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Abstract: A flexible electrode constructed from Fe-based amorphous ribbons decorated with nanos-
tructured iron oxides, representing the novelty of this research, was successfully achieved in one-step
via a chemical oxidation method, using a low concentration of NaOH solution. The growth of metal
oxides on a conductive substrate, which forms some metal/oxide structure, has been demonstrated to
be an efficient method for increasing the charge transfer efficiency. Through the control and variation
of synthetic parameters, different structures and morphologies of iron oxide were obtained, including
hexagonal structures with a hollow ball shape and rhombohedral structures with rhombus-like
shapes. Structural and morphological characterization methods such as X-ray diffraction and SEM
morphology were used on the as-synthesized composite materials. The supercapacitor properties
of the as-developed amorphous ribbons decorated with Fe2O3 nanoparticles were investigated by
cyclic voltammetry, galvanostatic charge discharge, and electrochemical impedance spectroscopy.
The flexible supercapacitor negative electrode demonstrates a specific capacitance of 5.96 F g−1 for
the 0.2 M NaOH treated sample and 8.94 Fg−1 for the 0.4 M NaOH treated sample. The 0.2 M
treated negative electrodes deliver 0.48 Wh/kg at a power density of 20.11 W/kg, and the 0.4 M
treated electrode delivers 0.61 Wh/kg at a power density of 20.85 W/kg. The above results show
that these flexible electrodes are adequate for integration in supercapacitor devices, for example, as
negative electrodes.

Keywords: amorphous ribbons; oxidation; supercapacitors; nanocrystalline Fe2O3

1. Introduction

Over the past decade, due to the increase in energy demands, electrochemical su-
percapacitors have gradually become one of the most promising energy storage devices
because of their low cost, long life, and high power density and capacitance characteris-
tics. Supercapacitors have many practical uses that demand high power outputs and fast
charge/discharge rates, such as electric vehicles, renewable energy systems, and consumer
electronics. In addition, they are considered more environmentally safe compared to tradi-
tional batteries because they lack toxic chemicals and heavy metals [1]. The performance
of supercapacitors in general depends on the electrode materials; thus, new electrode
materials have been designed to increase the performance of supercapacitors [2]. However,
the main problem of supercapacitors is currently the issue of low energy density. This
obstacle can be overcome by employing materials possessing a high theoretical capacitance.
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Electrode materials can be classified into three groups: carbon-based materials [3], conduct-
ing polymers [4], and transition metal oxides [5]. One of the most promising and most used
materials for fabricating electrodes in supercapacitors are porous-carbon-based materials.
They have a large surface area, a high porosity, and a good electrical conductivity, which
makes them a promising electrode material for storing electric charge [3]. Many researchers
have approached these carbon-based materials with the aim of enhancing energy storage
properties through various methods. Yifan Wang et al. doped porous carbon electrodes
with nitrogen using a one-step activation carbonization method. By achieving a high
N doping amount of 3.35 at.%, they obtained supercapacitor electrodes with a specific
capacitance of 250 F g−1 at 50 A g−1 [6]. Gaigai Duan et al. obtained a nitrogen-doped
carbon/ZnO composite electrode material by impregnating flax fibers with Zn(NO3)2 and
EDTA Na2Zn activators, followed by thermal treatment. The prepared electrode exhibited
a specific capacitance of 292 F g−1 at a current density of 0.5 A g−1 [7]. Another class of
electrode materials is represented by conducting polymers, which are a promising material
for pseudo-capacitor devices due to their high electrical conductivity and redox properties.
Among the conducting polymers, polypyrrole, polyaniline, and derivatives of polythio-
phene are the most extensively studied materials for use in pseudocapacitor devices. These
conducting polymers have demonstrated promising results due to their ability to store
charge via redox reactions and their high electrical conductivity, which is promising for use
in electrodes for storing electric charge [4]. Jehan El Nady et al. developed a nanocomposite
electrode for supercapacitor applications by using a one-step electrodeposition technique
to deposit polypyrrole on a NiO substrate, forming a polypyrrole/NiO nanocomposite
electrode. Compared to the pristine Ppy electrode, the supercapacitor performance of the
Ppy/NiO nanocomposite electrode was significantly enhanced. The study revealed that the
Ppy/NiO electrode deposited at 4 A/cm−2 demonstrated the highest specific capacitance
of 679 F g−1 at 1 Ag−1 [8]. Azza Shokry et al. synthesized a supercapacitor electrode
by combining polythiophene and single-walled carbon nanotubes (SWCNTs) in varying
ratios to form nanocomposites. The maximum specific capacitance was achieved when
the nanocomposite material contained 50% SWCNTs and had a specific capacitance of
245.8 F g−1 at a current density of 0.5 Ag−1 [9].

Nanostructures based on transition metal oxides and hydroxides [10], such as Fe2O3,
Fe3O4, Co3O4, NiO, CuO, and FeOOH, are promising electrode materials for supercapaci-
tors due to their high specific capacitance [11]. Suprimkumar D. Dhas et al. synthesized
porous NiO nanoparticles for use in supercapacitor applications using a simple hydrother-
mal method. The supercapacitor metal oxide electrode demonstrated a specific capacitance
of 116 F g−1 at 10 mAg−1 in KOH electrolyte and a maximum capacitance of 74 F g−1 at
10 mAg−1 in Na2SO4 electrolyte [12]. M. M. Momeni et al. conducted a study where they
used chemical corrosion to produce CuO nanostructures on a pure copper plate. Corrosion
was carried out in a mixture of 20 mL NaOH and 35 mM (NH4)2S2O8 aqueous solution at
room temperature for varying durations. The specific capacitance of the supercapacitor
electrode material was determined to be 158 F g−1 using cyclic voltammetry at a scan rate of
10 m s−1 [13]. Fe2O3 is considered a very promising candidate for electrode materials for su-
percapacitors and batteries because of its high theoretical specific capacitance, non-toxicity,
and low cost [14]. Various methods have been used to synthesize Fe2O3 nanostructures,
such as sol-gel, hydrothermal, electrodeposition, and vapor deposition methods [15]. Sim-
ilar to other transition metal oxides, Fe2O3 usually suffers from poor conductivity and
particle agglomeration, which reduces its performance, mainly at high rates. The formation
of metal/oxide structures through the growth of metal oxides on conductive substrates has
been shown t−o be an effective way to address the issue of conductibility by enhancing
the efficiency of charge transfer [5]. Dealloying and corrosion processes permit the growth
of uniform metallic oxide on the porous metallic core, with a better interface between
the metal and oxide, and improve the uniformity distribution of the active materials by
avoiding particle agglomeration [16,17]. Iron oxide, with a high theoretical capacity, was
obtained through a dealloying/corrosion process by using materials both in powder form
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and in the form of a three-dimensional layer grown on the ribbon surface in the pure phase
or in a mix of oxides [18]. The chemical or electrochemical oxidation synthesis of Fe2O3,
compared to the other methods, is the simplest approach to obtain metal oxides on the
surface of metal ribbons with a low production cost and high reproducibility. Baolong
Sun et al. conducted a study on the synthesis of iron oxides by oxidizing low carbon steel
ribbons in a 1 M NaOH aqueous solution for 6 h at 60 ◦C. The authors compared the areal
capacitance of the obtained iron oxide decorated ribbons with that of the same ribbons
coated with a layer of polypyrrole for use in supercapacitors. The results showed that the
areal capacitance of the rust coated with polypyrrole was significantly higher than that
of the uncovered rust. The coated rust electrode exhibited a capacitance of 2.202 F cm−2

compared to 0.878 F cm−2 for the uncovered electrode at 1 mA cm−2 [19]. A.A. Yadav et al.
synthesized iron oxide negative electrodes using a chemical method for use in asymmetric
supercapacitor devices. The α-Fe2O3 thin films obtained using a simple chemical bath
deposition (CBD) method exhibited a nanosphere-like morphology. At a current den-
sity of 4 Ag−1, the specific capacitance value of the α-Fe2O3 electrode was found to be
2125 F g−1 [20]. Jianhui Zhu et al. employed an iron rust byproduct from the steel industry,
which was previously deemed useless and unwanted, and subjected it to a straightforward
hydrothermal treatment in an aqueous solution containing HNO3. The resulting product
formed a sphere-shaped structure that was integrated into a negative electrode for a storage
device. The iron rust electrode obtained through this process exhibited a maximum specific
capacity of 269 mA h g−1 at 0.3 A g−1 [21].

An amorphous alloy was chosen for the fabrication of uniform nano/microstructures
because of its disordered atomic scale structure, absence of defects, grain boundaries,
secondary phases, element segregation, and heterogeneous structure [22]. These properties,
combined with its super-elasticity, make it an ideal candidate for obtaining electrodes for
supercapacitors [23]. Additionally, by controlling the morphology and microstructure of
the grown Fe2O3 layer, the electrochemical performance can be improved. With different
morphologies and microstructures, major changes in the electrochemical and storage
properties of these devices have been reported. In this study, a chemical oxidation process
on iron-based amorphous ribbons in an alkaline solution was used to grow different oxide
nanocrystalline structures and Fe2O3 morphologies, such as hexagonal with a hollow ball
structure and rhombohedral with a rhombus-like structure. Furthermore, the novelty of the
research consists of the use of Fe75Si12B10Nb3 amorphous ribbons as a substrate for flexible
electrodes constructed on Fe-based amorphous ribbons decorated with nanostructured iron
oxides fabricated in a one-step chemical oxidation synthesis for supercapacitor applications.

2. Materials and Methods
2.1. Fabrication of Amorphous Ribbons

Quaternary alloys with a nominal composition of Fe75Si12B10Nb3 were synthesized by
the arc melting process. To ensure accurate atomic percentages and the homogeneity of
the raw materials, the melting process was repeated four times, using a mixture of pure
elemental Fe, Nb metal, and Fe–B and Fe–Si ferroalloys under an argon atmosphere. The
raw materials were prepared to match the nominal atomic percent of the Fe75Si12B10Nb3
alloy. The melt spinning method [24] with a copper roll speed of 37.7 m/s was used to
prepare amorphous Fe–Si–B–Nb ribbons with a 25 µm thickness and a 15 mm width. We
used optical emission spectroscopy to determine the atomic percentage of the prepared
sample, and ensured that the alloy compositions represented the nominal atomic percent.

2.2. Fabrication of Flexible Electrodes Decorated with Iron Oxide Nanoparticles

The corrosion process was carried out in a NaOH aqueous solution (10 mL) of 0.2 M
and 0.4 M concentrations in free immersion conditions for 7 days [25]. The as-oxidized
ribbons were removed and washed thoroughly with distilled water to clean any residual
impurities. These steps are presented in the schematic diagram in Figure 1.
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Figure 1. Schematic illustration of the one-step synthesis process of the flexible electrode.

The use of a NaOH solution can facilitate the transformation of Fe to FeOOH and Fe2O3
by creating an alkaline environment that can promote the formation of dehydrated iron
oxide [25,26]. The concentration, the volume of the container, the amount of solution, and
the temperature of the NaOH solution can directly affect the kinetics and thermodynamics
of these reactions. These reactions need a long period of time and a stable environment to
obtain the desired structure and morphology of iron oxide.

The chemical reactions that occur between the iron-based amorphous ribbons and the
NaOH solution take place according to the following reactions [27]:

Fe + 2NaOH + 0.25O2 + 0.5H2O→ FeOOH + 2Na+ + 2OH− (1)

FeOOH (goethite)→ γ-FeOOH (lepidocrocite) + H2O (2)

γ-FeOOH (lepidocrocite)→ Fe2O3 (hematite) + H2O (3)

Hexagonal Fe2O3 structures in the form of hollow spheres were obtained by immersing
the iron-based amorphous ribbons in a solution of NaOH with a concentration of 0.2 M at
a temperature of 20 ◦C. The immersion process was carried out for a period of 7 days to
allow the formation of a nanocrystalline structure.

To obtain orthorhombic and rhombohedral Fe2O3 structures, the material was im-
mersed in a NaOH solution with a concentration of 0.4 M at a temperature of 25 ◦C for
7 days. During this process, the NaOH solution reacted with the Fe2O3 material, leading to
the formation of the desired structures with a rhombus-like morphological shape.

2.3. Materials and Characterization

To determine the crystalline structure of the decorated oxides, X-ray diffraction (XRD)
was used. XRD was performed using a PANalytical X’Pert PRO MPD diffractometer
equipped with a monochromator used to filter out the fluorescent radiation, with Cu-Kα

radiation (CuKa1: 1.540598 Å and CuKa2: 1.544426 Å) in the range of 2theta from 20 to
80◦. The morphology of surface oxides was examined by scanning electron microscopy
(SEM). An FEI Inspect S model coupled with an energy dispersive X-ray analysis detector
(EDX) was used to inspect the surface morphologies. The electrochemical performances of
the electrodes were determined on an electrochemical workstation (Voltalab Potentiostat
model PGZ 402) using a standard system consisting of three electrodes, a flexible electrode
(size 0.5 × 0.5 mm), a Ag/AgCl electrode (sat. KCl), and a Pt wire served as the working
electrode, reference electrode, and counter electrode, in a 0.5 M Na2SO4 solution. Electro-
chemical measurements included cyclic voltammetry (CV), galvanostatic charge–discharge
(GCD), and electrochemical impedance spectroscopy (EIS).
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3. Results and Discussion
3.1. Structural and Morphological Properties

Structural investigations of the as-prepared flexible electrode before and after being
decorated with Fe2O3 nanoparticles were carried out using X-ray diffraction (XRD) analyses
(Figure 2). In the XRD patterns of the as-spun ribbons, a broad intensity peak was observed
at a 2θ angle within the range of 37 to 50◦. The shape of the diffraction peak was in
line with other research studying iron-based amorphous ribbons [28,29]. This peak is
indicative of the amorphous state of the iron-based alloy, as it is also present in the spectra
of metallic ribbons decorated with iron oxide. This furthermore evidenced the presence of
an amorphous core that gave the flexible application of the supercapacitor electrode. In
the case of the ribbon immersed in a 0.2 M NaOH solution, α-Fe2O3 with diffraction peaks
at 7.8◦ (002), 25.2◦ (004), 30◦ (106), and 47.3◦ (027) associated with a hexagonal structure
(JCPDS No 01-076-1821) is present. Additionally, a rhombohedral structure (JCPDS No
01-073-0603) of α-Fe2O3, with diffraction peaks at 21.2◦ (012), 35.5◦ (110), 40.4◦ (113), and
53.7◦ (211) is also present in the sample maintained in a 0.4 M alkaline solution.
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Figure 2. XRD pattern of amorphous ribbons and amorphous ribbons decorated with iron ox-
ide nanoparticles.

Scanning electron microscopy (SEM) was used to study the morphology and unifor-
mity of the surface oxide layer. In Figure 3a, the surface morphology of flexible ribbons
decorated with oxide nanoparticles at an immersion time of 7 days and a concentration of
NaOH solution of 0.2 M is presented. As a result of the high holding time of the ribbons
in the alkaline solution, a porous hollow-ball-like oxide [30] is present on the surface of
the flexible amorphous ribbons. The mesoporous structure of the oxide particles can in-
crease the specific surface area of the film. The surface morphology of the oxide-decorated
flexible ribbon treated in a solution of 0.4 M NaOH for 7 days is presented in Figure 3b,
and it can be observed that uniform structures composed from rhomboidal formations are
obtained. Figure 3c,d presents the cross-section images of the as-obtained electrodes, and it
is observed that the oxide layer thickness is directly proportional to the concentration of
the NaOH solution. Typically, hematite forms in a hexagonal crystal system with a trigonal
structure. However, under certain conditions, hematite can exhibit a rhombohedral crystal
structure, which gives it a rhombus-like appearance [31,32]. The optimization of the process
parameters lead to the formation of a uniform oxide layer distributed on the surface of
the samples.
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Figure 3. SEM images of the supercapacitor electrode surface obtained in a NaOH solution with a
concentration of (a) 0.2 M and (b) 0.4 M. Cross-section images of electrodes obtained at (c) 0.2 M and
(d) 0.4 M.

3.2. Electrochemical Performance of the Flexible Electrodes

Cyclic voltammetry (CV) studies of the hexagonal and rhomboidal Fe2O3-decorated
electrodes were undertaken to assess the electrochemical behavior of the electrodes, and
are presented in Figure 4a,b.

The measurements were performed at a potential window range of −0.7 to 0 V, using
scan rates of 0.005, 0.01, 0.02, 0.05, and 0.1 V s−1, and both materials presented negative
electrode behavior [15,20].

The recorded current increased with the increasing scan rate for both flexible elec-
trodes decorated with Fe2O3 nanoparticles. This observation suggests that the electrodes
exhibit excellent supercapacitive behavior. The shape of the CV profile provides valuable
information about the mechanism of charge storage and the performance of the electrode.
The non-rectangular shape of the cyclic voltammetry (CV) profile is linked to the occurrence
of faradaic reactions, namely reduction and oxidation, on the electrodes [33].

The capacitance (CP) derived from the CV analysis was calculated according to
Equation (4) [34]:

CP =
A

km∆V
(4)

where CP is the capacitance, A is the area under the curve, k is the scan rate, m is the total
mass of the sample, and ∆V is the potential window.
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The calculated capacitance versus the scan rate of the CV analysis for both nega-
tive electrodes is plotted in Figure 4c. At a 0.005V scan rate, the capacitance values are
16.25 F g−1 and 19.5 F g−1 for the amorphous ribbon treated with 0.2 M NaOH solution
and 0.4 M alkaline solution, respectively. Figure 4c shows a clear decrease in the charge
storage capacity from 16.25 to 4.74 F g−1 for the 0.2 M electrode and from 19.5 to 13.3 F g−1

for the 0.4 M electrode with increasing scan rate. This decrease is attributed to the ion
exchange mechanism and is more pronounced for the 0.2 M electrode than for the 0.4 M
electrode, probably because the highly porous hollow structures of the electrode need
more time for the intercalation–deintercalation process during charge and discharge [35,36].
Consequently, only a small fraction of the electrode material can be utilized, whereas most
of the material remains unutilized at high potentials.

Figure 5a,b illustrates the galvanostatic charge–discharge (GCD) curves as a function
of time at different current densities (0.1, 0.2, 0.3, 0.4, and 0.5 A g−1) for the negative
electrodes (0.2 M and 0.4 M) to assess the electrode’s performance.

As previously reported in the literature for various electroactive materials, an increase
in the current density results in a decrease in the discharging time [37,38]. The GCD
profiles for the negative electrode present non-linear behavior (more visible at a low current
density), indicating that the capacitance of the supercapacitor is not constant over the
entire charging/discharging process [35,39]. Furthermore, this indicates that the Faradic
pseudocapacitive nature of the as-produced flexible electrodes agrees with the results
obtained from the cyclic voltammetry measurements.The GCD curves of the 0.2 M tested
electrode displays two main variation regions (Figure 5a): an initial rapid voltage drop
due to the internal resistance followed by a subsequent linear region that can be attributed
to the capacitive behavior [40]. The GCD curve of the 0.4 M-treated electrode exhibits
a third region, which is likely caused by Faradaic processes, such as redox reactions or
electrochemical adsorption/desorption, occurring at the interface between the electrode
and the electrolyte [35].
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The specific capacitance (CSP), energy density (E), and power density (P) were calcu-
lated from the GCD analysis according to the following formulas [37]:

CSP=
I∆t

∆Vm
(5)

E =

(
CSP∆V2

2

)
(6)

P =
∆VI
2m

(7)

where I represents the applied current (in A), m represents the mass of the active material (in
g), and ∆t and ∆V represent the discharging time (in s) and the discharge voltage, respectively.

In Figure 5c, the specific capacitance, calculated from the GDC analysis, is plotted
against the current density. After increasing the power density from 0.1 A g−1 to 0.5 A g−1,
the specific capacitance of the 0.2 M electrode decreased from 5.96 F g−1 to 0.9 F g−1

and showed a more pronounced decrease compared to the 0.4 M sample. The 0.4 M
sample exhibited a higher specific capacitance compared to the 0.2 M sample, and the
capacitance was also found to be more stable, with only a slight decrease from 8.94 F g−1

to 7.41 F g−1 when the power density increased from 0.1 A g−1 to 0.5 A g−1. Figure 5d
displays the specific energy vs. specific power calculated from the GDC analysis at different
current densities.

The behavior of the two tested electrodes differs in terms of energy by the amount of
stored energy and the rate at which that energy can be delivered, as shown in the graph.
However, the specific energy to specific power ratio remains constant for both electrodes,
decreasing with the increasing current density. Both electrodes deliver the highest energy
density at an applied current density of 0.1 A g−1. The 0.2 M electrode delivers 0.48 Wh/kg
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at a power density of 20.11 W/kg and the 0.4 M electrode delivers 0.61 Wh/kg at a power
density of 20.85 W/kg.

Electrochemical impedance spectroscopy (EIS) was performed over a frequency range
of 0.1 Hz to 10,000 Hz with an amplitude of 0.01 V. The EIS spectra for 0.2 M and 0.4 M
electrodes exhibit a semicircle and a line, as depicted in Figure 6a,b. The intersection of
the EIS plots and the real axis (an impedance of zero) represents the ohmic resistance,
which encompasses the ionic resistance of the electrolyte, the resistances of the iron oxide
and iron base amorphous ribbons substrate, and the contact resistance, RS. The semicircle
observed in the EIS analysis is an indication of the charge transfer resistance (RP) between
the amorphous ribbons decorated with iron oxide and the electrolyte [41]. This resistance
corresponds to the electrochemical activity of the active material in the system (the impact
of both Faradaic and non-Faradaic reactions) [35]. The slope of the straight line observed in
the low frequency region is attributed to the Warburg resistance and capacitive behavior
of the electrode [42]. Both electrodes have a good capacitive behavior, demonstrated by
an inclination greater than 45◦ with the decrease in frequency [35]. The 0.4 M electrode
displays a higher capacitive behavior than the 0.2 M electrode, as evidenced by a steeper
inclination in the frequency range near 90◦. The inset of Figure 6a,b illustrates the equivalent
circuit used for curve fitting. Based on the extracted parameters, it was observed that the
0.4 M negative electrode exhibited a lower ionic and electronic resistance, RS = 5.44 Ω,
compared to the 0.2 M negative electrode, which had RS = 10.1 Ω. This suggests that the
0.4 M negative electrode has better conductivity. Moreover, the 0.4 M negative electrode
has a lower interfacial charge transfer resistance, RP = 3.30 Ω, compared to the 0.2 M
negative electrode at RP = 55 Ω. This can explain the superior performance of the 0.4 M
negative electrode.
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4. Conclusions

In this work, a flexible negative electrode for supercapacitors was successfully pre-
pared via a one-step chemical oxidation process by decorating amorphous ribbons with
Fe2O3 nanoparticles. This process presumes the immersion at a high holding time of the
iron-based amorphous ribbons in a low molarity NaOH solution. Uniform mesoporous
hollow-ball-like oxide (0.2 M) and rhombus-like oxide (0.4 M) formations are obtained on
the alloy surface. Varying the process parameters, such as the concentration, temperature,
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or holding time, during the oxidation process led to different morphologies or crystal struc-
tures. These different structures can be further optimized for other specific applications.
From the XRD data, it was found that the hollow ball morphology samples have a hexag-
onal structure, and the rhombus-like morphology samples have a rhomboidal structure.
The CV curves show that both samples work like negative electrodes and show a charge
storage capacities of 16.25 F g−1 for the 0.2 M sample and 19.5 F g−1 for the 0.4 M sample
at a 0.05 V/s scan rate. From the GCD analysis, the maximum specific capacitance was
obtained, with values of 5.96 F g−1 for the 0.2 M sample and 8.94 Fg−1 for the 0.4 M sample
at a power density of 0.1 A g−1. Additionally, both electrodes deliver the highest energy
density at an applied current density of 0.1 A g−1. The 0.2 M electrode delivers 0.48 Wh/kg
at a power density of 20.11 W/kg and the 0.4 M electrode delivers 0.61 Wh/kg at a power
density of 20.85 W/kg. In conclusion, this one-step synthesis process is a simple, low-cost,
effective, and efficient method for large-scale production of flexible negative electrode
materials. According to the obtained data, the amorphous ribbons decorated with Fe2O3
nanoparticles have high potential in supercapacitor applications. The relatively small
values of current density can be explained by the weight of the electrode, the total weight of
the amorphous metal alloy electrode, and the iron oxide being taken as the electrode mass.
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