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Abstract: Methyl orange dye (MO) is one of the azo dyes, which is not only difficult to degrade but
also hazardous to human health, therefore, it is necessary to develop an efficient photocatalyst to
degrade MO. In this paper, a facile and low-cost elemental doping method was used for the surface
modification of Ti3C, MXene, i.e., nitrogen-doped titanium carbide was used as the nitrogen source,
and the strategy of combining solvent heat treatment with non-in situ nitrogen doping was used to
prepare N-Ti3C, MXene two-dimensional nanomaterials with high catalytic activity. It was found
that the catalytic efficiency of N-TizC, MXene materials was enhanced and improved compared to the
non-doped Ti3Cy MXene. In particular, N-TizC; 1:8 MXene showed the best photo-catalytic ability,
as demonstrated by the fact that the N-Ti3C, 1:8 MXene material successfully degraded 98.73% of
MO (20 mg/L) under UV lamp irradiation for 20 min, and its catalytic efficiency was about ten times
that of Ti3Cy MXene, and the N-TizC, photo-catalyst still showed good stability after four cycles.
This work shows a simplified method for solvent heat-treating non-in situ nitrogen-doped TizC;
MXene, and also elaborates on the photo-catalytic mechanism of N-Ti3C, MXene, showing that the
high photo-catalytic effect of N-Ti3C, MXene is due to the synergistic effect of its efficient charge
transfer and surface-rich moieties. Therefore, N-TizC, MXene has a good prospect as a photo-catalyst
in the photocatalytic degradation of organic pollutants.

Keywords: photo-catalytic; solvent heat treatment; N-TizC; MXene; Methyl Orange Removal

1. Introduction

With the progressive increase in population and the rapid expansion of business
over the past decade, various types of domestic sewage and industrial wastewater have
rapidly increased, making the water pollution problem more serious and causing seri-
ous damage to the ecological environment [1-3]. In particular, azo dyes are discharged
from wastewater due to their anti-biodegradability. Excessive amounts of azo dyes are
teratogenic, mutagenic, and carcinogenic, posing a highly toxic hazard to plants, animals,
and humans [4,5] Therefore, there is an urgent need for efficient and cost-effective water
treatment technologies. So far, many methods have been developed, such as adsorption,
redox photochemical degradation, membrane filtration, and photocatalysis [6,7] have been
widely used to remove pollutants from water. Among them, photocatalytic technology is
gaining popularity owing to its several benefits, which include environmental friendliness,
high efficiency, stability, and a high degradation rate [8,9].

MXenes [10], a novel two-dimensional substance, has several applications in photo-
catalysis [11] and high electrical conductivity owing to its enormous specific surface
area [12], many active sites [13], and the presence of numerous functional groups (-O,
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-OH, -F, etc.) with good hydrophobicity and controllable interlayer distances [14-17]. MX-
enes follow the general formula of M,41 Xy Ty, where n+1 (n =1, 2, 3) is the early transition
metal layer, and M is intercalated with n layers of carbon or nitrogen X. Since the first report
of MXene in 2011 [18], more than 30 MXene such as TizC,, Ti3CN, TiNbC, V,C, Mo,C,
Nb,C, and Y,CF; have been successfully prepared [19-21]. The general MXene is obtained
by the selective removal of atoms from the MAX phase by treatment with hydrofluoric acid
or other fluorine sources. The precursors of MXene MAX phase are a collective term for
a ternary layered ceramic material, where M is a pre-transition metal (e.g., Ti, St, V, Nb,
Cr, Ta, Zr, Mo, etc.), A is the main group II or IV element, and X is C or N, etc. [22-27].
Ti3Cy, a member of the MXenes family, has superior electrical conductivity, a large specific
surface area, and many active sites, which may result in the separation and transmission
of photoexcited electron-hole pairs. At the same time, it is simple to create composite
materials using Ti3C, and other photo-catalysts because of their excellent flexibility and
distinctive layered structure. In the case of TizC, composites, TizC, not only increases the
absorption of light by its blackbody but also causes rapid carrier migration and inhibits
its compounding [28]. Therefore, TizC, is often utilized as an alternative noble metal [29]
co-catalyst to boost the complexes’ photo-catalytic activity [30-33]. We note that it has been
reported in the literature that Ti3C, with -F and -OH end groups are a narrow band gap
semiconductor [34], and considering that Ti3C, exfoliated from HF acid liquid phase will
have -F and -OH end groups and may also have photo-catalytic properties. Therefore,
we investigated the photocatalytic activity of TizC,. Unfortunately, the photosynthesis
performance of Ti3C; itself was not satisfactory.

Considering that Ti3C, can be improved by changing the elemental composition and
adjusting the surface functional groups to improve the performance of two-dimensional
accordion-like Ti3C, nanomaterials, we used the surface modification of Ti3C, utilizing
introducing heteroatoms to investigate its photocatalytic properties. It has been discov-
ered that ecologically friendly urea (CH4N;O) in high-concentration nitrogen alcohol is
an effective source of liquid nitrogen doping and that the liquid N doping source can
retain excellent contact with Ti3C, to achieve high N doping without stacking N-Ti3Cp
nanospheres [35,36]. The modulation of nitrogen-doped TizC, nanomaterials is greatly
enhanced in terms of carrier density, surface energy, and surface reactivity.

Currently, there are many research reports on N-Ti3C; in the fields of batteries [37],
capacitors [38], and electrocatalysis [39], however, there are fewer reports on the application
of N-Ti3C; in the field of photocatalysis. Thus, in this paper, urea-saturated alcohol
solution as a liquid nitrogen source, and a simple and controllable strategy combining
solvent thermal treatment and non-in situ nitrogen doping were used to prepare N-Ti3C,
MXene 2D nanomaterials with high catalytic activity. Transforming the usual way of
N-Ti3C; nanomaterials, we applied it as the main catalyst for the first time in the field
of photocatalysis and confirmed that it could significantly improve the photocatalytic
degradation of MO. In addition, the morphological and physicochemical properties of the
materials were thoroughly examined, and the reaction mechanism of the photo-catalysts
was discussed through experimental and theoretical studies.

2. Materials and Methods
2.1. Preparation of N-Ti3C, Catalyst

Ti3 AlCy (99.7%), urea (AR), dimethyl sulfoxide (DMSO, AR), hydrofluoric acid (HF,
AR), and anhydrous ethanol (99.5%) were purchased from Guilin Bell Experimental Equip-
ment Co. All chemical reagents were analytical grade without additional purification, and
all experiments utilized clean water.

The synthetic roadmap of the N-TizCy catalyst is shown in Figure 1, and its structure
is schematically shown in Figure 2.
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Figure 1. Roadmap for the synthesis of N—Ti3C, catalyst.
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Figure 2. Schematic diagram of the synthetic structure of N—Ti3C, catalyst.

Synthesis of TisC,: Ti3C, was synthesized by etching off the aluminum element in
Ti3AlC,. Firstly, 2 g TizAlC, powder was mixed with 20 mL of 30% hydrofluoric acid at
room temperature for 5 h. Secondly, the etched material was centrifuged by centrifuge
to collect the black powder and washed with deionized water to a pH of about 6-7, and
placed in a dryer for 12 h at 60 °C.

The synthesis route of N-doped TizC,: Firstly, 0.5 g of the above-dried TizC, was
placed in 15 mL of dimethyl sulfoxide (DMSO) and agitated for 24 h for intercalation.
The powder was recovered by centrifugation, washed several times with deionized water,
and then dried for 12 h at 60 °C in a drier. Next, take the intercalated Ti;C, and urea in
the ratio of 8:1 put it into 60 mL anhydrous ethanol for mixing, put it into the ultrasonic
machine for 30 min to mix well, and transfer it to the stainless-steel autoclave lined with
polytetrafluoroethylene for solvent heat reaction at 180 °C for 12 h. Finally, the material
in the reaction kettle was collected by centrifugation, washed with deionized water and
anhydrous ethanol until the pH was about neutral, and put into a dryer for 12 h at 60 °C to
obtain N-doped Ti3C; powder.
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2.2. Materials Characterization

By using energy-dispersive X-ray spectroscopy (EDS) detectors and a field emission
scanning electron microscope (FESEM, SU5000, Hitachi, Tokyo, Japan), researchers were
able to examine the morphological characteristics and elemental composition of the sam-
ples. X-ray photoelectron spectroscopy (XPS, ESCALAB-250XI) analyzed the valence and
chemical composition of the elements. X-ray diffraction spectroscopy (XRD, Bruker D8
Advanced) measured the crystal structure of the samples. Fourier infrared spectroscopy
(FTIR) was used to measure the functional groups and chemical bonds on the surface of
the samples. Optical properties were tested by UV-Vis spectrophotometer (DRS, Shimadzu
Lambda 750, Tokyo, Japan).

2.3. Electrochemical Measurements

The prepared sample coated on FTO glass served as the working electrode, platinum
wire served as the counter electrode, the Hg/Hg,Cl, /KCl (saturated) electrode served
as a reference, and 0.5 mol/L aqueous solution served as the electrolyte, photochemical
measurements were carried out using an electrochemical workstation (CHI860B). The
produced photocurrent was measured while a solar simulator was irradiated with a 10-s
lamp on/off cycle. The irradiation intensity was 1000 W/m? and the effective area of the

sample was 1 cm?.

2.4. Photocatalytic Performance

The photocatalytic performance of N-Ti3C;, was tested by methyl orange dye MO
degradation. The sample numbers obtained at different scales will be used in this experi-
ment, and the light source used is a 1000 W mercury lamp (Wavelength range
320 nm-390 nm, main peak value 365 nm) to emit ultraviolet light. Take 50mL of methyl
orange dye with a concentration of 20 mg/L mixed with 50 mg N-Ti3C, and pour it into the
test tube, sonicate for some time to make it mix evenly, and then put it into a photochemical
reactor (BL-GHX-1D) and stir under dark conditions for 30 min to achieve adsorption
resolution equilibrium, turn on the light source and take 3—4 mL every 10 min. The result-
ing solutions were detected with a UV-Vis spectrophotometer for absorbance at 464 nm
(characteristic wavelength of MO) to determine the degree of degradation.

3. Results and Discussion
3.1. SEM and EDS Analysis

In the chemical etching of aluminum in Ti3AIC; as shown in Figure 3a,b, SEM can
observe that Ti3C, MXene shows a unique accordion-like multilayer structure, revealing
the effective production of TizC, through HF etching of TizAlC,. It is well known that at a
certain temperature and high pressure, due to the low boiling point and high mobility of
ethanol, it may easily lead to the diffusion of urea molecules into the interlayer space during
the solvent heat treatment. The morphology of the nitrogen-doped Ti3C, MXene is shown
in Figure 3c,d was also well preserved after the solvent thermal reaction, in which the
spacing between some of the layers became larger, the surface of the sample was rougher
and more complex, and the layer surface was attached with uniform and fine nanoparticles.
To further elucidate the structure of N-TizCy; MXene nanomaterial, EDS elemental mapping
of individual elements in N-Ti3C, MXene nanomaterial was performed (Figure 3e), and
X-ray spectra (EDS) showed that Ti, C, N, F, and O elements were uniformly distributed
in the prepared samples. These characterizations strongly demonstrate the successful
preparation of N-Ti3C, MXene 2D nanomaterial. The formation of N-Ti3C; expands the
interlayer distance, resulting in an increased specific surface area and more active sites,
which is more favorable for carrier transport and separation.
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Figure 3. (a,b) Local magnifications of layered Ti3C; MXene and Ti3Cy; (¢,d) SEM images of N—TizC,
MXene nanomaterials at different magnifications; (e) EDS elemental mapping of Ti, C, O, Fand N
nanomaterials of N—TizC, MXene.

3.2. XRD and FTIR Analysis

The X-ray powder diffraction was used to examine the crystalline and phase structure
of the material (XRD). As shown in Figure 4a, the typical four prominent peaks of Ti3AlC,
(JCPDS No. 52-0875) are distributed at 9.517°, 19.154°, 39.037°, and 60.257°, corresponding
to the four crystallographic planes (002), (004), (104), and (110), respectively. The strongest
XRD diffraction peak of TizAlC, after HF etching (104) crystalline plane disappears and
(002) and (004) crystalline planes are shifted to lower angles compared to Ti3Cp. The results
show that the layered Ti3C, MXene was successfully prepared. with the addition of the
nitrogen dopant, the diffraction peaks of the (002) crystalline plane corresponding to N-
Ti3C; 1:2, N-TizCy 1:5, N-Ti3C;, 1:8 and N-TizC, 1:10 shifted from 9.517° to 6.94°, 6.8°, 6.79°
and 6.75° relative to Ti3C; is particularly obvious. This indicates that the interlayer distance
of N-TizC, MXene increases with the doping of nitrogen, which gives it a larger specific
surface area and exposes more active sites. In addition, we found diffraction peaks (101) and
(211) of titanium dioxide based on XRD diffraction patterns, indicating that a small portion
of titanium dioxide was also formed during the nitrogen doping process [40]. The surface
functional groups and bonds of the sample were measured by Fourier infrared spectroscopy
(FTIR), as shown in Figure 4b, and some surface -F groups of TizC, were substituted by
hydroxyl groups through anhydrous ethanol due to the abundance of hydroxyl groups in
anhydrous ethanol, i.e., the sharp characteristic peaks near 3606 and 3738 cm ! represent
free -OH. Since the N atom forms polar covalent bonds with the H atom and is easily
adsorbed to the Ti3C, surface, the characteristic peaks near 3130 and 3109 cm ™! are the
N-H vibrational peaks of the bonding, the vibrational peaks at 1350-1550 cm~! can be
attributed to the vibrational stretching of -CH3 and the C-N stretching vibrational peaks in
the urea molecule, and the characteristic peaks near 580 cm~! corresponds to the stretching
vibration of Ti-C. The presence of these functional groups can promote electron transfer
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and enhance electrical conductivity, while the doping of N atoms can effectively improve
the electron transport network and ion transport channels of TizC; MXene materials [41].
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Figure 4. (a) XRD patterns of Ti3Cy; MXene and N—TizCy MXene nanomaterials; (b) FTIR spectra of
TizC, and N—TizCy, MXene.

3.3. XPS Analysis

X-ray photoelectron spectroscopy was used to investigate the chemical makeup and
surface state of N-TizCy MXene (XPS). As illustrated in Figure 5a. The obvious peaks of Ti,
O, C, and F elements could be seen by the full scan spectrum, compared to the XPS curve
of N- TizC, material with an extra minor peak of N element. In addition, N-TizC, materials
have higher peak O element intensities than TizC, materials, and the atomic concentration
of O increases from 18.33% to 29.15%, indicating that part of Ti3C, is converted to TiO; in
the hydrothermal process. Among them, it should be noted that the atomic concentration
of Fis 11.9%, indicating the presence of a considerable amount of F termination groups on
the surface of N-Ti3Cy MXene. Figure 5b represents the original TizC; MXene with peak I
at 685.0 eV representing the C-Ti-F functional group and peak II at 686.5 eV representing
AlFx [42], with a shift in the peak position after nitrogen doping, probably due to a change
in the elemental valence state and the appearance of a new diffraction peak, i.e., peak
IIT at 689.18 eV, representing F-C [43]. Similarly, peak I at 529.9 eV in the O 1s region
of the spectrum in Figure 5c represents the C-Ti-O functional group, peak II at 531.1 eV
represents the C-O functional group, and peak III at 533.0 eV represents the C-Ti-OH
functional group [44]. As shown in Figure 5d, peaks I at 455.1 eV and 461.1 eV in the Ti
2p region of the XPS spectrum of TizCy, MXene refer to the C-Ti functional group, whereas
the second expanded peak II at 456.6 eV alludes to the C-Ti-F functional group [42]. In
addition, the XPS spectrum of Ti 2p in N-TizCy; MXene has a new pair of peaks III (Ti
3p/2 and Ti p/2) appearing at 459.2 eV and 464.88 eV, respectively, inferred to be possibly
from the oxidation product TiO, formed during the hydrothermal treatment [45], which
corresponds to the (101) and (211) diffraction peaks found in the XRD diffraction energy
spectrum corresponding to the formation of TiO,, both confirming the formation of TiO,.
From Figure 5e, it can be seen that the XPS spectra of C 1s found in the pristine Ti3Cp
MXene have three diffraction peaks with different valence states, which may originate from
external functional groups; peak I is 282.0 eV, representing the C-Ti-(O/OH/F) functional
group; peak Il is 284.8 eV, representing the C-C functional group; and peak Il is 286.5 eV,
representing the C-Hx/C-O functional group. One more diffraction peak can be seen in the
XPS spectrum of C 1s in N-Ti3C;, compared to Ti3C, after doping with nitrogen, i.e., peak
IV is 289.1 eV, representing the C-N functional group (visible in the Annex) [45].
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Figure 5. XPS spectra of the samples: (a) measurement scan, (b) F 1s, (c) O 1s, (d) Ti 2p, (e) C 1s,

(f)N1s.

Figure 5f shows the XPS spectra of N 1s. Based on the high-resolution spectra of N
1 s, it can be shown that nitrogen is successfully doped into Ti3C; and three peaks are
identified near 396.58 eV, 400.18 eV, and 401.98 eV, which correspond to three nitrogen
functional groups [15,35,46]: (i) nitride, abbreviated as N-Ti (396.58 eV), (ii) pyrrole nitrogen,
abbreviated as N-5 (400.18 eV) and (iii) quaternary nitrogen, abbreviated as N-Q (401.98 eV).
The peak at 396.58 eV originates from the substitution of nitrogen for carbon atoms to form
mainly N-Ti (nitrides), which indicates that the N atom reacts not only with the C atom,
but also bonds with the Ti atom. In contrast, the two peaks located near 400.18 eV and
401.98 eV originate from the -N functional group and surface adsorption, respectively [35].
It can be inferred that nitrogen is mainly present in the form of surface adsorption and
pyrrole nitrogen (N-5), and the new peak found near 289.1 eV in the carbon elemental
analysis spectrum also indicates the formation of the -N functional group.

3.4. Transient Photocurrent Response

Today, photocurrent is widely considered to be the most effective evidence for charge
separation in heterogeneous structured photo-catalysts [42,47,48]. Typically, the value of
photocurrent indirectly reflects the ability to generate and transfer photo-excited charge
carriers under irradiation, which correlates with photo-catalytic activity.

Using the use of transient photocurrent response, the migration and separation traits
of the photo-generated electron-hole pairs of the samples were examined. The transient
photocurrent curves of N-Ti3C, are shown in Figure 6. Among all the samples, the pho-
tocurrent of Ti3C, was the highest, while the photocurrent of N-TizCy 1:8 was the lowest,
and the photocurrent of TizC, was much larger. The photocurrent magnitudes of Ti3C, and
N-Ti3C; 1:8 are not consistent with their photo-catalytic activities. It may occur as a result
of the possibility that oxygen molecules adsorbed on the surface of N-Ti3C, can interact
with unbound electrons to form negatively charged O, .
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Figure 6. Transient photocurrents of TizCp and N—TizC; 1:8.

It is known that the current is proportional to the mobility (i) and density (n) of the
charge carriers [49].
I = gnpFA

where q is the electron charge, F is the electric field, and A is the cross-sectional area. F
and A were the same across all samples included in the investigation. This shows the
great difference in material carrier mobility and that high photocurrent does not imply an
abundant carrier density [50].

The transient photocurrent density of different samples was measured with three elec-
trodes, and the order of the magnitude of photocurrent was Ti3Cp, > N-Tiz3Cp
1:2 > N-Ti3Cp 1:10 > N-TizCy 1:5 > N-Ti3C; 1:8, which is the opposite order of photo-catalytic
activity, so it can be seen that there is no absolute relationship between the magnitude of
photocurrent and photocatalytic activity.

3.5. Photocatalytic Degradation Activity and Cycling Experiments of MO

The photocatalytic ability of nitrogen-doped TizC; MXene two-dimensional material
was investigated by photocatalytic degradation of MO. The degradation efficiency was
defined as 17 = (Cy — Ct)/Cy, where Cy is the initial concentration of methyl orange and C;
is the concentration of methyl orange at time t. Blank experiments with degradant solutions
under the same conditions without a catalyst were also performed for comparison. In
Figure 7a, TizCy MXene materials with nitrogen doping ratios of 1:2, 1:5, 1:8, and 1:10 were
tested. Compared to pure TisC,; MXene, N-TizC, 2D nanomaterials with high surface
area and large pore volume due to N-Ti3C; 1:2, N-TizC, 1:5, N-Ti3C; 1:8 and N TizC,
1:10 two-dimensional nanomaterials all exhibited better photo-catalytic ability. Especially,
N-Ti3C; 1:8 had the best photo-catalytic ability to degrade MO under UV light, and it
degraded 98.73% of the methyl orange dye after 20 min of irradiation, and the removal rate
of MO was 99.93% at 40 min. Figure 7b shows the pseudo-first-order kinetic plot of MO
degradation with the equation: —In(C;/Cy) = kt. Figure 7c depicts the kinetic rate constant
(k) estimated using the pseudo-first-order kinetic model, as well as the variation of k for all
samples visually, N-Ti3C; 1:2, N-TizC; 1:5, N-TizC; 1:8 and N-TizC, 1:10 for The kinetic
rate constants for MO removal by 2D nanomaterials were 0.00574, 0.02387, 0.14669, 0.18717,
and 0.02959 min~!. The above results show that the N-Ti3C; 1:8 material shows the best
photocatalytic performance with abundant active sites. The main reason may be that the
nitrogen-doped materials have more abundant surface functional groups, which improve
the charge transfer efficiency and enhance the electrical conductivity of the materials.
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In addition, the reusability of N-TizC; 1:8 2D nanomaterial was carried out to assess
the stability. As seen in Figure 7d, the catalytic activity of the N-Ti3C, 1:8 2D nanomaterial
for the degradation of methyl orange dye still reached 94.87% after four cycles. The catalytic
degradation efficiency decreased only slightly after 4 cycles, and the slight decrease might
be due to the loss of photocatalyst during the recovery process. The results demonstrate
that the N-TizC; 1:8 two-dimensional nanomaterials have good chemical stability.

3.6. Effect of Dye Concentration on Degradation Rate

The experimental dye concentration gradient ranged from 20-60 mg/L, and it can
be seen from Figure 8 that the photocatalytic degradation rate decreases sharply with the
increase in dye concentration. There are two reasons for this: Firstly, at a certain amount
of catalyst, the greater the concentration of dye, the slower the decrease in chromaticity,
and the longer the time required for complete degradation [51]. Secondly, the solution light
transmittance decreases with increasing dye concentration, the radiant energy absorbed by
the catalyst decreases, and the photocatalytic efficiency becomes poor [52,53]. In addition,
we also compared different two-dimensional material-based composite photocatalysts
listed in Table 1.
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Table 1. Represents the photo-catalytic activity of 2D material-based composite catalysts.
. . Composite . . Degradation
Composite Light Mass Dye Time (min) Rate Ref.
(001)TiO, / TizCy 200 mL 20 mg/L o
(In-situ synthesis) uv 10mg Methyl orange (MO) 50 97.4% [54]
TiO, /TizCy Tx 0
(In-situ synthesis) uv ) MO 50 92% [55]
. . . 100 mL o
BiOI/TizCy Vis 20 mg 10 mg/L RhB 30 99.8% [31]
TiO, /Ti3Cy uv 60 mg 60 mL 20 mg/L MO 40 99.6 [56]
. uv 20 mL 96.44%
Ti0;/Mxene Vis 10 mg 60 mg/L MB 60 40.29% (571
. . . 50 mL o
g-C3N4 /T102 /T13C2 Vis 50 mg 20 mg/L MO 120 90.13% [58]
Defect-Rich TizC, /BiOlO; Vis 10 mg 100 mL (10 mg/L) MO 40 97.6% [59]
. 50 mL o .
N-TizC; uv 50 mg 20 mg/L MO 40 99.93% This work

3.7. Optical Properties

The UV-vis absorption properties and band gap of the materials were investigated by
UV-vis diffuse reflectance spectroscopy. From Figure 9a, it can be seen that the absorption
range of N-Ti3C;, is wider, and the absorption edge extends to 800 nm. The absorption of
N-Ti3C; is higher than that of Ti3Cp, which is related to the doping of nitrogen elements.
Moreover, a new absorption band appears at the position of the peak around 400 nm after
nitrogen doping. Considering that the previous XRD and XPS tests showed the appearance
of TiO, in the sample after nitrogen doping, this absorption should be caused by TiO5. It
can be seen from Figure 9b that nitrogen doping reduces the band gap, and the band gap of
the material after N doping is reduced from 1.376 eV to 1.145 eV.
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Figure 9. (a) Absorption spectra of Ti3C, and N—Ti3C, samples; (b) plots of («h1)/2 versus photon
energy (hv) for band-gap energy.

3.8. Proposed Degradation Pathway and Photocatalytic Mechanism

In Figure 10, to further explore the photo-catalytic active substance, is to conduct
a capture experiment of the active substance. In the degradation of MO by N-TizC, 1:8
2D nanomaterial, ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) as a hole
scavenger (h*), isopropyl alcohol (IPA) as a hydroxyl radical (¢OH) scavenger, sodium
iodate (NalOs) as an electron (e™) scavenger and p-benzoquinone (BQ) as superoxide
radical (¢O; ™) scavengers were analyzed for the active substances that play a major role
in the photocatalytic degradation of methyl orange dye. The catalytic activity of N-TizC,
1:8 2D nanomaterial for MO degradation was found to be unaffected by the presence
of EDTA-2Na, showing that the photo-catalytic active component was not h*. And the
catalytic activity decreased significantly after the addition of IPA, NalO3, and BQ, which
proved that eOH, e~, and eO,~ were the photo-catalytic active substances that played the
main role in the UV degradation of MO experiments.

99.93%

98.44%

100 4

80 4

60 -+

Removal Efficiency(%)

04

No scavenger EDTA-2Na IPA NalO,

BQ

Figure 10. Shows the active substance capture experiment for the photo-degradation of MO by
N-TizC, 1:8 nanomaterial.

Organic pollutants first diffuse from the contaminated solution to the surface of the
photocatalyst and then desorb to the outer surface of the photocatalyst through effective
adsorption and products of redox reactions. Based on the analysis of active substances,
a speculative method to explain the photocatalytic activity of N-TizC, material for the
degradation of pollutants is proposed. As shown in Figure 11, TizC; is recognized as a
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material with excellent electrical conductivity, which can effectively separate electrons and
holes and inhibit their complexation, and N doping further enhances this property. Photo-
generated electrons and holes are generated on the surface of N-Ti3C, MXene under the
photoexcitation of UV light. And some of the photogenerated electrons on the conduction
band of N-TizC, MXene after photoexcitation are directly involved in the degradation of
MO as a major active substance. Another part of photogenerated electrons reacts with O,
to produce the active substance superoxide radical (6O, ™) to participate in the degradation
process of MO. The other part of photogenerated electrons reacts with O, to produce the
reactive substance superoxide radical (¢O, ™) to participate in the degradation process of
MO [60]. The photogenerated holes left in the valence band react with adsorbed hydroxide
ions (OH™) and H,O to produce hydroxyl radicals (¢OH), allowing the oxidation of organic
pollutants by eOH [61,62]. These highly reactive species (6O, ~, #OH, and e™) enable rapid
photodegradation of MO under UV light irradiation. This is in agreement with our active
species capture experiment Figure 10.
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Figure 11. Photocatalytic degradation mechanism of N-Ti3C, MXene.

4. Conclusions, Ongoing Challenges, and Perspective

In this work, N-TizC, MXene two-dimensional nanomaterials were prepared by a
facile and controllable strategy combining solvent heat treatment and non-in situ nitrogen
doping using urea-saturated alcohol solution as a liquid nitrogen source. Its methyl orange
dye removal rate was 98.73% after 20 min of UV lamp irradiation, and it still had good
photo-catalytic activity after four cycles. N-doped Ti3C, MXene would not only provide
an effective electron transfer pathway but also increase the interlayer distance of MXene
and expose more active sites, thus showing extraordinary photo-catalytic performance in
pollutant degradation. Moreover, it further demonstrates that the electrical conductivity
of N-TizC,; MXene can effectively transfer photo-generated electrons, resulting in a large
amount of photo-catalytically active substances (¢OH, e~, and O, ™). Therefore, N-Ti3C,
MXene two-dimensional nanomaterial can be used as an effective and promising photo-
catalyst for wastewater purification.

For the present, there are some limitations to this work. The excitation light source
used during the experiments is UV light, which is more energetic, and the organic pollutants
degraded in the photo-catalytic study are relatively single. The cycling experiments have
not yet reached efficiency saturation. There is a need to further explore the photocatalytic
activity of N-Ti3C,; MXene under sunlight or visual light to degrade a variety of organic
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pollutants, such as antibiotics. And the photo-catalytic cycle of the material needs to
be further investigated until the cycling efficiency is saturated. In addition, a toxicity
assessment of the treated solution is needed to ensure that the discharged wastewater will
reduce the adverse environmental impact.
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