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Abstract: Pyrethroids are common contaminants in water bodies. In this study, an efficient mussel
shell-based adsorbent was prepared, the effects of factors (calcination temperature, calcination time,
and sieved particle size) on the pyrethroid adsorption capacity from calcined shell powder were
investigated via Box–Behnken design, and the prediction results of the model were verified. By
characterizing (scanning electron microscopy, X-ray diffraction, Fourier infrared spectroscopy, and
Brunauer–Emmett–Teller measurements) the adsorbent before and after the optimized preparation
process, the results showed that calcined shell powder had a loose and porous structure, and the
main component of the shell powder under optimized condition was calcium oxide. The adsorption
mechanism was also investigated, and the analysis of adsorption data showed that the Langmuir,
pseudo second-order, and intra-particle diffusion models were more suitable for describing the
adsorption process. The adsorbent had good adsorption potential for pyrethroids, the adsorption
capacity of the two pesticides was 1.05 and 1.79 mg/g, and the removal efficiency was over 40 and
70% at the maximum initial concentration, respectively.

Keywords: adsorption; Box–Behnken design; calcined shell powder; pyrethroid

1. Introduction

Compared to carbamate and organophosphorus pesticides, synthetic pyrethroids
are a class of compounds that are widely used for pest control because of their strong
insecticidal ability and lower mammalian toxicity, and they are often present in large
quantities in environmental water bodies [1,2]. Substantial evidence shows that pyrethroid
insecticides are associated with damage to multiple systems in humans, including the
nervous, digestive, and reproductive systems [3,4]. Chronic exposure to pyrethroids in
pregnant and lactating females can increase the risk of toxicity or death in the offspring [5].
In addition, pyrethroids have significant lethal effects on aquatic species, and the toxicity of
pyrethroids to fish is approximately 1000-fold higher than that of mammals and birds [6].
Therefore, the effective reduction of pyrethroid residues in environmental water bodies has
positive implications.

For environmental pollutants, there are several commonly used removal methods,
such as physical adsorption [7,8], solvent extraction [9], and biodegradation [10], among
which physical adsorption has a greater advantage for removing pesticide residues from
water bodies. A good physical adsorbent requires low expense, high adsorption capacity,
environmental friendliness, and sustainability [11]. Natural inorganic mineral products
have been widely studied as adsorbents. Mussels are a common economic shellfish in the
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southeastern coastal region of China, and they are consumed in large quantities every year.
Along with the economic growth brought about by huge consumption, a large amount of
untreated shell waste is abandoned in the natural environment. For example, in Zhoushan,
the home of mussels in China, the total annual mussel production is nearly 100,000 tons,
of which the amount of discarded shells is more than 60,000 tons [12]. The long-term
accumulation of untreated shell waste not only easily generates microorganisms and emits
an odor, but also occupies a lot of land resources and causes environmental pollution [13];
therefore, effective use of shell resources is an important issue. The main component of
mussel shells is carbonate, which is chemically stable, inexpensive, easy to obtain, has
a multilayer porous material structure, and has been widely used as an adsorbent material
in recent years because of its good adsorption capacity [14,15]. Susana et al. studied
the adsorption capacity of mussels for mercury and showed that calcined mussel shells
have a high adsorption efficiency for mercury, and phosphate promotes this process [16].
Peinemann et al. successfully removed phosphate from a lactic acid-containing fermenta-
tion broth using a shell powder, and the phosphate removal efficiency was as high as 95%
after 2 h [17]. Notably, most studies on the adsorption of environmental pollutants have
focused on metal ions [18,19], dyes [20,21], and pesticides [22], and much progress has been
made in the study of conventional pesticide adsorption, while reports on the adsorption of
newer generations of insecticides such as pyrethroids are rare.

In this study, discarded mussel shells were crushed and calcined to make a porous
adsorbent for bifenthrin and cypermethrin, which are the most common class of pyrethroids
in environmental water bodies [6,23]. Response surface methodology (RSM) was used
to optimize the calcination process of the mussel shell powder. The adsorbent under
optimal calcination conditions was characterized via X-ray diffraction, scanning electron
microscopy, Fourier infrared spectroscopy, and Brunauer–Emmett–Teller measurements.
In addition, the adsorption mechanism was analyzed to elucidate the adsorption process,
and variables on the adsorption capacity of pesticides were also involved, these results will
provide a future reference for the removal of pyrethroid residues from the environment.

2. Materials and Methods
2.1. Materials and Reagents

Mussel shells were obtained from Shengsi, Zhoushan, China (122◦75′ E, 30◦71′ N).
Bifenthrin and cypermethrin were purchased from HaoLiTe Biopesticide Co., Ltd.
(Qingdao, China). Hydrochloric acid (HCl, A.R. grade, 36–38%) and sodium chloride
(NaCl, A.R. grade, ≥99.5%) were purchased from Shanghai Sinopharm Chemical Reagent
Co., Ltd. (Shanghai, China). Acetonitrile (HPLC. grade, ≥99.9%) and n-hexane (HPLC.
grade, ≥99.9%) were purchased from Shanghai Macklin Biochemical Technology Co., Ltd.
(Shanghai, China). Unless otherwise specified, all the water used for the experiments
was ultrapure.

2.2. Equipment and Characterization

A tube furnace (Shuoguang SGL-1200, Shanghai, China) was used for calcining
shell powder. Pyrethroid adsorption capacity was analyzed via gas chromatogra-
phy (GC; Agilent 19091J, Santa Clara, CA, USA); the conditions were: DB-5 column
(30 m × 320 µm × 0.25 µm); injection port temperature: 250 ◦C; carrier gas: N2 (99.99%);
detector temperature: 280 ◦C; carrier gas flow rate: 1 mL/min; no splitting. Scanning
electron microscope (SEM; HITACHIS 3400-N, Tokyo, Japan) was used to observe the
microstructure and surface morphology of the sample; pictures were taken at an acceler-
ating voltage of 15 kV. X-ray diffraction (XRD; Bruker D8 Advance, Karlsruhe, Germany)
was used to analyze the phase composition and crystal structure of the sample; radiation
source was CuKα; step size: 0.02◦; scanning speed: 0.2 s/step; wavelength λ: 0.15406 nm;
voltage: 40 kV; current: 40 mA; 2θ range: 5–90◦. Fourier Transform Infrared Spectrometer
(FT-IR; JASCO FT/IR-4700, Tokyo, Japan) was used to record the IR absorption spectra of
the sample and analyze their functional groups; scanning speed: 16 times/s; resolution:
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4 cm−1. Brunauer–Emmett–Teller analyzer (BET; Micromeritics ASAP-2460, Norcross, GA,
USA) was used to analyze the changes in the specific surface area and pore distribution
before and after calcination of the materials. Zetapotential analyzer (Anton paar; SurPASS 3;
Graz, Austria) was used to measure the zeta potential of the calcined mussel shell powder
at different pH.

2.3. Preparation of Calcined Shell Powder

Mussel shells were soaked in 0.5% HCl for 2.0 h and then washed with ultrapure water
to neutral. The washed mussel shells were dried in a blast dryer till a constant weight was
reached and then crushed using an ultra-micro crusher to obtain a shell powder. The shell
powder was sieved with a standard sieve, then heated to the set temperature in a tube
furnace at 5 ◦C per minute, and maintained at the highest temperature for a while. After
calcination, the sample was cooled to room temperature and passed through the standard
sieve again to obtain calcined shell powder. During the calcination process, the highest
temperature set was considered the calcination temperature, the time maintained at this
temperature was considered the calcination time, and the sieved particle size of the sample
is expressed by the mesh of the sieve.

2.4. Optimization of the Preparation Process of Calcined Shell Powder
2.4.1. Adsorption Experiment Steps

Bifenthrin and cypermethrin were diluted with acetonitrile to prepare a mixed stock
solution (1.0 mg/mL), 0.2 mL mixed stock solution was added to 20 mL water, then 0.1 g
calcined shell powder was added to pyrethroid aqueous solution and this stood for 0.5 h.
After standing, 10.0 mL supernatant and 5.0 g NaCl were added to 25.0 mL acetonitrile.
The mixture was placed in a high-speed centrifuge at 8000 rpm for 2.0 min, and after
the mixed solution was completely layered, 5.0 mL of the supernatant was transferred
to another centrifuge tube, and nitrogen was blown near dry at 50 ◦C in a water bath.
After nitrogen blowing, the residual solid was re-dissolved in 2.0 mL n-hexane solution,
fully shaken, and filtered through 0.22 µm organic system filter membranes before GC
analysis. The removal efficiency and adsorption capacity of pyrethroids were calculated
with Equations (1) and (2).

R =
C0 − Ce

C0
× 100% (1)

qe =
(C0 − Ce)V

m
(2)

where C0 (mg/L) and Ce (mg/L) denote the initial and equilibrium concentrations of
pyrethroids in solution, respectively, V (L) is the volume of the pyrethroid solution, m (g) is
the mass of adsorbent used, R (%) is the removal efficiency of pyrethroids, and qe (mg/g)
denotes the capacity of pyrethroids adsorbed by the adsorbent.

2.4.2. Single-Factor Experiments

To explore the effects of calcination temperature on pyrethroid adsorption capacity,
1.0 g shell powder through 300 mesh sieve was heated in a tube furnace to 550, 650, 750, 850,
950, and 1050 ◦C, and cooled to room temperature after 3.0 h to determine the pyrethroid
adsorption capacity. To investigate the effects of calcination time on pyrethroid adsorption,
1.0 g shell powder through 300 mesh sieve was heated to 850 ◦C in a tube furnace and
then thermostated for 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 h, and cooled to room temperature to
determine the pyrethroid adsorption capacity. To investigate the effects of sieved particle
size on pyrethroid adsorption, 1.0 g shell powder was sieved through 150, 200, 250, 300, 350,
and 400 mesh sieves, then heated to 850 ◦C in a tube furnace, and thermostatted for 2.5 h;
the capacity of pyrethroid adsorption was measured after cooling to room temperature.
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2.4.3. Box–Behnken Design

To investigate the effects of the main factors in the preparation of calcined shell powder
on pyrethroid adsorption capacity, Box–Behnken design with 17 groups of experiments
was designed, calcination temperature, calcination time, and sieved particle size were
selected as the independent variables of the experiments, and the adsorption capacity of
the two pyrethroids was taken as response values. The sample obtained under optimal
calcination conditions was denoted Optimal Calcined Shell Powder (OCSP), and the shell
powder before calcination was denoted Un-calcined Shell Powder (USP). In order to
investigate the difference in the capacity of pyrethroid adsorption by shell powder before
and after optimal optimization conditions, 0.1 g of USP and OCSP were added to the
two pyrethroid solutions, and their pesticide adsorption capacities were compared; each
group of experiments was repeated three times and the results were averaged.

2.5. Batch Adsorption Experiment
2.5.1. Adsorption Experiments

Unless stated otherwise, the pyrethroid solutions mentioned in this experiment refer
to a mixture of bifenthrin and cypermethrin in equal proportions. In order to investigate
the effects of reaction time on adsorption behavior, 0.1 g OCSP was added to 20 mL
of pyrethroid aqueous solution with a concentration of 10 mg/L, and the pyrethroid
adsorption capacity was analyzed at time intervals of 0.5, 2, 5, 10, 15, 20, 25, 30, 35,
and 40 min. To investigate the effects of the initial concentration of pyrethroids on the
adsorption behavior, 0.1 g OCSP was added to 20 mL of pyrethroid aqueous solution with
pesticide initial concentrations of 0.5, 1, 2, 4, 6, 8, and 10 mg/L, respectively; the capacity
of pyrethroids adsorption was analyzed after 0.5 h. To investigate the effects of adsorbent
dosages on the adsorption behavior, different dosages of OCSP (5, 7.5, 10, 12.5, and 15 g/L)
were added separately to 20 mL of pyrethroid aqueous solution with a concentration
of 10 mg/L; reaction time was the same as the adsorption isotherm experiment. For
the purpose of exploring the effects of pH on the adsorption behavior, 0.1 g OCSP was
added to 20 mL of pyrethroid aqueous solution with a concentration of 10 mg/L, and
the solution pH values were 6.0, 7.0, 8.0, 9.0, and 10.0, respectively; other experimental
conditions remain unchanged (see Section 2.3). To explore the effects of NaCl salinity on
the adsorption behavior, 0.1 g OCSP was added to 20 mL of pyrethroid aqueous solution
with a concentration of 10 mg/L, and the NaCl salinity of the solution ranges from 0 to 4%;
the capacity of pyrethroid adsorption was analyzed after 0.5 h.

2.5.2. Adsorption Kinetic Model

Adsorption kinetics is usually used to analyze the adsorption efficiency of adsorbents,
mainly involving the relationship between the action time of the adsorbent and its adsorp-
tion capacity [24]. In this study, the pseudo first-order (Equation (3)), pseudo second-order
(Equation (4)), and intra-particle diffusion model (Equation (5)) were used to describe the
adsorption process by OCSP.

ln(qe − qt) = ln(qe)−
k1

2.303
t (3)

t
qt

=
1

k2q2
e
+

1
qe

t (4)

qt = kpit1/2 + C (5)

where qe (mg/g) and qt (mg/g) are the adsorption capacity of the adsorbent at adsorption
equilibrium and time t; k1 (min−1) and k2 (g/mg·min) are the pseudo first-order and pseudo
second-order model constants, respectively; kpi (mg/g·min1/2) is the rate constant of the
intra-particle diffusion model; and C is the relevant constant.
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2.5.3. Adsorption Isotherm Model

Adsorption isotherms could be used to analyze the interaction between the adsorbent
and the adsorbed materials at an equilibrium state [20]. Langmuir model (Equation (6))
is based on the adsorbate being monolayer and uniformly adsorbed on the surface of the
adsorbent, and there exists no interaction between the adsorbates. The empirical equation
of the Freundlich model (Equation (7)) is based on nonideal adsorption on heterogeneous
surfaces [24].

qe =
qmKLCe

1 + KLCe
(6)

qe = KFCn
e (7)

where qm (mg/g) is the maximum adsorption capacity of the adsorbent, KL (L/mg) is
the Langmuir model constant related to the adsorption rate, KF, and n are Freundlich
mode constants.

2.6. Reusability Studies

To investigate the reusability of adsorbent, the calcined shell powder was filtered out
from the pyrethroid solution after the adsorption process, then dried to constant weight
at 105 ◦C in a blast drying oven. Afterward, the pesticide adsorption and drying steps of
calcined shell powder were repeated, and the capacity of pyrethroids adsorbed was also
measured each time.

2.7. Data Analysis

Design Expert 10.0.1 was used for experimental data acquisition and analysis of RSM.
Origin 2019b and SPSS 25.0 were used to establish the adsorption model and analyze
related data.

3. Results and Discussion
3.1. Analysis of the Response Surface

Based on the results of the single-factor experiment (Figure S1), the factors and levels
(Table S1) for optimization experiments were determined. The model adsorption equations
of bifenthrin and cypermethrin are shown in Equations (8) and (9).

Y1 = 0.86 + 0.094 A − 0.005 B + 0.024 C + 0.012 AB − 0.13 AC − 0.023 BC − 0.26 A2 − 0.065 B2 − 0.33 C2 (8)

Y2 = 1.56 + 0.14 A + 0.04 B + 0.15 C − 0.011 AB − 0.20 AC + 0.0062 BC − 0.44 A2 - 0.043 B2 − 0.64 C2 (9)

where Y1 (mg/g) and Y2 (mg/g) refer to the adsorption capacity of bifenthrin and cyper-
methrin; A, B, and C are the coded values of calcination temperature, calcination time, and
sieved particle size.

The results of the response surface optimization experiments and the ANOVA analysis
of the model are shown in Tables S2–S4. From the ANOVA analysis, the linear and square
effects of calcination temperature (A) and sieved particle size (C) were significant (p < 0.05),
and the higher F-value of calcination temperature (A) and sieved particle size (C) terms in
the linear effect indicated that the process of calcined shell powder preparation was greatly
influenced by these two variables [25].

The response surface diagram is shown in Figure 1, compared to calcination time,
calcination temperature and sieved particle size are more significant in the pyrethroid
adsorption model. The above results indicate that the calcination temperature and sieved
particle size are important factors influencing the pyrethroid adsorption of OCSP; the calci-
nation temperature being too low will lead to incomplete volatilization of impurities in the
material and incomplete pore generation; conversely, too high calcination temperatures will
lead to partial melting and slabbing of the material, collapse of existing pores, reduction of
the specific surface area of the material, and deterioration of the adsorbent performance [26].
The influence of the sieved particle size on the adsorbent is reflected in the fact that the
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smaller the sieved size, the larger the specific surface area of the resulting adsorbent, and
the more active adsorption sites per unit mass. However, when the sieved particle size
of the adsorbent was too small, even after calcination, the volume of the material itself
will limit the creation of pores, which was not conducive to the adsorption of the adsor-
bate [27,28]. In addition, the optimization experiment concluded the optimal conditions
for the preparation of calcined shell powder (calcination temperature: 867 ◦C; calcination
time: 2.49 h; and sieved particle size: 350 mesh). To validate the predicted optimal pesticide
adsorption capacity given by the model, the OCSP under optimal conditions was made
for pyrethroid adsorption, and the results (Figure 2) verify that the predicted capacity of
pyrethroid adsorption by OCSP was generally consistent with the experimental result;
OCSP showed a significant improvement in pyrethroid adsorption capacity compared
to USP.

Figure 1. Response surface diagram for the combined effect of (a) calcination temperature and
calcination time, (b) calcination temperature and sieved particle size, and (c) calcination time and
sieved particle size on pyrethroid adsorption capacity.
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3.2. Characterization
3.2.1. XRD Characterization

Figure 3a,b show the XRD patterns of mussel shell powder before and after calcination,
respectively. The diffraction peaks in Figure 3a are characteristic of calcium carbonate, in
which the peaks at 29.41◦, 36.00◦, 39.44◦, 43.19◦, and 57.43◦ correspond to the main peaks
of crystalline calcium carbonate calcite with Miller indices of (104), (110), (113), (202), and
(122), respectively. The peaks at 26.22◦, 33.12◦, 37.87◦, and 50.23◦ are the main peaks of
the aragonite calcium carbonate, with corresponding Miller indices of (111), (012), (102),
and (132), respectively. The diffraction peaks at 32.24◦, 37.40◦, and 53.89◦ in Figure 3b are
the main diffraction peaks of CaO, corresponding to the Miller indices (111), (200), and
(220), respectively. Comparing the physical phase analysis before and after calcination, only
two crystalline forms of calcium carbonate were concluded to exist in the shell powder
before calcination and no vaterite crystal form was found. This is because, compared
to the other two crystalline forms, vaterite is very unstable under natural conditions;
therefore, its diffraction peaks do not appear [29]. After calcination, the shell powder was
completely transformed into calcium oxide [30], and its chemical structure and properties
changed significantly.

Figure 3. XRD of (a) USP and (b) OCSP.

3.2.2. Micro Topography Analysis

The adsorption capacity of an adsorbent is often related to its structure [31], and
changes in the microscopic morphology of the sample before and after calcination can
be observed using SEM. As shown in Figure 4a,b, the surface structure of the USP had
a very dense lamellar structure, and only evident gully-like gaps existed between the
layers, and the alignment of these gaps was basically in the same direction. In contrast,
the surface of the OCSP shown in Figure 4c,d had very obvious cracks, which varied in
size and had no obvious pattern in their distribution, indicating that a small amount of
organic macromolecules, such as proteins and polysaccharides, existing in the original shell
powder was completely lost after high-temperature calcination [32]. The rough surface
and folded cracks of the calcined shell powder allowed better adsorption of environmental
pollutants, which is one of the important reasons why inorganic mineral-based materials
are often used as adsorbents.

3.2.3. FT-IR Analysis

Figure 5 shows the FT-IR spectra of USP and OCSP. The USP peaks at 1455, 876, and
713 cm−1 showed obvious absorption peaks, where the absorption peak at 1455 cm−1 was
typical for calcite with C–O asymmetric stretching vibration, and the peaks at 876 and
713 cm−1 were aragonite absorption peaks and calcite absorption peaks doped with a small
amount of aragonite, respectively; the molecular vibration types corresponded to the CO3

2−
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out-of-plane bending vibration and Ca–O in-plane bending vibration, respectively [33,34].
In addition, there were three weak peaks in USP located at 2518, 1795, and 1080 cm−1,
which were O–C–O asymmetric stretching vibration peaks in calcium carbonate, C=O
bond [35], and symmetric stretching vibration in calcite mixed with a small amount of
aragonite [36], respectively. Therefore, the main components of the shell powder before
calcination were calcium carbonate, with calcite, and aragonite. There were also several
distinct diffraction peaks of OCSP, with the sharpest and most elongated peak at 3643 cm−1,
which is the characteristic peak of calcium oxide and is related to the O–H bond [37]. The
peaks at 1414 and 874 cm−1 correspond to C–O bond and Ca–O bond [35]. Combined with
the FT-IR analysis, the main composition of the shell powder before calcination was verified
to be calcium carbonate containing calcite and aragonite crystals without vaterite crystals,
while the shell powder after calcination at high temperature was completely converted to
calcium oxide.

Materials 2023, 16, x FOR PEER REVIEW 8 of 16 
 

 

3.2.2. Micro Topography Analysis 
The adsorption capacity of an adsorbent is often related to its structure [31], and 

changes in the microscopic morphology of the sample before and after calcination can be 
observed using SEM. As shown in Figure 4a,b, the surface structure of the USP had a 
very dense lamellar structure, and only evident gully-like gaps existed between the lay-
ers, and the alignment of these gaps was basically in the same direction. In contrast, the 
surface of the OCSP shown in Figure 4c,d had very obvious cracks, which varied in size 
and had no obvious pattern in their distribution, indicating that a small amount of or-
ganic macromolecules, such as proteins and polysaccharides, existing in the original 
shell powder was completely lost after high-temperature calcination [32]. The rough 
surface and folded cracks of the calcined shell powder allowed better adsorption of en-
vironmental pollutants, which is one of the important reasons why inorganic miner-
al-based materials are often used as adsorbents. 

 
Figure 4. SEM images of (a,b) USP and (c,d) OCSP. 

3.2.3. FT-IR Analysis 
Figure 5 shows the FT-IR spectra of USP and OCSP. The USP peaks at 1455, 876, and 

713 cm−1 showed obvious absorption peaks, where the absorption peak at 1455 cm−1 was 
typical for calcite with C–O asymmetric stretching vibration, and the peaks at 876 and 
713 cm−1 were aragonite absorption peaks and calcite absorption peaks doped with a 
small amount of aragonite, respectively; the molecular vibration types corresponded to 

Figure 4. SEM images of (a,b) USP and (c,d) OCSP.

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

the CO32− out-of-plane bending vibration and Ca–O in-plane bending vibration, respec-
tively [33,34]. In addition, there were three weak peaks in USP located at 2518, 1795, and 
1080 cm−1, which were O–C–O asymmetric stretching vibration peaks in calcium car-
bonate, C=O bond [35], and symmetric stretching vibration in calcite mixed with a small 
amount of aragonite [36], respectively. Therefore, the main components of the shell 
powder before calcination were calcium carbonate, with calcite, and aragonite. There 
were also several distinct diffraction peaks of OCSP, with the sharpest and most elon-
gated peak at 3643 cm−1, which is the characteristic peak of calcium oxide and is related to 
the O–H bond [37]. The peaks at 1414 and 874 cm−1 correspond to C–O bond and Ca–O 
bond [35]. Combined with the FT-IR analysis, the main composition of the shell powder 
before calcination was verified to be calcium carbonate containing calcite and aragonite 
crystals without vaterite crystals, while the shell powder after calcination at high tem-
perature was completely converted to calcium oxide. 

 
Figure 5. FT-IR analysis of USP and OCSP. 

3.2.4. BET and Pore Analysis 
Figure 6 illustrates the nitrogen adsorption isotherms and pore size distributions of 

USP and OCSP. When P/P0 was higher than 0.4, the adsorption and desorption isotherms 
started to separate because of capillary condensation of the adsorbate, and the adsorption 
volume increased rapidly and produced a hysteresis loop, which is typical of type IV 
isotherm with type H3 hysteresis loop according to the IUPAC classification criteria and 
is commonly found in mesoporous materials [38,39]. Table 1 shows the specific surface 
area, pore volume, and pore size of USP and OCSP, and the pore sizes of the two mate-
rials were 12.80 and 15.48 nm, respectively, indicating that they were mesoporous mate-
rials. The specific surface area, pore volume, and pore size of the OCSP increased sig-
nificantly, indicating that the impurities in the shell powder were calcined out after 
high-temperature calcination, and their original pores increased, which was more fa-
vorable for the adsorption of the adsorbate. 

4000 3500 3000 2500 2000 1500 1000 500

Tr
an

sm
itt

an
ce

 (a
.u

.)

Wavelength/(cm-1)

 OCSP

874

1414

3643

1795

O–H

C–O

Ca–O

 USP

713

876

1455
C–O

2518
O–C–O C=O

CO3
2-

Ca–O

Figure 5. FT-IR analysis of USP and OCSP.



Materials 2023, 16, 2802 9 of 15

3.2.4. BET and Pore Analysis

Figure 6 illustrates the nitrogen adsorption isotherms and pore size distributions of
USP and OCSP. When P/P0 was higher than 0.4, the adsorption and desorption isotherms
started to separate because of capillary condensation of the adsorbate, and the adsorption
volume increased rapidly and produced a hysteresis loop, which is typical of type IV
isotherm with type H3 hysteresis loop according to the IUPAC classification criteria and
is commonly found in mesoporous materials [38,39]. Table 1 shows the specific surface
area, pore volume, and pore size of USP and OCSP, and the pore sizes of the two materials
were 12.80 and 15.48 nm, respectively, indicating that they were mesoporous materials.
The specific surface area, pore volume, and pore size of the OCSP increased significantly,
indicating that the impurities in the shell powder were calcined out after high-temperature
calcination, and their original pores increased, which was more favorable for the adsorption
of the adsorbate.

Figure 6. N2 adsorption–desorption isotherms and pore size distributions of (a) USP and (b) OCSP.

Table 1. Specific surface area, pore volume, and pore size of USP and CSP.

BET Surface Area (m2/g) Pore Volume (cm2/g) Pore Size (nm)

USP 1.42 4.74 × 10−3 12.80
OCSP 3.97 1.66 × 10−2 15.48

3.3. Effects of Reaction Time

Figure 7 shows the kinetic models for the adsorption of pyrethroids at different
reaction times, and the related parameters are shown in Table 2. As shown in Table 2,
the pseudo second-order model has a higher R2 than other models, and the equilibrium
adsorption capacity qe (cal) and qe (exp) of the pseudo second-order model are closer
than the pseudo first-order model [12,40]. The data in the intra-particle diffusion (IPD)
model suggest that the adsorption process is not a single linear process, and the rate
constants of adsorption decrease in the order Kp1, Kp2, and Kp3, which reveals that the IPD
is closely related to the adsorption process. The curves are not originated indicating that
the IPD is not the capacity-limiting process to control the adsorption process [41], and the
adsorption process may involve pesticides initially adsorbed on the surface of the adsorbent,
then gradually spreading inward, and finally achieving dynamic equilibrium; even some
chemical reactions are involved [42,43]. In summary, the adsorption of two pyrethroids on
OCSP is more suitable to be described by the pseudo second-order and IPD model.
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Table 2. Adsorption kinetic model and the value of parameters.

Models and Parameters Bifenthrin Cypermethrin

Pseudo first-order
qe (cal) (mg/g) 0.37 0.88

k1 (min−1) 0.17 0.15
R2 0.9444 0.9651

Pseudo second-order
qe (cal) (mg/g) 0.95 1.69
k2 (g/mg·min) 0.75 0.26

R2 0.9994 0.9971

Intra-particle diffusion
kp1 (mg/g·min1/2) 0.27 0.38

R2 0.9888 0.9743
kp2 (mg/g·min1/2) 0.05 0.15

R2 0.9941 0.9965
kp3 (mg/g·min1/2) 0.02 0.03

R2 0.9647 0.9383
The qe (exp) of bifenthrin and cypermethrin were 0.95 mg/g and 1.69 mg/g, respectively.

3.4. Adsorption Isotherms

Figure 8 shows the effects of the initial concentration of pyrethroids on the adsorption
capacity and removal efficiency; when the initial concentration of pyrethroids was 0.5 mg/L,
the adsorption capacity was less than 0.1 mg/g, and the removal efficiency closed to 90%.
As the initial concentration increased, the pesticide adsorption capacity increased, while
the removal efficiency decreased. When the initial concentration of pesticides reaches the
maximum, its adsorption capacity reaches the maximum at the same time, and the removal
efficiency drops to the minimum. These results indicate that at low initial concentrations,
the adsorbent has a large number of vacant sites that were not occupied, so there is
a high pyrethroid removal efficiency and low adsorption capacity. With the increase in
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the initial concentration of pesticides, the adsorption capacity of pesticides also increased
correspondingly with the continuous occupation of empty sites on the surface of the
adsorbent, but gradually saturated adsorbent began to reduce the removal efficiency of
pesticides. Finally, when the pesticide initial concentration reaches the maximum, the
adsorption capacity reaches its highest value and the removal efficiency drops to its lowest
value [44,45].
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Figure 8. Effects of initial concentration of (a) bifenthrin and (b) cypermethrin on adsorption capacity
and removal efficiency.

Figure 9 and Table 3 show the results of fitting the Langmuir and Freundlich isotherms
to the adsorption data and the corresponding model parameters. From the qm of the
two pesticides derived from the Langmuir model, it can be concluded that OCSP has
a high potential for pyrethroid adsorption; furthermore, by analyzing the n values of
pyrethroids in the Freundlich model, it can be concluded that the adsorption process tends
to be physical and the adsorbate is favorably adsorbed on the OCSP [26,46]. In summary,
compared to the Freundlich model, the Langmuir model has higher R2 values, which is
more suitable for describing the adsorption, and the adsorption process is mainly based on
surface monolayer adsorption.
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and Freundlich isothermal fitting.

Table 3. Adsorption isotherm model and parameter values.

Langmuir Freundlich

Pyrethroids qm (mg/g) KL (L/mg) R2 KF n R2

Bifenthrin 1.05 1.24 0.9975 0.50 0.41 0.9641
Cypermethrin 1.79 2.05 0.9855 1.06 0.42 0.9002
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3.5. Effects of OCSP Dosages

Figure 10 shows the effects of OCSP dosages on pyrethroid adsorption capacity and
removal efficiency. With increasing dosages of OCSP, the adsorption capacity of both
pyrethroids decreases continuously. The reason is that the adsorption site increases with
the increase in the dosage of the adsorbent, but the total amount of adsorbate in the solution
is constant and no more OCSP is needed, so the occupancy rate of the adsorption site
contained in the unit mass of the adsorbent keeps decreasing, which leads to the constant
decline in the adsorption capacity. Similarly, with the increase in the adsorbent dosage, the
removal efficiency of the constant amount of adsorbate will increase continuously [47].
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3.6. Effects of pH

Figure S2 shows the effects of pH on pyrethroid adsorption capacity. With the increase
in the initial pH of the solution, the adsorption capacity of the adsorbent for the pyrethroid
increased slightly; when pH reached 10.0, the adsorption capacity of the pyrethroid in-
creased rapidly. This may be attributed to the fact that pyrethroids are stable under acidic
conditions but unstable under alkaline conditions [48]. In addition, the results of zeta
potential measurement showed that the zero charge (pHpzc) of the adsorbent was between
7 and 8, and the negative hydroxyl ions on the surface of the adsorbent increased when
the pH was greater than pHpzc, which enhanced the electrostatic interaction between the
negatively charged adsorbent and the pyrethroid molecules [49]. Therefore, the pH value
of 10.0 is most suitable for pyrethroid adsorption.

3.7. Effects of NaCl Salinity

Figure S3 shows the effects of NaCl salinity on pyrethroid adsorption capacity. The
adsorption capacity of pyrethroids by the adsorbent showed a decreasing trend with in-
creasing salinity of NaCl in solution, which may be related to the increase in ionic strength
leading to more Na+ competing with pyrethroids for adsorption sites through ion ex-
change [42]. In addition, similar studies have shown that an increase in NaCl concentration
not only forms agglomerates that block the adsorption sites of the adsorbent [50], but also
can affect the configuration and electrostatic nature of the adsorbate [51], which leads to
a decrease in the adsorption of pollutants.

3.8. Reusability Studies

The results of the reusability study of the adsorbent are shown in Figure S4. With
the increasing number of reuse, the adsorption capacity of pyrethroids by calcined shell
powder decreased continuously, and when the number of reuses reached five, the decrease
in adsorption performance was greater than before, but calcined shell powder still had
a certain adsorption capacity of pyrethroids.
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4. Conclusions

In this study, a high-efficiency absorbent was prepared from mussel shell powder, and
the preparation process of OCSP was optimized using RSM. The calcination temperature
and sieved particle size had a significant influence on its properties during the preparation
process. The OCSP and USP characterization results demonstrated that after calcination, the
main components of the structure changed from calcium carbonate to calcium oxide, and
the specific surface area, pore volume, and pore space increased significantly. In addition,
the mechanism of the adsorption process was studied, and the results showed that the
Langmuir, pseudo second-order, and intra-particle diffusion models are more suitable
for describing the adsorption process. In addition, the maximum adsorption capacity of
bifenthrin and cypermethrin can reach 1.05 and 1.79 mg/g, and the removal efficiency is
over 40 and 70% at the maximum initial concentration, respectively. In summary, OCSP is
a promising and environmentally friendly adsorbent for pyrethroid adsorption in water.
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(a, b, c, d, and e) represent significant differences between different groups, p < 0.05. Figure S2. Effects
of pH on pyrethroid adsorption capacity. Figure S3. Effects of NaCl salinity on pyrethroid adsorption
capacity. Figure S4. Reusability study of adsorbent on pyrethroid adsorption capacity. Table S1.
Factors and levels in the experiments. Table S2. Box–Behnken design of pyrethroids. adsorption
capacity. Table S3. Analysis of variance (ANOVA) for response surface model of bifenthrin adsorption
capacity. Table S4. Analysis of variance (ANOVA) for response surface model of cypermethrin
adsorption capacity.
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