 ◦C, a high formic acid yield of 40~60%
was achieved in the first 30 min, indicating that a higher temperature is favorable for the
production of formic acid. Zhang et al. reported Fe-hydride formation in the selective
Fe-catalyzed CO2 reduction in aqueous solution [35]. At present, Fe hydride is normally
reported in the organometallic reaction for CO2 reduction. These studies give us some
information about the reductant activity of Fe hydride.
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4.5. CO2 Reduction by Manganese

Mn, a first-row transition metal, has special coordination chemistry due to its reactive
redox nature. Mn can mediate the H2O dissociation to provide the necessary electrons for
photosynthesis [36,37]. Besides, Mn plays an important role in the CO2 hydrogenation and
Fischer−Tropsch synthesis [38]. Therefore, hydrothermal reduction of CO2 in the presence
of Mn could be an effective method.
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Lyu et al. reported highly selective reduction of CO2 into formic acid with Mn powder
as a reductant [39]. The highest yield of formic acid 75% was acquired in the presence of
Mn under hydrothermal conditions, as shown in Figure 9. In this process, CO2 not only acts
as a carbon source, but also accelerates the hydrogen production from H2O. By coupling
this process with the MnO/Mn cycle using solar energy, the CO2 recycle utilization would
be realized. The effects of reaction temperature and time on the yield of formic acid were
investigated. The yield of formic acid was initially very low, then increased rapidly with
the reaction time increasing at 250 and 275 ◦C. The yield was 60% when the temperature
reached 325 ◦C. Therefore, it could be concluded that higher temperature benefits the
production of formic acid. These results illustrated that Mn addition is an effective method
for highly efficient H2O dissociation for CO2 reduction.
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Presently, the photocatalytic and electrocatalytic reduction of CO2 has been studied
extensively. In comparison, hydrothermal reduction of CO2 coupled with the production
of hydrogen through H2O dissociation by metal, along with the renewable thermochemical
reduction of metal oxides, is a novel concept. Based on the introduction above, experi-
mental results of CO2 reduction to formic acid by Zn, Al, Fe, and Mn showed that metals,
which can produce hydrogen efficiently under hydrothermal conditions, show promise
for the hydrothermal reduction of CO2. However, the detailed reaction mechanism is
still unclear. The reaction mechanism is commonly studied with the hypothesis derived
from the conformation of reactants and products. Because these reactions take place under
high temperature and high pressure, the detection of reaction intermediates is not easy.
Therefore, theoretical study could be used for the discussion of the mechanism.

5. Theoretical Study of CO2 Reduction to Formic Acid

Density functional theory (DFT) has always been utilized in the investigation of
mechanism study of various types of chemical reactions [40,41]. In this section, recent
theoretical studies on the hydrothermal reduction of CO2 by in situ produced hydrogen
over metals were introduced.

5.1. CO2 Reduction by Zinc Hydrides
5.1.1. Formation of Zinc Hydrides

In our previous study, we explored the potentials of metal hydrides as intermediates
in the reaction with Zn and H2O [42]. A Zn5 cluster of the trigonal dipyramidal structure
was constructed, see Figure 10. The vertex of Zn and their bonds are shown in black and
gray. For the DFT calculation, five sites are adopted to generate initial geometries. Positions
1 to 5 were presented in detail in the literature. The decomposed five fragments of two H2O
molecules are distributed. The decomposed five fragments from two waters are distributed
as shown in Table 1. All the possible structures that two H2O molecules can have were
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generated with the symmetry of the Zn5 cluster, see Table 2. A total of 859 structures were
generated. All the structures were optimized, using the PW91 functional, which considered
the van der Waals interaction.
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Table 2. Classification of the fragments [42].

Pattern Components Number of Fragments Number of Combinations

(1) {H2O, H2O} 2 20
(2) {H2O, H+, OH−} 3 40
(3) {H2O, O2−, 2H+} 4 228
(4) {2H+, 2OH−} 4 29
(5) {O2−, 3H+, OH−} 5 179
(6) {2O2−, 4H+} 6 363

Total 859

In the calculation of Zn5/fragments complexes, the most stable one is shown in
Figure 11. Pattern (6) shows the most stable one with the lowest energy. Based on these
calculation results, it was found that, in the hydrogen production process, the H2O molecule
is decomposed to O2− and two H+

. The Zn-fragment stabilizes in the order of Zn–H2O,
Zn–OH, Zn–O and Zn–H, forming Zn–H and Zn–O–Zn. When O2− connects to Zn atoms,
more than two bonds around O2− were observed in the optimized structure. Therefore, the
energy is relatively low, which indicated that O2− atom binding to Zn is more stable than
OH− binding. Thus, we can conclude that zinc hydrides, not Zn–OH, are intermediate
states. This conclusion could be used to explain different reactions, in particular, the
reactions between metal and H2O.
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It should be noted that it is possible to cover all the possible structures in the considered
patterns, therefore the true minimum can be found with high probability. In addition,
additional calculations on Zn20 cluster with ADMP sampling were carried out. This
procedure could not guarantee the global minimum. However, the structure with the
lowest energy still suggested a similar binding mode and energy gaps. Based on these
considerations and calculations, it was concluded that the Zn5 possible intermediate in
the hydrogen production reaction with Zn and H2O consists of the zinc hydrides species,
which should be considered in the discussion of the reaction mechanism.

5.1.2. CO2 Reduction by Zinc Hydrides

In our previous study, we reported a theoretical study to investigate the reaction
mechanism [43]. From a thermodynamic point of view, two processes were compared by
using available thermodynamic data [44].

Zn + H2O + NaHCO3 → ZnO + HCOONa + H2O
∆G (573 K) = −103.79 kJ·mol−1 (3)

ZnO + H2 + NaHCO3 → ZnO + HCOONa + H2O
∆G (573 K) = −5.37 kJ·mol−1 (4)

For Equations (3) and (4), the ∆G value is negative, which means that high yield of
formic acid was possible from the thermodynamics point of view. H–Zn . . . O–H species
could be produced due to the chemisorbed H2 on ZnO [45]. Zinc hydride has been reported
as an active reducing agent which can reduce CO2 [46]. For the reaction of Equation (3),
Zn–H also was reported, which can be produced in considerable amounts in the reaction
of Zn with H2O [47]. Then, the whole process is understandable. As shown in Scheme 2,
we proposed Zn–H species as a plausible intermediate, which played a crucial role in the
reduction of HCO3

− for the production of formic acid. During the first step, Zn–H species
was formed by the oxidation of Zn with water. Then, Zn–H complex, as an active reducing
agent, reduces HCO3

− into HCOO−.
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Scheme 2. Proposed mechanism of CO2 reduction via zinc hydrides [43].

As shown in Figure 12, the activation energy to the transition state from the initial
state of Zn–H and HCO3

− is 24.1 kcal·mol−1. The geometry and the Mulliken charge at the
transition state in the production of HCOO− from HCO3

− are also shown in Figure 12. The
Zn–H bond distance is about 1.94 Å. The charge of H in the Zn–H specie is −0.221. Note
that this value is that of a hydride rather than a proton. When the H of Zn–H attached to the
C of HCO3

−, the C–H bond would be produced by through the vibration of C. Afterwards,
various ways for HCO3

− to approach the Zn–H area were examined to locate the TS shown
in Figure 12. In the end, the OH− escaped from the Zn5 cluster. These results were reported
for the first time in the hydrothermal reduction of CO2 with Zn as a reductant. The Zn5
cluster is not big, however, as mentioned above, all the possible structures in the considered
patterns of Zn + H2O were considered, therefore the true minimum can be found with
high probability.
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Figure 12. The geometries of TS (left) and activation energy of HCOO- formation [43].

As shown in Figure 13, the IRC calculation and shapes of the HOMO and LUMO of
TS are presented. IRC from the TS leads smoothly to the reactant Zn–H + HCO3

−, as well
as to the formation of formic acid. The occupied HOMO of TS shows a bonding interaction
between the H of the zinc hydride and the C of HCO3

−, whereas the unoccupied LUMO of
TS shows an antibonding interaction between Zn and the H of zinc hydride. This means that
at the TS, the Zn–H bond will be cleaved, as an unoccupied orbital and simultaneous C–H
bond was formed. These results verified that this could be a possible reaction mechanism
for the production of formate based on the intermediate of zinc hydrides, which were
produced in the hydrogen gas production. Based on these discussions, it can be suggested
that zinc hydride (Zn–H) is a key intermediate species in the reduction of CO2 to formic acid,
which demonstrates that the formation of formic acid is through an SN2-like mechanism.
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5.2. CO2 Reduction by Aluminum Hydrides

A theoretical study was conducted to investigate the hydrothermal reduction of CO2
to formic acid using Al by DFT calculations. B3LYP functional using the extended 6–311+G
(3df, 2p) basis set was adopted for the calculation. The formation of H-Al-OH species, an
intermediate in the reaction of Al with H2O, was calculated firstly. The formation of HCOO-

was simulated subsequently. Results showed that Al-H is a key intermediate species, which
demonstrated that the formation of formic acid is through an SN2-like mechanism, as
well [48]. The geometries and Mulliken charge could be seen in Figure 14. As shown in
Figure 14, in the start state, when HCO3 adsorbed onto an Al atom with two oxygen atoms,
the Mulliken charge of the H atom in Al-H was negative, which means that the H was
a proton. However, in the transition state and final state, the Mulliken charge of the H
atom became positive. These results illustrated that metal hydrides have strong reactant
activities. The calculated energy results showed that the final state is more stable (with
respect to initial state) by −7.31 kcal/mol.
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Figure 14. The geometries and charge of initial state (a), TS (b) and final state (c) [48].

In Figure 15, the IRC calculation and HOMO, LUMO orbital of TS are presented. As
shown in Figure 15, the IRC from TS smoothly leads to the reactant of Al-H+HCO3

−,
which means the formation of formic acid. These results were similar to those of Zn. The
unoccupied HOMO and LUMO of TS suggested an antibonding interaction between Al
and H atoms of the Al-H species. The Al-H bond will be cleavage, unoccupied orbital, and
simultaneously, the new C-H bond will be formed. The generation of hydrogen gas was not
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studied in this literature; even the calculation of HCOO- formation was still a little rough
due to the small calculation system.
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5.3. CO2 Reduction by Iron Hydrides

In our previous study on CO2 reduction by Fe, it was reported that H2O is used as a
source of hydrogen and Fe is used as a reductant, which can rapidly produce hydrogen.
With the in situ produced hydrogen, CO2 was reduced to formic acid efficiently. After the
reaction, Fe was oxidized to Fe3O4. It was also reported that NaHCO3 was reduced into
formate with high efficiency by using Fe as a reductant [14]. The overall equation can be
shown as:

3Fe + NaHCO3 + 3H2O→ Fe3O4 + 3H2(g) + HCOONa

∆G (573K) = −132.776 kJ·mol−1

A theoretical study was conducted by using the DFT calculations [49]. Under hy-
drothermal reaction conditions, the in situ technique for experimentally studying the
reaction mechanism of formate production is very challenging.

5.3.1. Optimized Geometric Parameters

The geometric parameters of the transition state and the final state are shown in
Figure 16. The Fe–H bond distance in the transition state was approximately 1.505 Å, and
the Mulliken charge of H in the iron hydride species was 0.029, as shown in Figure 16.
The distance between C and H atoms was 1.569 Å. Compared to the distance in the
intermediate, the distance is closer. The distance between metal and H atoms is similar to
our previous study on CO2 reduction by zinc, which was 1.490 Å. The Fe–O bond distance
was approximately 1.85~1.86 Å. In the final state, the bond distance of C-H was 1.107 Å.
The Mulliken charge of H in the C–H species was 0.099. Compared with the distance in the
intermediate and the transition state, the distance of C-H bond was closer, at only 1.107 Å.
It means that the C-H bond is stronger, and the final state is more stable. The Fe–O bond
distances were approximately 1.8~1.9 Å, and the charge of Fe was 0.674. The bond angle
between the H-C-O bonds was 115.5◦. Based on these bond distance results, we proposed
the mechanism of HCOO production, as follows. In the hydrogen production process, the
Fe–Hδ− species was formed via the dissociation of water. Due to the high reducibility of
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Hδ−, the distance between H and C atoms became closer. When a transition state during
the attack of Hδ− on Cδ+ forms, the HCOO species can be subsequently produced.
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5.3.2. Energy Diagram for HCOO Production

An energy diagram of the C-H bond formation is shown in Figure 17. The optimized
geometry of the initial, intermediate, and final states is depicted in Figure 16. As shown in
Figure 17, the calculated activation energy is 16.43 kcal/mol. Compared to our previous
study, when HCO3

− was used as the initial state, the calculated activation energy was
24.1 kcal/mol, which means that the CO2 was easier to reduce than HCO3

− under reaction
conditions. An important implication of the calculated activation energy is that the in situ
produced Fe-H species has high activity regarding reduction properties.
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5.3.3. IRC and HOMO/LUMO Calculation of Transition State

The IRC calculations and the HOMO and LUMO orbital shapes of the transition state
(TS) are shown in Figure 18.
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Figure 18. IRC calculation results (a) and HOMO (b) and LUMO (c) orbital shapes of the transition
state [49].

The IRC curve is smooth, as shown in Figure 18a. The formate was produced in the
vertex of the curve. It can easily be seen that the reaction energy barrier was not very
high, which means that formate could be easily produced once the Fe–H species was
formed. As shown in Figure 18b,c, the occupied HOMO of the transition state exhibits
a bonding interaction between the C atom and the H atom of the iron hydride species.
On the other hand, the unoccupied LUMO of the transition state shows an anti-bonding
character. These results clearly show the formation of a C-H bond of the formate. From
the mechanistic points of view, the present findings provide new chemical insight to
understand the hydrothermal reduction of CO2 to formic acid by metal. Additionally, these
findings would benefit the understanding of similar reactions.

6. Hydrothermal Reduction of CO2 to Methanol

At present, the shortage of petroleum resources and the emission of CO2 coming from
the consumption of petroleum resources are paid much attention. Therefore, it is urgent to
develop C1 chemistry for substituting the feedstock of petroleum chemicals and supplying
clean fuel. Methanol is an important C1 chemical. Methanol and its derived products can
be used in gasoline, diesel oil, and domestic fuel. The investigation on the supply and
demand of the methanol market proves that methanol is not only a chemical feedstock
but also a clean energy. Therefore, the conversion of CO2 to methanol is very meaningful.
Over the past several decades, CO2 conversion to methanol has been studied extensively
because of its abundance and low cost. As we know, CO2 has high thermodynamic stability,
therefore the catalysts are necessary for highly efficient CO2 reduction. Cu-based catalysts
have always been utilized in the methanol production process [50–52]. Therefore, the
hydrothermal reduction of CO2 to methanol has always been related to the development
and utilization of Cu-based catalysts.

For example, Huo et al. reported the hydrothermal reduction of CO2 to methanol over
copper as a catalyst [53]. As shown in Figure 19, the methanol yield (11.4%) was achieved at
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350 ◦C for 3 h. When the amount of catalyst Cu was added, there was a small increase of the
methanol yield. With a higher ratio of Zn and NaHCO3, the amount of reductant is surplus,
and the methanol production increased. However, compared to the reaction temperature of
formate production, methanol production requires a higher temperature, which means that
the formation of methanol needs higher active energy. Therefore, a suitable catalyst should
be developed to decrease the reaction temperature and increase the production efficiency.
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Figure 19. Effect of Cu amount on the methanol yield (350 ◦C, 2 h; Zn 60 mmol, NaHCO3 40 mmol
(or 60 mmol), HCl 2.0 M, water filling 50%) [53].

The reaction mechanism was proposed subsequently. As shown in Figure 20, initially,
CO2 is adsorbed on ZnO. Metal hydrides were produced based on the dissociation of
hydrogen, which induced the methoxide species. As we know, Cu is a familiar catalyst for
the production of methanol. Here, we suggest that the methanol was produced based on
the formation of formate. When HCOO species was formed, the metal hydrides further
accelerated the hydrogenation of HCOO, which produced an additional two C-H bonds.
However, the detailed mechanism of methanol needs more information of intermediates
and more detection methods, which should be discovered by in situ conditions.
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Kattel et al. investigated the production methanol by Cu and ZnO via the formate
intermediates [54]. It was concluded that there are three key steps for the formation
of methanol: (1) the change of morphology with Cu under different conditions; (2) the
formation of ZnCu alloy; and (3) ZnOX overlayer on the Cu nano particles. Hu et al.
studied the CO2 reduction to methanol under hydrothermal conditions [55]. By using the
in situ Fourier transform infrared spectroscopy (FTIR) method, ex situ X-ray photoelectron
spectroscopy, and high sensitivity low energy ion scattering spectroscopy, the intermediates
were identified, as shown in Figure 21. In situ FTIR spectra indicated that the 5 wt.%
Cu/A12O3 can absorb large amounts of bicarbonate and carbonate species. Cu nano
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particles can effectively dissociate H2. Then, adsorbed bicarbonate or carbonate species
can convert into formate and subsequently convert into a methoxy species. The peak at
1710 cm−1 can be the Zn-H bond, which further demonstrated when Methoxy species
can finally be formed. When the methanol was produced, it was found that the peaks of
formate and carbonate were decreased (see Figure 21). The founding gives us some useful
information for methanol formation based on metal hydrides.

Materials 2022, 15, x FOR PEER REVIEW 17 of 24 
 

 

diates were identified, as shown in Figure 21. In situ FTIR spectra indicated that the 5 
wt.% Cu/A12O3 can absorb large amounts of bicarbonate and carbonate species. Cu nano 
particles can effectively dissociate H2. Then, adsorbed bicarbonate or carbonate species 
can convert into formate and subsequently convert into a methoxy species. The peak at 
1710 cm−1 can be the Zn-H bond, which further demonstrated when Methoxy species can 
finally be formed. When the methanol was produced, it was found that the peaks of 
formate and carbonate were decreased (see Figure 21). The founding gives us some use-
ful information for methanol formation based on metal hydrides. 

 
Wavenumber (cm–1) 

Figure 21. In situ FTIR spectra of Cu/ZnO [Hu, 2021]. 

7. Hydrothermal Reduction of CO2 to Methane 
Methane is an important starting material for the synthesis of numerous chemicals. 

The most important and common products include ammonia, methanol, acetylene, and 
synthesis gas. Methane is used in the petrochemical industry to produce synthesis gas, 
which is then used as a feedstock in other reactions. In recent years, CO2 reduction to 
methane has attracted increasing interest. Although it has been proved to be promising, 
industrial utilization is still a big problem due to the low yield, strict reaction condition, 
and high cost. Fischer−Tropsch synthesis is commonly used in CO2 conversion to val-
ue-added hydrocarbons [56,57]. It was found that iron could be used for CO2 reduction 
to methane and other products [58,59]. Developing a new method to effectively convert 
CO2 into methane was strongly desired. 

Recently, Feng et al. performed a serial study on the hydrothermal reductions of 
CO2 to CH4 by using iron nano particles [60]. The proposed process of methane for-
mation is as follows: 

4
.)(

22 CHOHCO catiron ⎯⎯⎯ →⎯+  

As shown in Figure 22, the yield of CH4 increased with an increase of reaction time. 
The yield reached a maximum value of 1.96 mol% and then stably. When the reaction 
temperature increased higher, the yield increased significantly. Apparently, CO2 was 
more activated under higher temperature, which is favorable for the reduction of CO2. 
The higher pressure was also beneficial for the reduction by the increase of adsorption of 
CO2 on the surface of the iron nano particles. Compared to our previous study on the 
formic acid production, the yield of methane was low. The reason may be that the reac-
tion temperature was lower than that for the production of formic acid. In future work, 

Figure 21. In situ FTIR spectra of Cu/ZnO [55].

7. Hydrothermal Reduction of CO2 to Methane

Methane is an important starting material for the synthesis of numerous chemicals.
The most important and common products include ammonia, methanol, acetylene, and
synthesis gas. Methane is used in the petrochemical industry to produce synthesis gas,
which is then used as a feedstock in other reactions. In recent years, CO2 reduction to
methane has attracted increasing interest. Although it has been proved to be promising,
industrial utilization is still a big problem due to the low yield, strict reaction condition, and
high cost. Fischer−Tropsch synthesis is commonly used in CO2 conversion to value-added
hydrocarbons [56,57]. It was found that iron could be used for CO2 reduction to methane
and other products [58,59]. Developing a new method to effectively convert CO2 into
methane was strongly desired.

Recently, Feng et al. performed a serial study on the hydrothermal reductions of CO2
to CH4 by using iron nano particles [60]. The proposed process of methane formation is
as follows:

CO2 + H2O
iron(cat.)→ CH4

As shown in Figure 22, the yield of CH4 increased with an increase of reaction time.
The yield reached a maximum value of 1.96 mol% and then stably. When the reaction
temperature increased higher, the yield increased significantly. Apparently, CO2 was more
activated under higher temperature, which is favorable for the reduction of CO2. The
higher pressure was also beneficial for the reduction by the increase of adsorption of CO2
on the surface of the iron nano particles. Compared to our previous study on the formic acid
production, the yield of methane was low. The reason may be that the reaction temperature
was lower than that for the production of formic acid. In future work, experiments with
high reaction temperature should be performed to verify the possibility of the increase of
methane production.
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Based on the experimental results, the possible reaction mechanism for the formation
of methane was proposed. As shown in Figure 23, iron reacted with water, generating
H2 gas, and simultaneously, CO2 was reduced on the surface of iron nano particles due
to the hydrogenation effect of hydrogen. Without the addition of iron nano particle, no
methane was produced, which means that the addition of iron is necessary. As mentioned
above, when iron reacted with H2O, hydrogen gas was produced, therefore, the formation
of methane was related to the metal hydrides. Although, in this article, there was almost no
information about the intermediates, we suggested that the hydrogenation was carried out
by the intermediate metal hydrides. As far as we know, there is still a lack of theoretical
study on this process to date. Because of the good prospects of methane utilization in
the energy consumption area, the hydrothermal reduction of CO2 to methane should be
studied further.
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Zhong et al. reported a new method of in situ synthesis of Ni nanoparticle catalyst
for the conversion of CO2 into methane [61]. An excellent 98% yield of methane was
obtained at 300 ◦C. The in situ-formed Ni nano particle catalyst exhibits high efficiency
for the production of methane from CO2. Additionally, the stability of the catalyst is still
satisfied. The metal reductants (such as, Fe, Zn, etc) were oxidized into oxides that could
be regenerated by using renewable energy or material [62]. Given these merits, this process
developed a new concept for highly efficient artificial photosynthesis.

The methane yield from gaseous CO2 at different reaction conditions is shown in
Figure 24a,b. As shown in Figure 24, the yield of methane increased while increasing the
reaction time, temperature, and reductant amount. The highest yield of methane was only
42%, which is much lower than that with Zn. The yields of methane with CO2 or HCO3

−

were investigated (see Figure 24c). The yield of methane obtained from HCO3
− was lower

than that from the gaseous CO2. An excellent 98% yield of methane from the gaseous CO2
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was obtained with the initial pH of 1. The catalytic activity of the Ni nanoparticle remained
stable under high temperatures. These results suggested that the highly efficient reduction
of CO2 to methane is promising with the addition of Ni as the catalyst.

Materials 2022, 15, x FOR PEER REVIEW 19 of 24 
 

 

only 42%, which is much lower than that with Zn. The yields of methane with CO2 or 
HCO3− were investigated (see Figure 24c). The yield of methane obtained from HCO3− 
was lower than that from the gaseous CO2. An excellent 98% yield of methane from the 
gaseous CO2 was obtained with the initial pH of 1. The catalytic activity of the Ni nano-
particle remained stable under high temperatures. These results suggested that the 
highly efficient reduction of CO2 to methane is promising with the addition of Ni as the 
catalyst. 

 
Figure 24. Effects of reaction conditions on the methane yield (Ni 20 mmol, H2O 10 mL, CO2 13 
mmol; (a) Fe 0.1 mol; (b) 4 h; (c) Fe 0.1 mol, 300 °C; (d) Fe 0.1 mol, 300 °C, 4 h) [Zhong, 2019]. 

8. Hydrothermal Reduction of CO2 to Long-Chain Hydrocarbons 
CO2 utilization has received considerable attention due to its promising effect in 

reducing the carbon footprint and achieving carbon balance [63–65]. In general, the abi-
otic formation of hydrocarbons is assumed through the Fischer–Tropsch synthesis 
pathway [66,67]. The CO2(aq) or HCO3− (>70%) react with dissolved hydrogen H2(aq) to 
produce hydrocarbons. Cobalt–iron alloys have been found in the Earth’s serpentinized 
ultramafic rocks, which verified the possibility for hydrocarbons production [68,69]. 
Thus, the abundant native iron and other transition metals are considered as promising 
reductants and/or catalysts for the natural production of hydrocarbons. Methane is the 
first alkane, which carries the suffix “ane”, denoting an alkane. Carbon is at the center of 
the tetrahedron, which can be assumed to be an equilateral pyramid. Methane is the 
principal component of natural gas, which contained at least 75% methane. It should be 
noted that the shortage of energy and the emissions of CO2 are big problems for human-
kind. Therefore, the reduction from methane to higher hydrocarbon is very important. 
Recently, Jin et al. reported the hydrothermal synthesis of long-chain hydrocarbons with 
Fe as a reductant and Co as a catalyst [70]. Interestingly, it was found that CoOx can be 
reduced via CoCO3 with bicarbonate under hydrothermal conditions, coupled with the 
production of long-chain hydrocarbon under a temperature of about 300 °C and a pres-
sure of about 30 MPa. High catalytic activity of Co for C–C coupling was verified by the 
formation of long-chain hydrocarbons. As shown in Figure 25, the products were mainly 
a series of homogenous linear alkanes with carbon chains of up to 24 carbons. Addition-
ally, branched alkanes were also detected. These results were very interesting, because it 
was assumed that the hydrocarbons were produced from biomass, including lignin and 
cellulose. Therefore, future work should be done to improve the yields of hydrocarbons 

Figure 24. Effects of reaction conditions on the methane yield (Ni 20 mmol, H2O 10 mL, CO2 13 mmol;
(a) Fe 0.1 mol; (b) 4 h; (c) Fe 0.1 mol, 300 ◦C; (d) Fe 0.1 mol, 300 ◦C, 4 h) [61].

8. Hydrothermal Reduction of CO2 to Long-Chain Hydrocarbons

CO2 utilization has received considerable attention due to its promising effect in reduc-
ing the carbon footprint and achieving carbon balance [63–65]. In general, the abiotic for-
mation of hydrocarbons is assumed through the Fischer–Tropsch synthesis pathway [66,67].
The CO2(aq) or HCO3

− (>70%) react with dissolved hydrogen H2(aq) to produce hydrocar-
bons. Cobalt–iron alloys have been found in the Earth’s serpentinized ultramafic rocks,
which verified the possibility for hydrocarbons production [68,69]. Thus, the abundant
native iron and other transition metals are considered as promising reductants and/or
catalysts for the natural production of hydrocarbons. Methane is the first alkane, which
carries the suffix “ane”, denoting an alkane. Carbon is at the center of the tetrahedron,
which can be assumed to be an equilateral pyramid. Methane is the principal component of
natural gas, which contained at least 75% methane. It should be noted that the shortage of
energy and the emissions of CO2 are big problems for humankind. Therefore, the reduction
from methane to higher hydrocarbon is very important. Recently, Jin et al. reported the
hydrothermal synthesis of long-chain hydrocarbons with Fe as a reductant and Co as a cata-
lyst [70]. Interestingly, it was found that CoOx can be reduced via CoCO3 with bicarbonate
under hydrothermal conditions, coupled with the production of long-chain hydrocarbon
under a temperature of about 300 ◦C and a pressure of about 30 MPa. High catalytic activity
of Co for C–C coupling was verified by the formation of long-chain hydrocarbons. As
shown in Figure 25, the products were mainly a series of homogenous linear alkanes with
carbon chains of up to 24 carbons. Additionally, branched alkanes were also detected.
These results were very interesting, because it was assumed that the hydrocarbons were
produced from biomass, including lignin and cellulose. Therefore, future work should be
done to improve the yields of hydrocarbons and decrease the reaction conditions, such as
the decrease of reaction temperature and pressure.
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Figure 25. Identification of hydrocarbons synthesized by the hydrothermal reduction of NaHCO3 [70].

By using ATR-FTIR, two significant peaks at 3676 and 3226 cm−1 were detected, which
were attributed to the surface hydroxyl groups on Fe (Fe-OH) (see Figure 26a). When
H2 gas was used as the reductant instead of Fe, there was no long-chain hydrocarbon
produced. Therefore, the metal is necessary for the formation of hydrocarbons. In addition,
FeCO3 was observed, as shown in Figure 26b. Figure 26c presents the distribution of the
products as the function of the additional Co amount. It was found that the formation
of HCOO− gradually decreased with the increase of Co amount. Therefore, it can be
concluded that the presence of Co reduced the formation of HCOO− and promoted the
formation of hydrocarbons. Thus, it was suggested that the formate formation is related to
the production of hydrocarbons.
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Based on the mechanism of C−C coupling, a possible pathway of NaHCO3 reduction
to hydrocarbons with Fe and Co was proposed, as shown in Figure 27. The proposed
mechanism is similar to the abiotic synthesis in an actual hydrothermal environment [71].
The reaction system has both similar hydrothermal conditions and reaction pathways,
which suggests the abiogenic origin of some hydrothermal petroleum. However, in our
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opinion, the reaction pathways may be complicated in nature, which means that the
formation of the final products may come from a different reaction pathway. The formate
production may be the key step. As we introduced above, the yield of formate was very
high under metal–water hydrothermal conditions. The hydrogenation step, subsequently,
was also very important, as it induced the C–H bond formation one by one. Eventually, the
methane was produced. For the C–C coupling, the detailed mechanism still was not clear,
and requires further study, including experimental and theoretical study.
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9. Conclusions

Hydrogen production from H2O dissociation under hydrothermal conditions is one
of the most ideal methods due to its environmentally friendly impact. The hydrogen
could be produced rapidly under hydrothermal conditions with metals. Some recent
experimental studies on the hydrothermal reduction of CO2 by in situ generated metal
hydrides, including Zn, Al, and Fe, were introduced. IR studies verified the existence of
metal hydrides, which suggested that the metal hydrides provided active hydrogen for the
hydrogenation of CO2. In the theoretical studies, the DFT calculations indicate that the
metal hydrides are important intermediates that can reduce CO2 to formate through an
SN2-like mechanism. With the catalysts Cu and Co, the methanol, methane and long-chain
hydrocarbons could be produced. As a new reaction system, the primary experimental
results have been acquired. However, the detailed reaction mechanism still needs further
study. Then, an integrated process by coupling hydrothermal reactions, including CO2
reduction and H2O dissociation with metals, is proposed. These studies indicate that the
hydrothermal reduction of CO2 by in situ generated metal hydrides is very promising,
not only for the hydrogen storage to formate, but also for the CO2 conversion to useful
chemicals and fuels, which would help facilitate solutions for global warming and the
energy crisis.

10. Outlook

In the 21st century, global warming and energy shortages have become worldwide
problems and challenges. For example, in recent several years, flood disasters appeared
around the world, which, induced by climate change, have influenced many people’s
lives. The problem of CO2, which comes from the consumption of fossil fuels, induced the
greenhouse effect and energy shortages. The urgent need to reduce the CO2 concentration
in the air has prompted action all over the world.

Future work to accelerate the development of hydrothermal reduction of CO2 includes:

(1) developing a stable catalyst to increase the reaction efficiency and decrease the reaction
temperature;

(2) exploring the detailed reaction mechanism to enhance the understanding of the
reaction process;

(3) developing reaction devices to perform industrial processes.
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