Design of Functional Pluronic-Based Precursors for Tailoring Hydrogel Thermoresponsiveness and Cell-Adhesive Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Pluronic F127 Allyl Ether (F127ALL)
2.2. Synthesis of Pluronic F127 Thioacetate (F127TA)
2.3. Synthesis of Pluronic F127 Hexaacrylate (F127HA)
2.4. Synthesis of Pluronic F127 Diacrylate (F127DA)
2.5. Gel Synthesis by Radical Crosslinking
2.6. Gel Synthesis by Michael-Type Addition
2.7. NMR Diffusion Measurements
2.8. Gel Point Characterization
2.9. Swelling Measurements
2.10. Cell Adhesion Tests
3. Results and Discussion
3.1. Synthesis of the Polymeric Precursors
3.2. Deprotection of Pluronic Thioacetate
3.3. Gel Preparation
3.4. Crosslinking Kinetics
3.5. Swelling Tests
3.6. Diffusion Measurements
3.7. Cell Adhesion Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mfoafo, K.; Kwon, Y.; Omidi, Y.; Omidian, H. Contemporary applications of thermogelling peo-ppo-peo triblock copolymers. J. Drug Deliv. Sci. Technol. 2022, 70, 103182. [Google Scholar] [CrossRef]
- Escobar-Chavez, J.J.; Lopez-Cervantes, M.; Naik, A.; Kalia, Y.N.; Quintanar-Guerrero, D.; Ganem-Quintanar, A. Applications of thermoreversible pluronic f-127 gels in pharmaceutical formulations. J. Pharm. Pharm. Sci. 2006, 9, 339–358. [Google Scholar]
- Ruel-Gariepy, E.; Leroux, J.C. In situ-forming hydrogels—Review of temperature-sensitive systems. Eur. J. Pharm. Biopharm. 2004, 58, 409–426. [Google Scholar] [CrossRef]
- Lee, H.; Park, T.G. Photo-crosslinkable, biomimetic, and thermo-sensitive pluronic grafted hyaluronic acid copolymers for injectable delivery of chondrocytes. J. Biomed. Mater. Res. Part A 2009, 88A, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Chung, H.J.; Yeo, S.; Ahn, C.H.; Lee, H.; Messersmith, P.B.; Park, T.G. Thermo-sensitive, injectable, and tissue adhesive sol-gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction. Soft Matter 2010, 6, 977–983. [Google Scholar] [CrossRef]
- Dumortier, G.; Grossiord, J.L.; Agnely, F.; Chaumeil, J.C. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm. Res. 2006, 23, 2709–2728. [Google Scholar] [CrossRef]
- Cellesi, F.; Tirelli, N.; Hubbell, J.A. Materials for cell encapsulation via a new tandem approach combining reverse thermal gelation and covalent crosslinking. Macromol. Chem. Phys. 2002, 203, 1466–1472. [Google Scholar] [CrossRef]
- Garcia-Couce, J.; Tomas, M.; Fuentes, G.; Que, I.V.; Almirall, A.; Cruz, L.J. Chitosan/pluronic f127 thermosensitive hydrogel as an injectable dexamethasone delivery carrier. Gels 2022, 8, 44. [Google Scholar] [CrossRef]
- Cellesi, F. Thermoresponsive hydrogels for cellular delivery. Ther. Deliv. 2012, 3, 1395–1407. [Google Scholar] [CrossRef]
- Akash, M.S.H.; Rehman, K. Recent progress in biomedical applications of pluronic (pf127): Pharmaceutical perspectives. J. Control. Release 2015, 209, 120–138. [Google Scholar] [CrossRef]
- Cellesi, F.; Tirelli, N.; Hubbell, J.A. Towards a fully-synthetic substitute of alginate: Development of a new process using thermal gelation and chemical cross-linking. Biomaterials 2004, 25, 5115–5124. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.B.; Mazrad, Z.A.I.; In, I.; Park, S.Y. Synthesis of catechol-functionalized polymer-based crosslinked thermoresponsive hydrogels for tissue-adhesive material. J. Bioact. Compat. Polym. 2018, 33, 310–320. [Google Scholar] [CrossRef]
- Ryu, J.H.; Lee, Y.; Kong, W.H.; Kim, T.G.; Park, T.G.; Lee, H. Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromolecules 2011, 12, 2653–2659. [Google Scholar] [CrossRef] [PubMed]
- Hospodiuk, M.; Dey, M.; Sosnoski, D.; Ozbolat, I.T. The bioink: A comprehensive review on bioprintable materials. Biotechnol. Adv. 2017, 35, 217–239. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Muller, M.; Becher, J.; Schnabelrauch, M.; Zenobi-Wong, M. Nanostructured pluronic hydrogels as bioinks for 3d bioprinting. Biofabrication 2015, 7, 035006. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.J.; Lee, Y.H.; Park, T.G. Thermo-sensitive and biodegradable hydrogels based on stereocomplexed pluronic multi-block copolymers for controlled protein delivery. J. Control. Release 2008, 127, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Cellesi, F.; Tirelli, N. A new process for cell microencapsulation and other biomaterial applications: Thermal gelation and chemical cross-linking in ‘tandem’. J. Mater. Sci. -Mater. Med. 2005, 16, 559–565. [Google Scholar] [CrossRef]
- Cellesi, F.; Weber, W.; Fussenegger, M.; Hubbell, J.A.; Tirelli, N. Towards a fully synthetic substitute of alginate: Optimization of, a thermal gelation/chemical cross-linking scheme (“tandem” gelation) for the production of beads and liquid-core capsules. Biotechnol. Bioeng. 2004, 88, 740–749. [Google Scholar] [CrossRef]
- Su, J. Thiol-mediated chemoselective strategies for in situ formation of hydrogels. Gels 2018, 4, 72. [Google Scholar] [CrossRef][Green Version]
- Puig-Rigall, J.; Obregon-Gomez, I.; Monreal-Pérez, P.; Radulescu, A.; Blanco-Prieto, M.J.; Dreiss, C.A.; González-Gaitano, G. Phase behaviour, micellar structure and linear rheology of tetrablock copolymer tetronic 908. J. Colloid Interface Sci. 2018, 524, 42–51. [Google Scholar] [CrossRef][Green Version]
- Khan, T.F.; Price, B.L.; Morgan, P.B.; Maldonado-Codina, C.; Dobson, C.B. Cellular fluorescein hyperfluorescence is dynamin-dependent and increased by tetronic 1107 treatment. Int. J. Biochem. Cell Biol. 2018, 101, 54–63. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhao, J.; Santino, F.; Giacomini, D.; Gentilucci, L. Integrin-targeting peptides for the design of functional cell-responsive biomaterials. Biomedicines 2020, 8, 307. [Google Scholar] [CrossRef]
- Wu, J.; Lin, Y.; Sun, J. Anisotropic volume change of poly(n-isopropylacrylamide)-based hydrogels with an aligned dual-network microstructure. J. Mater. Chem. 2012, 22, 17449–17451. [Google Scholar] [CrossRef]
- Madaghiele, M.; Salvatore, L.; Demitri, C.; Sannino, A. Fast synthesis of poly(ethylene glycol) diacrylate cryogels via uv irradiation. Mater. Lett. 2018, 218, 305–308. [Google Scholar] [CrossRef]
- Cai, P.C.; Krajina, B.A.; Kratochvil, M.J.; Zou, L.; Zhu, A.; Burgener, E.B.; Bollyky, P.L.; Milla, C.E.; Webber, M.J.; Spakowitz, A.J.; et al. Dynamic light scattering microrheology for soft and living materials. Soft Matter 2021, 17, 1929–1939. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Yang, Y.; Zheng, Z.; Xiang, B.; Cui, X. Multiwave rheology and dynamic light scattering characterizations for a two-step sol-gel transition of tetraethoxysilane hydrolysis and condensation. J. Sol-Gel Sci. Technol. 2018, 88, 255–262. [Google Scholar] [CrossRef]
- Pandit, N.K.; Kisaka, J. Loss of gelation ability of pluronic® f127 in the presence of some salts. Int. J. Pharm. 1996, 145, 129–136. [Google Scholar] [CrossRef]
- Khodaei, A.; Bagheri, R.; Madaah Hosseini, H.R.; Bagherzadeh, E. Rsm based engineering of the critical gelation temperature in magneto-thermally responsive nanocarriers. Eur. Polym. J. 2019, 120, 109197. [Google Scholar] [CrossRef]
- Chatterjee, S.; Hui, P.C.-L.; Kan, C.-W.; Wang, W. Dual-responsive (ph/temperature) pluronic f-127 hydrogel drug delivery system for textile-based transdermal therapy. Sci. Rep. 2019, 9, 11658. [Google Scholar] [CrossRef][Green Version]
- Metters, A.; Hubbell, J. Network formation and degradation behavior of hydrogels formed by michael-type addition reactions. Biomacromolecules 2005, 6, 290–301. [Google Scholar] [CrossRef]
- Händel, H.; Gesele, E.; Gottschall, K.; Albert, K. Application of hrmas 1h nmr spectroscopy to investigate interactions between ligands and synthetic receptors. Angew. Chem. Int. Ed. 2003, 42, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Vanoli, V.; Delleani, S.; Casalegno, M.; Pizzetti, F.; Makvandi, P.; Haugen, H.; Mele, A.; Rossi, F.; Castiglione, F. Hyaluronic acid-based hydrogels: Drug diffusion investigated by hr-mas nmr and release kinetics. Carbohydr. Polym. 2023, 301, 9. [Google Scholar] [CrossRef]
- Diniz, I.M.; Chen, C.; Xu, X.; Ansari, S.; Zadeh, H.H.; Marques, M.M.; Shi, S.; Moshaverinia, A. Pluronic f-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells. J. Mater. Sci. Mater. Med. 2015, 26, 5015–5493. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kudva, A.K.; Luyten, F.P.; Patterson, J. Rgd-functionalized polyethylene glycol hydrogels support proliferation and in vitro chondrogenesis of human periosteum-derived cells. J. Biomed. Mater. Res. Part A 2018, 106, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Ventre, M.; Netti, P.A. Controlling cell functions and fate with surfaces and hydrogels: The role of material features in cell adhesion and signal transduction. Gels 2016, 2, 12. [Google Scholar] [CrossRef][Green Version]
- Ferreira, L.S.; Gerecht, S.; Fuller, J.; Shieh, H.F.; Vunjak-Novakovic, G.; Langer, R. Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials 2007, 28, 2706–2717. [Google Scholar] [CrossRef][Green Version]
F127 | Peak 1 | Peak 2 | F127HA | Peak 1 | Peak 2 | Peak 3 | |
---|---|---|---|---|---|---|---|
13,200 | 16,500 | 7100 | 20,000 | 29,700 | 18,200 | 8900 | |
15,500 | 17,200 | 7500 | 23,600 | 31,300 | 19,000 | 9600 | |
Ð | 1.17 | 1.04 | 1.06 | 1.19 | 1.05 | 1.04 | 1.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camana, G.; Tavano, M.; Li, M.; Castiglione, F.; Rossi, F.; Cellesi, F. Design of Functional Pluronic-Based Precursors for Tailoring Hydrogel Thermoresponsiveness and Cell-Adhesive Properties. Materials 2023, 16, 2749. https://doi.org/10.3390/ma16072749
Camana G, Tavano M, Li M, Castiglione F, Rossi F, Cellesi F. Design of Functional Pluronic-Based Precursors for Tailoring Hydrogel Thermoresponsiveness and Cell-Adhesive Properties. Materials. 2023; 16(7):2749. https://doi.org/10.3390/ma16072749
Chicago/Turabian StyleCamana, Giulia, Mirko Tavano, Min Li, Franca Castiglione, Filippo Rossi, and Francesco Cellesi. 2023. "Design of Functional Pluronic-Based Precursors for Tailoring Hydrogel Thermoresponsiveness and Cell-Adhesive Properties" Materials 16, no. 7: 2749. https://doi.org/10.3390/ma16072749