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Abstract: When random-strength components work as an interconnected parallel system, then its
carrying capacity is random as well. In a case where such a multicomponent system is a subject of
the stepwise-growing workload, some of its components fail and their loads are taken over by the
ones that are intact. When the loading process is continued, the additional loads trigger consecutive
failures that degrade the system, eventually leading to a complete failure. If the goal of the system is
to carry as much load as possible, then the loading process should be continued, but no longer than
until the loading capacity of the whole system is reached. On the other hand, with every additional
load step, a failure of the system becomes more probable, as the carrying capacity is random and
known solely through its probability distribution. In such cases, the decision on when to cease the
loading process is not obvious. We introduce and analyse a minimal model of failure spreading
in an array of progressively loaded pillars controlled by a decision-maker who stops the process
when a required load is attained. We show how to construct an optimal stopping rule. Under some
additional assumptions regarding the adopted loss function, it is argued that the optimal stopping
rule is of the threshold type and it significantly depends on the shape of the load-step probability
distribution.

Keywords: array of pillars; failure; multicomponent system; optimal stopping rule; probability and
statistics; strength

1. Introduction

Knowledge of reliable and secure methods of loading that maximize the accessible
carrying capacity of loaded systems are important in multiple areas of technology and
logistics. Specifically, a progressive loading of a multi-component system until a satisfactory
load is reached while the system’s integrity is preserved represents a complex process.
This is mainly due to cascades of failed components that begin to appear when a certain
load amplitude is exceeded. Each consecutive cascade is followed by a load transfer from
failed components to intact ones, which in turn possibly trigger further failures. The
cascades may become self-sustained, resulting either in a catastrophic wave of failures that
destroy the whole system or they stop and arrest the system in a stable configuration. In
various interesting problems, the system is a subject of stepwise load increment, while
its integrity needs to be preserved. A decision-maker observing such a loading process
sequentially is expected to maximise the load but, at the same time, to stop the process
before a catastrophic cascade of failures starts to develop. They face the problem of finding
the optimal stopping rule.

Arrays of pillars [1] belong to a class of electro-mechanical multicomponent systems.
This class involves devices that are important and frequently encountered in such areas of
nanotechnology as bio-mechanical sensing [2,3], nanoscale electronics, thermoelectrics or
photovoltaics, to name but a few [4,5]. Especially prominent applications of nanopillars
refer to flexible sensors capable of detecting and measuring multidirectional forces [6] or
high-performance piezoelectric nanogenerators that convert external mechanical energy
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into electricity [7–10]. Due to size effects, sub-micron-scale pillars reveal enhanced strength
when compared with their bulk counterparts [11,12]. It turns out, that after assembling a
given bundle of pillars into an array with a prescribed geometry, the overall strength of
such an array depends on the mutual positions of individual pillars. This means that the
resulting arrays display non-negligible sample-to-sample fluctuations when subjected to
an external load [13,14]. As a consequence, the carrying capacity is a random value known
solely through its probability distribution. It makes the above-indicated optimal stopping
problem much more complicated. This problem is especially difficult and interesting if the
gain from the loaded multicomponent system monotonically increases when the total load
grows, but at the same time, catastrophic failure becomes more and more probable. In such
a case, the decision of when to stop the loading process is not obvious.

With this in mind, we introduce and analyse a minimal model of crushes spreading in
an array of progressively loaded pillars surveyed by a decision-maker who stops the process
when an optimal load is attained. An array of pillars as a model of a multi-component
system under progressive load enables us to keep the model minimal but not simplistic,
i.e., being capable to illustrate the main features of optimal stopping procedure yet still
remaining mathematically transparent.

We restrict our study to a statistical description of the system by employing distribu-
tions of relevant microscopic quantities such as pillar-strength-thresholds (σ). Our model
is formulated around a few key constituents regarding the system itself and a decision
maker that observes the loading process. Namely, a rule that governs how a load released
by a crushed pillar is transferred to the intact ones and a distribution of σ characterise the
system, whereas a given load-step distribution together with a functional link between the
applied load and resulting payoff refer to a decision-maker-action.

This work presents how to construct a reliable stopping rule in a non-deterministic
case, i.e., when randomness originating from the system constituents is entangled with that
related to the loading process realisation.

In the following, in Section 2, we specify pillar arrays and a compressive test enabling
us to determine a correct distribution of a system’s carrying capacity. Section 3 contains a
brief introduction to a so-called blackjack-type stopping problem together with necessary
notions and definitions. The main results are presented in Section 4, which directly deals
with the optimal stopping rules of pillar-arrays loading. Finally, we summarise our findings.

2. Array of Pillars under Progressive Loading

We consider an array of N pillars placed at nodes of a square substrate that transfers
stresses resulting from loads felt by the pillars, see Figure 1. Since a number of pillars
encountered in such nanodevices as, e.g., nanogenerators is of the order of 103–104 [9,15,16],
for illustration purposes we choose N = 100× 100.

Figure 1. Schematic view of array of pillars: before loading (left panel) and under a load (right panel).
High columns represent intact pillars and low ones refer to crushed pillars.

2.1. Pillars

In our model, a pillar is seen as a two-state unit, either intact or crushed. The intact state
refers to a fully functional pillar even though its bulk structure evolves with a growing load.
When a load carried by the pillar attains a given pillar’s strength, the pillar becomes crushed
irreversibly. This means that the strength threshold establishes a link between the state of
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the pillar and the applied load. Within such a scenario, the pillars are characterised solely
by strength thresholds σ. Due to various material defects and manufacturing imperfections
σ is a random variable drawn from a given probability distribution. In this paper, we adopt
a widely agreed Weibull distribution. The corresponding density function reads:

pρ(σ) = ρσρ−1 exp[−σρ], σ > 0, (1)

where the shape parameter ρ reflects variations of pillar-strength-thresholds within a
considered array. Besides ρ, the Weibull distribution (1) also involves the scale parameter λ,
which directly tunes the distribution’s argument and the pdf as σ/λ and λ · pρ, respectively.
Since it does not change the shape of the distribution, we assume λ = 1. Thus, Equation (1)
holds through all our computations.

2.2. Load Transfer Rule

Immediately after loading, the pillars start to interact elastically through stresses,
which are localised in the substrate. When a pillar i crushes its load, ∆Qi is distributed
among intact pillars in a way reflecting mechanical properties of array’s substrate and
pillars’ fixations. In this context, a simple rule governing such a distribution originates
from a power law relation ∼ 1/rγ which, in turn, describes how the stress decreases at
the distance r from a damaged location in a homogeneous material. For our purpose, we
employ a so-called range variable (RV) load transfer rule [17,18] being a discrete variant of
the above-mentioned power law relation. The RV rule allocates fractions of ∆Qi among all
intact pillars according to the following expression:

Zi
| rj − ri |γ

∆Qi, (2)

where | rj − ri | is the distance between crushed and intact pillars, and the normalisation
factor Zi ensures that the load is conserved. When the adjustable power index γ varies, the
RV rule smoothly interpolates between the short range (γ → ∞) and long range (γ = 0)
interactions among pillars. The parameter γ should be tuned in accordance with the
substrate rigidity.

2.3. Arrays’ Strengths

With a view to finding a pillar array carrying capacity (Qc) and then, to specify
distribution g(Qc) across a given ensemble of arrays, we perform the following quasi-static
compression test. A load Q, growing stepwise with increments sufficient to crush only
the pillars closest to failure, is applied with an initial increment equal to min{σ}. Then,
assume that under a certain load Q

′
, the array is in a configuration called stable, where all

the pillars are intact. A consecutive incremental load raises the total load as Q
′ → Q

′
+ δQ,

which induces crushes either driving the system to another stable configuration or inducing
an ultimate collapse that yields Qc = Q

′
.

In order to collect data required by a reliable estimate of g(Qc), we generate an
ensemble of 104 arrays of pillars with chosen values of ρ and γ. Each array undergoes the
compression test. Then, the resulting empirical distribution of Qc is verified by suitable
goodness-of-fit tests, including the Cramer–von Mises and Anderson–Darling tests [19].

3. Blackjack-Type Optimal Stopping Problems

To solve the problem described in the Introduction, we adopt methods of the optimal
stopping theory. This theory deals with the problem of choosing the best time to take a
specific action. It covers a broad group of problems investigated in various branches of
engineering [20–24]. Here, we focus on the so-called blackjack-type stopping problems,
which were studied in [25,26]. This class of problems provides valuable models for tasks of
preventing the overloading of multicomponent systems. To be precise in our considerations,
we need to introduce some formal definitions and results.



Materials 2023, 16, 2817 4 of 12

Consider a finite sequence q1, q2, . . . , qm of independent, identically distributed ran-
dom steps whose probability density f (q) is known and let Qk = q1 + q2 + . . . + qk, k ≤ m
denote the total load carried by the system once k steps are executed. A decision maker
observes sequentially the values qk and decides whether to stop or to continue. If they
decide to stop at the moment k, they obtain a value W(Qk), where a non-negative function
W represents a defined gain. We assume that the function W is non-decreasing on the
interval (0, Qc] and is non-increasing for arguments greater than Qc. Such problems are
called blackjack-type problems if the random variables {qi} are non-negative, as is the
case here, and the function W achieves its only maximum W(Qc), where Qc > 0 is a limit
given in the problem. The decision maker has to find a stopping rule that maximises the
expected gain.

In order to present solutions to blackjack-type problems, we need theoretical results
from the sequential analysis theory. As they have a profoundly formal-mathematical
character, we omit them. Interested readers are referred to [27,28] for the details, including
the formal definition of a stopping rule Q. Roughly speaking, the definition assures that
at each step the decision maker knows whether to stop or not solely on the basis of the
previous observations. Another important notion that we need here is the value V of the
stopping problem. It is simply the greatest expected gain that can be achieved in a given
stopping problem by the usage of the optimal stopping rule Q∗.

The following Proposition, which we have proved in [25], states that in many inter-
esting cases, the optimal stopping rule is of the threshold type, i.e., it is a constant that
does not depend on the number of already observed variables, and regardless of whether
the assumed number of possible steps is bounded or not. We present here its version that
addresses directly the problem of stopping the loading process.

Proposition 1. Let q1, q2, . . . , qm be independent, identically distributed random load steps and let

V1(Q) =
∫ ∞

0
W(Q + q) f (q)dq. (3)

If there exists a real number Q∗, 0 < Q∗ < Qc, such that

W(Q) < V1(Q) for 0 ≤ Q < Q∗ and W(Q) ≥ V1(Q) for Q ≥ Q∗ (4)

then the optimal stopping rule for the problem is given by the following formulae:

Q∗ = min{1 ≤ k ≤ m : Qk ≥ Q∗}. (5)

The above defined function V1 can be interpreted as the expected gain in a case where
the state of the loading process is Q and we have only one loading step q ahead. We
emphasize once again that the essential feature of the above stopping rule is its threshold
character, and this threshold Q∗ does not depend on the presumed maximal number
of steps.

The crucial aspect of the blackjack-type problems considered above was the determinis-
tic character of the problem-limit Qc, the limit is assumed to be known. In our main problem,
however, related to the loading process of the arrays of pillars, this limit is unknown. More
precisely, all we know is the probability distribution of the load-capacity-limit, which can
be approximated with the help of the Monte Carlo experiments [13]. Such a change in
assumptions needs the extension/modification of the original blackjack-type problem.

So, now we turn our attention to a problem where the given constant limit number
is replaced by a random variable with a known probability distribution. In such a case,
while “stepping forward”, the decision-maker does not know how far the actual border
that should not be crossed is. They only know the probabilities about the limit specific
ranges. This is why we need to re-define the gain function. We want to maintain, however,
the same spirit of the problem. The fundamental feature of the blackjack-problem can
be more generally yet briefly stated as follows: with every single step, the possible gain
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becomes larger, but at the same time, possible punishment becomes more probable. Thus,
we propose to adopt the following model for this situation.

Let Qc be a random variable with known probability density function g(Qc). Let
Re : R→ R be a non-decreasing function that represents a reward for the decision-maker,
while Pu : R→ R is a non-increasing function that represents a punishment. For each load
Q, Re(Q) > Pu(Q). The decision-maker receives either Re(Q) or Pu(Q), dependently on
whether or not Q is greater than Qc. Because Qc is a random variable, the decision-maker
receives Re(Q) or Pu(Q) with probabilities that result from the probability distribution of
Qc. Thus, the overall payoff Z is the following expected value of such a “lottery”:

Z(Q) = Re(Q)
∫ ∞

Q
g(x)dx + Pu(Q)

∫ Q

−∞
g(x)dx (6)

The decision-maker’s task is to find an optimal stopping rule in such a situation. The
proposed model will be called a blackjack-type stopping problem with a random limit.
In order to make it easier to distinguish between the two situations, the function W that
represents a payment for the decision-maker in the deterministic case, as so far, will be
called gain function, whilst the function Z defining the payment in the random case will be
called the payoff function. It turns out that in many interesting cases connected with the
process of loading the arrays of pillars, the optimal stopping problem with a random limit
is equivalent to the original deterministic blackjack-type stopping problem.

4. Optimal Stopping Rules for a Pillar-Array Loading

In this section, we present a specific example illustrating the possible application of
the above introduced theoretical model and results. We consider a problem of loading the
arrays determined by the following structural parameters: N = 100× 100 pillars, whose
random strength-thresholds σ are distributed according to Equation (1) with the shape
parameter ρ = 2. In our simulations, the RV load transfer rule, given by Equation (2),
operates in a regime characterized by γ = 4 which, in turn, corresponds to a short-range-
like pillar-to-pillar interactions [14].

4.1. Load Limit and Payoff Function

For such pillar arrays, the distribution of their carrying capacity (Qc) was determined
with the help of simulation experiments presented in Section 2.3, as well as described in
greater detail in [13,14]. The resulting distribution is displayed in Figure 2, see the left
panel. It appears that the empirical distribution of Qc can be very accurately approximated
by the three-parameter Weibull density

g(Qc) =

{
α
β

(
Qc−Q0

β

)α−1
exp

[
−Qc−Q0

β

]α
, for Qc ≥ Q0,

0, elsewhere
(7)

where the shape, scale and location parameters are equal, respectively: α = 14.23,
β = 1694.58 and Q0 = 1856.22. In this case, the mean value Qc = Q0 + βΓ

(
1
α + 1

)
= 3489.84.

The distribution g(Qc) is presented in the right panel of Figure 2.
The above density g(Q) enables us to compute the corresponding survival function

S(Q) = 1−
∫ Q

0 g(x)dx, which represents the probability that a given array safely supports
an applied load Q [14]. Namely:

S(Q) =

{
1, for 0 ≤ Q < Q0,

exp
[
−Q−Q0

β

]α
, for Q ≥ Q0.

(8)
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Figure 2. Empirical distribution of Qc obtained from 104 arrays of 100× 100 pillars (left panel)
and the resulting probability density of the Weibull distribution, see Equation (7), with parameters
estimated from the simulations (right panel).

Now, in order to determine the optimal stopping rule, we need to know the payoff
function defined by Equation (6). For our illustrative purpose, we assume that the reward
part is proportional to the total load put on the array, while the punishment part (activated
in case of overloading) is the opposite number. Without loss of generality, the proportion
coefficient can equal 1. Hence, in our example,

Re(Q) = Q, and Pu(Q) = −Q. (9)

and resulting payoff function

Z(Q) = Q
{

2 · exp
[
−
(

Q−Q0

β

)α]
− 1
}

(10)

is presented in Figure 3. We recall that the general formula defining Z is given by
Equation (6).

2.0 2.5 3.0 3.5 [×103]Q
0.0

0.2

0.4

0.8

1.0

S(Q)

2.0 2.5 3.0 3.5 [×103]Q

-4

-3

-2

-1

0

2

Z

3

[×103]

Figure 3. Payoff function Z given by Equation (10). The inset shows survival function S given by
Equation (8).
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Its global maximum 3025.1 is attained at Qmax = 3111.4. The function is increasing
on the interval (0, Qmax] and is decreasing for arguments greater than Qmax. So, we deal
with the blackjack-type optimal stopping problem. In our problem, an array is loaded
sequentially, by applying random load steps, one by one, until the rule tells us to stop, i.e.,
until we cross the threshold Q∗. The last thing needed to find the value of the threshold
Q∗ is the probability distribution f (q) of the load-steps q1, q2, . . ., that will be applied on
the pillar array during the loading process. In accordance with Equation (4), Z < V1 for
Q < Q∗ < Qmax and inversely, Z > V1 for Q∗ < Q < Qmax. Therefore, Q∗ corresponds to
the unique solution of the following integral equation:

Z(Q) =
∫ ∞

0
Z(Q + q) f (q)dq. (11)

We will distinguish five illustrative distributions f (q): uniform, Bates distribution for
n = 3, truncated normal, half-normal, and exponential ones. Their parameters were chosen
so that the mean value q of the single step was the same. In this regard, we present the
results for five cases where q ∈ {150, 175, 200, 225, 250}. Figure 4 shows these distributions
sketched for q = 250.

Bates (n=3)

truncated normal

uniform

0 100 200 400 500q
0.000

0.001

0.002

0.004

0.005

f (q)

exponential

half-normal

0 100 200 400 500q 600 700 800
0.000

0.001

0.002

0.004

0.005

f (q)

Figure 4. Sketch of considered load steps distributions f (q), as drawn in the case q = 250. Left panel:
PDFs with the finite support [0, q]. Right panel: PDFs with the semi-infinite support [0, ∞].

4.2. Uniform Distribution of Load Steps

Let us assume that the load steps are distributed according to uniform distribution
defined on the interval [0, 500]. In this case, the function V1 (from Proposition) cannot be
obtained explicitly, but its values can be determined numerically, and it can be verified that
the condition Equation (4) holds. The function V1 along with the payoff Z are presented in
Figure 5.

It results from the Proposition that to find the corresponding threshold Q∗ determining
the optimal stopping rule, see Equation (5), we need to solve Equation (11). Although V1
is given only in the integral form, the solution can be easily found numerically. In our
example, it equals Q∗ = 2872.45. So, our stopping rule tells us to continue the process of
loading the array of pillars until the total load is greater than (or equal to) Q∗ = 2872.45 for
the first time.
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2.4 2.6 2.8 3.2 [×103]Q
-1

0
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2

3

[×103]

V1

Z

Figure 5. The function V1 and the payoff function Z in the case of uniformly distributed loading steps
with q = 250.

4.3. Solution of Optimal Stopping Problem

Typically, the solution of the optimal stopping problem consists of the optimal stopping
rule, which we have already found, and the value of the problem. Again, in the considered
case, it can only be performed numerically. Our proposal is to use a proper Monte Carlo
procedure that was already applied in similar tasks, see [26]. A procedure that can be used
for our problem may follow the steps:

1. Set Load=0
2. Set ActualLimit = RandomNumber[LimitDistribution]
3. While (Load<Q*)AND(Load<ActualLimit) set

Load=Load+RandomNumber[StepDistribution]
4. If Load < ActualLimit set Payoff = Load else set Payoff = -Load
5. Return Payoff

After simulating 105 runs of the above procedure, we found the approximate value of the
problem, which equals 2944.18.

Analogous results can be obtained for the optimal stopping problems with step dis-
tributions presented in Figure 4. More precisely, apart from the uniform one, we also
considered the following step distributions: Bates distribution with n = 3 and the sup-
port [0, b], normal distribution N(b/2, b/4) truncated to the interval [0, b] (in both cases
b ∈ {300, 350, 400, 450, 500}), and half-normal and exponential distributions, both with a
mean q ∈ {150, 175, 200, 225, 250}. Such a choice of the parameters of the distributions
assures that the mean value of the single step was the same for all considered distribution
types. The results presented in Table 1 were received in precisely the same way as described
in Section 4.2 for the uniformly distributed steps.
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Table 1. Data corresponding to optimal stopping with chosen loading step distributions.

Step
Distribution

Mean Load
Step q

Step Standard
Deviation

Optimal
Threshold Q∗

Value of the
Problem V

Bates 250 83.33 2927.98 2975.70

truncated normal 250 109.95 2905.02 2963.97

uniform 250 144.34 2872.45 2944.18

half-normal 250 188.88 2760.99 2827.05

exponential 250 250.00 2600.77 2600.55

Bates 225 75.00 2950.35 2984.43

truncated normal 225 98.95 2930.82 2973.76

uniform 225 129.90 2902.56 2960.94

half-normal 225 169.99 2805.83 2861.57

exponential 225 225.00 2657.74 2658.53

Bates 200 66.67 2971.88 2992.69

truncated normal 200 87.96 2955.56 2983.30

uniform 200 115.47 2931.45 2973.25

half-normal 200 151.10 2849.89 2895.03

exponential 200 200.00 2715.57 2714.77

Bates 175 58.33 2992.52 3001.67

truncated normal 175 76.97 2979.17 2994.49

uniform 175 101.04 2959.05 2985.46

half-normal 175 132.21 2892.68 2926.08

exponential 175 175.00 2773.93 2771.59

Bates 150 50.00 3012.26 3007.89

truncated normal 150 65.97 3001.62 2999.43

uniform 150 86.60 2985.26 2997.42

half-normal 150 113.33 2933.63 2952.24

exponential 150 150.00 2832.40 2831.59

Before the analysis of the presented results, let us note that, among the considered step
distributions, we have three distributions that are defined on finite support, and two with
semi-infinite support. The first three are uniform, Bates, and truncated normal, while the
latter ones are half-normal and exponential. The density functions of these distributions
are shown in Figure 4.
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Now, based on Table 1, one can make several interesting observations regarding our
stopping problem.

The first observation is rather natural and expected; our results confirm that for any
fixed type of distribution, the longer the step (as represented by its expected value q), the
lower the value of the corresponding thresholds for stopping. It is natural because with
long random steps, being close to the verge of loading capacity, one can much easier cross
the unknown limit, while with short steps one could “carefully” try to move closer to the
limit. Such an intuitive interpretation is confirmed formally by our theoretical results. What
is perhaps less obvious, however, is that such a relationship between the step length and
the threshold value can be strongly violated if, along with the length of the steps, also the
type of its distribution changes. For instance, the threshold in the case of steps having Bates
distribution with q = 250 is greater than the one for steps with uniform distribution with a
mean of q = 225. It is so even in spite of that in the case of uniform distribution, the steps
have a smaller maximum length. The same is true for other pairs of successive step lengths
presented in Table 1. The possible reason is the shape of the distributions, see Figure 4. We
see that, in the case of uniform distribution, the greatest values, which are close to the right
endpoint of the interval, are much more probable than the same values in the case of Bates
distribution. This indicates that the shape of the step distribution has a significant impact
on this relation.

Another observation concerns the impact of the variability of the step lengths (rep-
resented by their standard deviations) on the optimal threshold value. One could expect
that for a fixed average-step-length the increment of the dispersion should result in a
smaller value of the optimal threshold. Intuitively, it should be so as a result of greater
uncertainty connected with the actual step lengths. Such uncertain steps may be riskier
in the neighbourhood of the loading capacity limit. In our problems, this relation is true
for all examined types of step distribution. It indicates that: (i) the value of the optimal
stopping threshold is sensitive to the uncertainty resulting from the dispersion of the step
lengths, and (ii) this value tends to become smaller when the uncertainty increases.

Our next observations refer to the value of the problem. As we know, this is a very
important characteristic for a decision-maker, because it shows the maximal expected
payoff that could be gained in a given specific problem of an array-of-pillars loading. The
results in Table 1 show that for each type of step distribution, the value of the problem
increases when the average length of steps decreases. On the other hand, based on our
results, similar monotonic relationship can be also observed between the values of the
problem and the standard deviation of the step lengths. Both observations are easy to
explain. However, the joint effect of changes in step lengths and their variability is not
clear. It certainly depends on the degree of relative changes in those parameters and on
the type of step distribution. For instance, when comparing the Bates distribution with
q = 250 with half-normal distribution with q = 150, we see that the value of the problem
is greater for the first one (although the step is much greater on average). In contrast, the
value of the problem for the truncated normal distribution with q = 250 is less than the
one for uniform distribution with q = 200, in spite of a greater standard deviation of the
latter. Again, we see that apart from those two basic statistical measures, the type of the
specific step distribution plays an important role. All our observations confirm that in the
considered problem of preventing the overloading of the arrays, it is essential to acquire
more detailed knowledge about the specific type and shape of the step distribution. Such
knowledge is necessary to develop a proper stopping rule.

5. Conclusions

We have investigated how to establish a stopping rule that allows one to approach
a high level of applied load and, at the same time, to protect the loaded system from a
catastrophic failure. The results point out some important facts about the problem.

First, let us note that it would be unwise to adopt a naive stopping policy: continue
the loading process until one reaches the mean carrying capacity [29]. In all cases presented
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in Table 1, the optimal stopping threshold is much less than that value. What is also
interesting is that neither the mean nor the standard deviation of the random step provides
enough information for the proper decision about when to stop the loading process. We
can see that the values of the problem, i.e., the expected maximal payoff, do not depend on
those parameters in an obvious way. Namely, the same mean value of the step results in
significantly different optimal stopping thresholds as well as different expected maximal
payoffs depending on the shape of considered distributions. On the other hand, although
the relationship between these values and the standard deviations of the steps seems to be
monotonic, it is still not enough to draw a conclusion about the optimal threshold value in
a specific problem. This indicates that what matters here is the type of step distribution. It
is often encountered in engineering praxis to look merely at the two principal parameters
of the random distributions: the mean and the standard deviation. As we see it would be
not enough in the above-considered decision-making tasks.

Our study clearly shows that for a given multicomponent system, the optimal thresh-
old and the value of the problem strongly depend on the shape of the loading step distribu-
tion. This remark is very important, since it indicates the bounds of the direct applicability
of the results.

The limitations of the potential applications of the presented above optimal stopping
rules result from the latter remark, i.e., the proposed method is reasonably applicable only
if one can acquire detailed knowledge of the probability density function of the loading
step distribution [29,30]. Obviously, such a requirement also concerns the distribution of
the limit of the loading capacity of the system. Thus, in engineering praxis, when dealing
with similar problems, one should conduct an appropriate statistical study to determine
the shapes of those distributions as precisely as possible. It is quite a restrictive requisite
from the perspectives of many potential applications. However, if it can be satisfied, then
the effort is compensated by the procedure that optimally prevents system overloading.
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