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Abstract: Here, 2% Cu + 2% Ni co-doped ZnO nanoparticles were synthesized using the hydrothermal
method and were used as particle reinforcements of Cu-Ni nanocomposite coatings prepared by elec-
troplating technology. The effects of the added (Cu, Ni) co-doped ZnO nanoparticles (2–8 g/L) on the
phase structure, surface morphology, thickness, microhardness, corrosion resistance, and photocatalytic
properties of the coatings were investigated. The nanocomposite coatings have obvious diffraction peaks
on the crystal planes of (111), (200), and (220), showing a wurtzite structure. The surface of the nanocom-
posite coatings is cauliflower-like, and becomes smoother and denser with the increase in the addition of
nanoparticles. The grain size, thickness, microhardness, corrosion resistance, and photocatalytic properties
of the nanocomposite coating reach a peak value when the added (Cu, Ni) co-doped ZnO nanoparticles
are 6 g/L. At this concentration, the mean crystallite size of the coating reaches a minimum of 15.31
nm, and the deposition efficiency of the coating is the highest. The (Cu, Ni) co-doped ZnO nanoparticle
reinforcement makes the microhardness reach up to 658 HV. The addition of nanoparticles significantly
improves the corrosion resistance and photocatalytic properties of nanocomposite coatings. The minimum
corrosion current density is 2.36 × 10−6 A/cm2, the maximum corrosion potential is −0.301 V, and the
highest decolorization rate of Rhodamine B is 28.73% after UV irradiation for 5 h.

Keywords: (Cu, Ni) co-doped ZnO; Cu-Ni nanocomposite coating; microhardness; corrosion resis-
tance; photocatalytic properties

1. Introduction

Marine corrosion is an increasingly serious global problem, which not only causes
enormous economic losses, but also brings serious personnel safety and environmental
pollution problems. It is a key problem that needs to be solved for economic development.
It is estimated that the global annual corrosion costs are USD 4 trillion [1], of which about
20% is caused by some form of microbial activity [2]. At present, active metals such as
Al [3], Mg [4], Fe [5], and Cu [6], as well as their alloys, are facing significant challenges in
complex marine environments.

The preparation of coatings is a simple, economical, and feasible metal surface protec-
tion technology that can not only improve the seawater corrosion resistance and marine
microbial corrosion resistance of structural parts, but also strengthen the friction and
wear resistance. Cu-Ni alloy parts and Cu-Ni alloy coatings have excellent anti-fouling,
anti-corrosion, durability, and good strength in seawater [7]. Therefore, they have been
widely used in the field of marine engineering, such as boiler components, heat exchanger
tubes, boat hulls, seawater condensers, valve bodies, oil platforms, and other ship hard-
ware [8]. Numerous studies have shown that Cu-Ni alloy coatings prepared by electro-
plating technology have a high strength and excellent corrosion resistance in many harsh
environments, such as seawater, oxidizing and reducing gas environments, and alkaline
and acidic media [9–11]. However, Cu-Ni alloy coatings still cannot meet the rigorous
service requirements of the complex and changeable marine environments.
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The addition of nanoparticles, such as Al2O3 [12], ZrO2 [13], TiN [14], MMT [9],
Y2O3 [15], and Gr [16], can often further improve the strength, hardness, friction and wear
resistance, and corrosion resistance of Cu-Ni coatings, but it is difficult to improve the
microbial corrosion resistance. As a wide band gap semiconductor material, ZnO has
been widely studied due to its potential applications in photocatalysist [17], antiseptic [18],
and semiconductor devices such as UV photodetectors, storage, solar cells, gas sensors,
displays, light emitting diodes (LED), and piezoelectric devices [19–22]. However, ZnO
not only has a wide band gap (3.37 eV), but also a high exciton binding energy (60 meV),
which hinders its photocatalysis under solar energy [23]. By doping transition metal ions
in ZnO, its electronic structure can be changed, thereby changing its electrical and optical
properties [24]. The common dopants in ZnO-based systems are mainly transition metals,
including Mn, Fe, Co, Ni, Cu, etc. [17,25–27].

The introduction of transition metal ions in ZnO, such as Fe, Co, and Ni, has a
significant effect on its photoelectric properties, especially UV absorption and electrical
conductivity [28,29]. Cu has a similar electron shell structure to Zn [30], which can affect
the band gap of ZnO [31]. As the atomic radius of Cu and Ni is smaller than that of
Zn, they can be used to replace the ZnO lattice to tune its photocatalytic activity [25,32].
Some related research results have shown that Cu and Ni co-doped ZnO can significantly
affect UV absorption and luminescence properties, thereby stimulating the photocatalytic
activity [25,33–35]. A series of ZnO nanocomposites doped with different amounts of Cu
and Ni were prepared using the hydrothermal method in our previous work [36]. The
results of this work and subsequent work showed that the photocatalytic activity of the
2% Cu + 2% Ni co-doped ZnO nanocomposite was significantly better than pure ZnO,
single-doped ZnO, and other amounts of (Cu, Ni) co-doped ZnO. The degradation rate of
rhodamine B (RhB) could reach 92.45% after irradiating with a 10 W ultraviolet lamp for 5
h. Therefore, the doped ZnO nanoparticles will provide a possibility for the improvement
of the corrosion resistance and photocatalytic sterilization performance of Cu-Ni coatings.

In this paper, Cu and Ni were doped into ZnO nanoparticles by the hydrothermal
method to improve the photocatalytic performance. The doped ZnO nanoparticles were
effectively combined with Cu-Ni coatings by electroplating technology. The effects of pro-
cess parameters such as temperature, current density, deposition time, and pH value on the
performance of nanocomposite coatings have been studied in an unpublished work. This
work used a set of better electroplating process parameters and mainly studied the effects
of (Cu, Ni)-ZnO nanoparticle addition in the electrolytic solution on the microstructure,
mechanical properties, corrosion resistance, and photocatalytic degradation properties of
Cu-Ni nanocomposite coatings. The purpose is to attempt to introduce nanoparticles with
photocatalytic properties into nanocomposite coatings to expand the application of active
metals under marine environments. Furthermore, nanoparticles deposited on the surface
of metal alloy by electroplating technology can effectively improve the utilization rate and
solve the problem that powder is difficult to recover.

2. Materials and Methods
2.1. Synthesis of (Cu, Ni)-ZnO Nanoparticles

Cu and Ni co-doped ZnO nanoparticles were prepared by a simple hydrothermal
method reported in a previous work [36]. Zinc nitrate hexahydrate [Zn(NO3)2 · 6H2O],
copper nitrate trihydrate [Cu(SO4)2 · 3H2O], nickel nitrate hexahydrate [Ni(NO3)2 · 6H2O],
and hexamethylenetetramine [C6H12N4 (HMT)] were used as precursor solutions, and
trina citrate dihydrate [C6H5Na3O7 · 2H2O] was used as a surfactant. The molar ratio of
Zn2+ to HMT in the precursor mixed solution was 1: 1. After 5 min of magnetic stirring
and 5 min of ultrasonic dispersion, the mixture was transferred to a reaction kettle and
kept at 90 ◦C for 4 h. The obtained products were filtered and repeatedly washed several
times with deionized water until no bubbles were generated in the filter bottle. Then, they
were washed three times with anhydrous ethanol, and dried in a drying oven at 80 ◦C for
6 h. The dried products were calcined in a muffle furnace at 500 ◦C for 2 h, and Cu, Ni
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co-doped ZnO nanoparticles were obtained after grinding. (Cu, Ni)-ZnO nanoparticles
with different Cu, Ni, and Zn molar ratios can be prepared by changing the amount of
Cu(SO4)2 · 6H2O and Ni(NO3)2 · 6H2O. In this experiment, 2 at% Cu + 2 at% Ni co-doped
ZnO nanoparticles were prepared.

2.2. Preparation of Cu-Ni-ZnO Nanocomposite Coatings

In this experiment, a 2024 aluminum alloy plate of 25 mm × 25 mm × 2 mm was used as
the cathode of electroplating, and 70–30 Cu-Ni alloy of 20 mm × 30 mm × 3 mm was selected as
the anode. The aluminum alloy substrate was first mechanically polished, then immersed into a
solution of 0.2 g/L NaOH, 20 g/L Na3PO4, and 20 g/L Na2CO3, and degreased at 55 ◦C for
3–5 min. In order to completely remove the oxides on the surface of the substrate, the aluminum
alloy cathode after alkali washing needed to be immersed into a solution of 7 mol/L HNO3
and 5.5 mol/L HF solution at 55 ◦C for 5–7 s. Nanocomposite electroplating uses a simple
DC stabilized power supply, and the composition and process parameters of the electroplating
solution are shown in Table 1. The addition of 2% Cu + 2% Ni co-doped ZnO nanoparticles
ranged from 2 to 8 g/L. In order to prevent the agglomeration of nanoparticles, the magnetic
stirrer was used to strongly stir at 400 rpm for 2 h before electroplating to ensure the uniform
dispersion of nanoparticles in the electrolyte.

Table 1. The chemical composition and process parameters of electroplating solution for preparing
nanocomposite coatings.

Composition Concentration Parameters Range

CuSO4·5H2O 20 g/L Temperature 45 ◦C
NiSO4·6H2O 85 g/L Current density 25 mA·cm−2

C6H5O7Na3·2H2O 75 g/L Deposition time 45 min
C12H25SO4Na 0.2 g/L pH 7
(Cu, Ni)-ZnO 2–8 g/L stirring rate 300 rpm

2.3. Characterization Techniques

The crystal structure of nanoparticles and nanocomposite coatings was analyzed using
an X-ray diffractometer (Tongda, TD-3500) using Cu Kα radiation (λ = 1.5406 Å) at 35 kV
and 50 mA. Diffraction Angle 2θ ranged from 20–80◦ in the scan speed of 12 ◦/min. The
surface morphology, chemical composition, and thickness of the nanocomposite coatings
were characterized by scanning electron microscopy (SEM, Hitachi S-4800). The chemi-
cal compositions were investigated by energy disperse spectroscopy (EDS, Oxford, UK).
The hardness of the nanocomposite coatings was tested using 402MVD digital Vickers
hardness tester.

The effects of the added (Cu, Ni) co-doped ZnO nanoparticles on the corrosion behav-
ior of nanocomposite coatings were studied in a three-electrode cell with a CHI 604E device.
The prepared nanocomposite coatings were used as the working electrode, a saturated
calomel electrode was used as the reference electrode, and a graphite electrode was used as
the counter electrode. Corrosion resistance testing was performed in a 3.5% NaCl solution
at room temperature. Electrochemical impedance spectroscopy (EIS) measurement was
conducted at Eocp in 105 Hz-10−2 Hz with an a.c. excitation potential amplitude of 10 mV.
Potentiodynamic polarization curves were obtained by changing the electrode potential
automatically from Eocp −500 mV to Eocp +800 mV at a potential scan rate of 0.166 mVs−1.
The fitting results of the equivalent circuit of Cu-Ni-ZnO nanocomposite coatings were
obtained by a conventional fitting method.

The photocatalytic performance of the prepared nanocomposite coatings on RhB so-
lution under ultraviolet light irradiation was investigated. The prepared nanocomposite
coatings were immersed in 100 mL of 8 mg/L RhB solution and were fully stirred in the
dark for 60 min to achieve adsorption equilibrium. Under room temperature, a 10 W UV
lamp was used to irradiate, and the degradation process was detected by measuring the ab-
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sorbance with a UV-VIS spectrophotometer. The decolorization rate η of the nanocomposite
coatings in the RhB solution was calculated as follows:

η = (C0 − Ct)/C0 × 100% = (A0 − At)/A0 × 100% (1)

where C0 is the initial concentration of RhB solution and Ct is the concentration at a certain
time of photocatalysis. Further conversion, A0 is the initial absorbance of RhB solution, and
At is the absorbance at a certain time of photocatalysis.

3. Results
3.1. Phase Structure

Figure 1 shows the XRD analysis results of the (Cu, Ni)-ZnO nanopowder and Cu-
Ni-ZnO nanocomposite coatings. The crystal structure of the 2% Cu + 2% Ni co-doped
ZnO nanopowder was very close to the standard pure ZnO hexagonal wurtzite (PDF No.
76-0704) [36]. Cu and Ni co-doping made the diffraction peak of ZnO shift to a large angle
direction, which may be due to the slightly smaller ionic radii of Cu2+ (0.072 nm) and
Ni2+ (0.069 nm) than that of Zn2+ (0.074 nm) [37,38]. Therefore, when Cu and Ni were
doped into ZnO, lattice collapse was caused, resulting in a shift in the ZnO diffraction
peak. The nanocomposite coatings exhibited Cu(Ni) (111), (200), and (220) reflections at
around 43.3◦, 50.4◦, and 74.1◦, respectively, and showed a dominant orientation of the (111)
reflection, regardless of the (Cu, Ni)-ZnO addition. Compared with Cu-Ni coating, the
diffraction angle of the Cu-Ni-ZnO nanocomposite coatings gradually shifted to a larger
angle direction with the increase in (Cu, Ni)-ZnO additions.
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Figure 1. XRD patterns of the (Cu, Ni)-ZnO nanopowder and Cu-Ni-ZnO nanocomposite coatings.

The average crystallite size was estimated using the Debye–Scherrer formula [39]:

D =
Kλ

β cos θ
(2)

where D is the mean crystalline dimension normal to diffracting planes, the Scherrer
constant K is 0.91, X-ray wavelength λ is 0.15406 nm, β in radian is the peak width at
half-maximum height, and θ is the Bragg’s angle. Figure 2 presents the calculated mean
crystallite sizes of the Cu-Ni solid solution crystallites based on the diffraction peak of
the (111) crystal plane as a function of the (Cu, Ni)-ZnO additions. It can be seen from
the figure that the mean crystallite sizes of all of the electrodeposited coatings decreased
from 17.3 nm to 15.5 nm when the (Cu, Ni)-ZnO additions increased from 0 to 8 g/L,
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showing that the additional nanoparticles were beneficial to grain refinement [40–42].
However, the refinement effect was not obvious, perhaps associated with the relatively
lower content of nanoparticles in the coatings. The refinement effect resulting from (Cu,
Ni)-ZnO nanoparticles included the following: (i) (Cu, Ni)-ZnO nanoparticles were located
at the grain boundaries of the Cu-Ni solid solution, hindering grain growth, and (ii) some
(Cu, Ni)-ZnO nanoparticles could act as nucleation centers of Cu-Ni crystals. Therefore,
adding (Cu, Ni)-ZnO nanoparticles could effectively reduce the mean crystallite size of the
nanocomposite coatings, and the structure was more detailed and uniform. There was no
diffraction peak of ZnO in the XRD patterns of the Cu-Ni-ZnO nanocomposite coatings,
because the content of (Cu, Ni)-ZnO nanoparticles in the coatings was too small [13,15].
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Figure 2. The mean crystallite size of Cu-Ni-ZnO nanocomposite coatings with different (Cu, Ni)-ZnO
additions.

3.2. Surface Morphology

Figure 3 shows the surface morphology of the (Cu, Ni)-ZnO nanoparticles and Cu-
Ni-ZnO nanocomposite coatings with different additions of Cu and Ni co-doped ZnO
nanoparticles. The (Cu, Ni)-ZnO nanoparticles were uniform in size, with an average
size of 60 nm, and had good dispersion, as shown in Figure 3a. The surface of the Cu-Ni
nanocomposite coating without adding (Cu, Ni)-ZnO nanoparticle was cauliflower-like,
with large cell-like particles. There were a lot of gaps and holes, resulting in significantly
poor compactness. With the increase in (Cu, Ni)-ZnO additions, the cell-like particles on
the surface of Cu-Ni-ZnO nanocomposite coatings became more uniform and compact.
The increase in (Cu, Ni)-ZnO additions in the electroplating solution was conducive to
the deposition of more nanoparticles onto the cathode surface. Relevant research results
show that embedded reinforcing particles can fill existing defects (such as microcracks,
pores, etc.) and lead to dense and defect-less deposits [15,43,44]. This indicates that the
addition of (Cu, Ni)-ZnO nanoparticles is beneficial to the refinement and densification of
nanocomposite coatings.

Figure 4 shows the effect of nanoparticle addition on the content of the main elements
of Cu, Ni, and Zn in Cu-Ni-ZnO nanocomposite coatings. When the addition of (Cu,
Ni)-ZnO nanoparticles increased from 0 g/L to 6 g/L, the content of Zn in Cu-Ni-ZnO
nanocomposite coatings increased continuously, and the content of Cu and Ni decreased
gradually. The increase in the Zn element in the nanocomposite coatings represented the
increase in (Cu, Ni)-ZnO nanoparticle content, which is beneficial to the grain refinement
of Cu-Ni-ZnO nanocomposite coatings. When the addition of (Cu, Ni)-ZnO increased
to 8 g/L, the content of Zn in Cu-Ni-ZnO nanocomposite coating decreased. With the
continuous increase in the added nanoparticles, the nanoparticles in the plating solution
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reached a saturated state. The (Cu, Ni)-ZnO adsorbed on the surface of the coating was easy
to wash away using the plating solution under the action of mechanical agitation before
co-deposition with metal ions. At the same time, excessive (Cu, Ni)-ZnO nanoparticles
were prone to agglomeration in the plating solution, and were not easy to move and deposit
on the surface of the cathode, which reduced the concentration of nanoparticles in the
coatings [45]. Therefore, reducing the (Cu, Ni)-ZnO content in the nanocomposite coatings
resulted in an increase in the grain size of the nanocomposite coatings, which was consistent
with the XRD results.
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3.3. Microhardness

Figure 5 shows the relationship between the addition of (Cu, Ni)-ZnO and the thickness
of the Cu-Ni-ZnO nanocomposite coatings after 45 min of deposition. With the increase
in (Cu, Ni)-ZnO additions, the thickness in nanocomposite coatings showed a trend of
increasing first and then decreasing. The thickness of Cu-Ni-ZnO nanocomposite coatings
reached the peak value of 21.7 ± 0.4 µm when the addition in the plating solution was
6 g/L. This was due to the increase in (Cu, Ni)-ZnO additions, which improved the
contact probability between the nanoparticles and the cathode matrix. More (Cu, Ni)-ZnO
nanoparticles were adsorbed, which increased the number of catalytic active sites on the
surface of the coatings and further improved the reduction rate of Cu and Ni. Therefore,
adding more (Cu, Ni)-ZnO nanoparticles was beneficial for increasing the electroplating
rate and it ultimately obtained thicker coatings. However, as the addition of (Cu, Ni)-ZnO
continued to increase, the nanoparticles on the surface of the nanocomposite coatings
tended to be saturated, which hindered the diffusion of Cu2+ and Ni2+, and reduced the
electroplating speed and the coating thickness.
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The microhardness of Cu-Ni-ZnO nanocomposite coatings with different additions of
(Cu, Ni)-ZnO nanoparticles is shown in Figure 6. The substrate material of this experiment
was the 2024 Al alloy with a microhardness of 108 HV. Compared with the substrate
and Cu-Ni alloy coating, the microhardness of the Cu-Ni-ZnO nanocomposite coatings
increased obviously. It has been reported that the strengthening mechanisms of particle
reinforced metal matrix composites mainly include grain refinement, Orowan looping,
load transfer, and the coefficient of the thermal expansion mismatch [46–49]. The added
(Cu, Ni)-ZnO nanoparticles were uniformly dispersed in the nanocomposite coatings,
and the Orowan strengthening mechanism played a significant role because the size of
the particle reinforcement was less than 100 nm. The (Cu, Ni)-ZnO nanoparticles were
subject to the load and hindered the movement of dislocations when the hardness tester
was pressed into the composite coatings [50]. In contrast, indentation tips could easily
penetrate deeper into the Al alloy substrate and pure Cu-Ni alloy coating. In addition,
the (Cu, Ni)-ZnO nanoparticles uniformly distributed in the Cu-Ni coatings inhibited the
plastic deformation of the nanocomposite coatings under load through grain refinement
and dispersion strengthening.
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With the increase in (Cu, Ni)-ZnO additions, the hardness of Cu-Ni-ZnO nanocom-
posite coatings increased continuously and reached the maximum value of 658 HV at
6 g/L. The more continuous the increase in (Cu, Ni)-ZnO content in the coatings, the better
the strengthening effect, and thus the higher the hardness of the coatings. The results in
Figure 4 also show that when the addition of (Cu, Ni)-ZnO in the electroplating solution
was 6 g/L, the concentration of nanoparticles in the coatings reached the peak value, which
led to the maximum hardness of the nanocomposite coatings. However, as the addition
of (Cu, Ni)-ZnO continued to increase, the excessive nanoparticles in the bath tended to
agglomerate, and the concentration of nanoparticles in the coatings decreased, resulting in
a decrease in the microhardness of Cu-Ni-ZnO nanocomposite coatings.

3.4. Corrosion Resistance

Figure 7 shows the polarization curves of Cu-Ni-ZnO nanocoatings with different
(Cu, Ni)-ZnO additions. It can be seen that, compared with the Cu-Ni alloy coating, the
corrosion potential of the Cu-Ni-ZnO nanocomposite coatings was rather nobler (more
positive), and the corrosion current density was lower. After Tafel fitting, the corrosion
potential and corrosion current density of the Cu-Ni-ZnO nanocomposite coatings with
different (Cu, Ni)-ZnO additions are shown in Table 2.
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Figure 7. Polarization curves of Cu-Ni-ZnO nanocomposites with different (Cu, Ni)-ZnO additions.

Table 2. Tafel fitting results of polarization curves of Cu-Ni-ZnO nanocomposite coatings with
different (Cu, Ni)-ZnO additions.

Concentration/(g/L) Icorr/(A · cm−2) Ecorr/V Epit/V

Substrate 2.73 × 10−6 −0.779 −0.466
0 1.29 × 10−5 −0.677 −0.222
2 7.41 × 10−6 −0.664 −0.183
4 7.22 × 10−6 −0.658 −0.178
6 2.36 × 10−6 −0.301 −0.098
8 8.75 × 10−6 −0.421 −0.177

According to the fitting results, the corrosion current density of Cu-Ni-ZnO nanocomposite
coatings with the addition of 6 g/L (Cu, Ni)-ZnO nanoparticles was the lowest, 2.36× 10−6 A · cm−2,
indicating that the corrosion rate of the coating was the slowest at the moment. The corrosion current
density of the Al alloy substrate was also very low, which may be due to the formation of a dense
alumina layer on its surface, slowing down the corrosion rate. With the increase in (Cu, Ni)-ZnO
additions, the corrosion potential of Cu-Ni-ZnO nanocomposite coatings shifted positively and
then negatively. The corrosion potential reached the noblest Ecorr of −0.301 V when the addition
of (Cu, Ni)-ZnO in the plating solution increased to 6 g/L. Nevertheless, further increasing the
(Cu, Ni)-ZnO additions, the corrosion current density increased sharply, and the corrosion potential
shifted negatively.

Nyquist plots of Cu-Ni-ZnO nanocomposite coatings with different additions of (Cu,
Ni)-ZnO nanoparticles are shown in Figure 8. It can be seen that the radius of the capacitive
arc of the Cu-Ni-ZnO coatings increased continuously with the increase in (Cu, Ni)-ZnO
nanoparticles additions. The corrosion resistance of Cu-Ni-ZnO nanocomposite coatings
was the best at 6 g/L. In order to further study the corrosion performance of the Cu-Ni-ZnO
nanocomposite coatings, the equivalent electrical circuit (EEC) for fitting the EIS of the
nanocomposite coatings is shown in Figure 9, and the fitted corrosion parameters are listed
in Table 3.
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Figure 8. Nyquist diagrams of Cu-Ni-ZnO nanocomposite coatings with different (Cu, Ni)-ZnO
additions.
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Figure 9. Equivalent circuit for fitting the EIS of the Cu-Ni-ZnO nanocomposite coatings.

Table 3. Fitting results of the equivalent circuit of Cu-Ni-ZnO nanocomposite coatings with different
(Cu, Ni)-ZnO additions.

Concentration
/(g/L)

Rs
/(Ω·cm2)

Q1
/(S·cm−2·s−n) n

Rpore

/(kΩ·cm2)
Q2

/(S·cm−2·s−n) n Rct
/(kΩ·cm2)

Al substrate 10.45 9.96 × 10−5 0.84 2.36 9.29 × 10−4 0.98 2.89
0 12.26 5.79 × 10−5 0.91 3.63 2.58 × 10−6 0.60 4.42
2 8.99 8.93 × 10−5 0.94 4.91 4.52 × 10−4 0.93 2.53
4 15.77 6.80 × 10−4 0.92 2.91 4.18 × 10−4 0.90 6.51
6 11.45 6.58 × 10−4 0.91 4.43 1.13 × 10−5 1 8.70
8 13.25 6.58 × 10−4 0.90 3.97 1.24 × 10−4 0.98 6.26

The resistance Rs is known as the solution resistance, Rpore represents the micropore
resistance of the coating surface, and the charge transfer resistance of the substrate is
represented by Rct. Q1 represents the coating capacitance and Q2 is the electric double
layer capacitance. When the (Cu, Ni)-ZnO nanoparticles in the plating bath increased up
to 6 g/L, Rct reached the maximum value of 8.7 kΩ · cm2, and the corrosion resistance
of the coating was the best. As the addition of (Cu, Ni)-ZnO nanoparticles continued to
increase, the Rct values of the Cu-Ni-ZnO nanocomposite coatings decreased, resulting
in a decrease in corrosion resistance, which was consistent with the polarization results
shown in Table 2. Supersaturated (Cu, Ni)-ZnO nanoparticles are prone to agglomeration
and are not easy to deposit on the surface of the coatings. Moreover, the (Cu, Ni)-ZnO
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nanoparticles deposited on the coatings surface became very loose due to agglomeration,
thus reducing the corrosion resistance of the nanocomposite coatings.

In general, the improvement in the corrosion resistance of nanocomposite coatings
by nanoparticles was mainly related to the anti-corrosive properties of nanoparticles,
defects inside the coatings such as micro-voids and micro-cracks, and the dispersion of
nanoparticles in the coatings [45,51]. Combined with the results in Figures 2 and 4, when the
addition of (Cu, Ni)-ZnO in the electroplating solution increased to 6 g/L, the concentration
of nanoparticles in the coatings reached the peak. At this time, the microstructure of the
coatings became finer, more uniform, and denser, which was beneficial for the improvement
in corrosion resistance. At the same time, the addition of (Cu, Ni)-ZnO nanoparticles filled
the cracks and holes in the deposition of the Cu-Ni alloy, hindered the generation of defect
corrosion, and further improved the corrosion resistance of the coatings [43,52]. However,
along with increasing the addition of (Cu, Ni)-ZnO nanoparticles in the electroplating
plating bath, the concentration of nanoparticles in the nanocomposite coatings decreased,
which increased the crystallite size of the coatings and eventually led to a decrease in
corrosion resistance.

3.5. Photocatalytic Performance

The lattice defects caused by Cu and Ni co-doping enhanced the absorption of photons,
thereby broadening the light absorption efficiency of ZnO nanoparticles under visible
light [36]. The optical band gaps of (Cu, Ni)-ZnO nanoparticles were evaluated by the Tauc
relation. Compared with the undoped ZnO, the Eg (optical band gap energies) value of 2%
Cu + 2% Ni co-doped ZnO nanoparticles ranged from 3.083 to 2.887 eV [36]. The reduced
Eg made the (Cu, Ni)-ZnO nanoparticles exhibit a better photocatalytic performance.

An ultraviolet visible spectrophotometer was used to test the photocatalytic perfor-
mance of the Cu-Ni-ZnO nanocomposite coatings. The prepared nanocomposite coatings
were put into 100 mL of 8 mg/L RhB solution and irradiated with ultraviolet light. The pho-
tocatalytic performance of the Cu-Ni-ZnO nanocomposite coatings was analyzed according
to the change in the absorbance value of the RhB solution. The absorbance values of the
Cu-Ni-ZnO coatings in RhB solution after UV irradiation for 0–5 h are listed in Table 4.
The results show that the absorbance values of the RhB solution decreased in varying
degrees with the prolongation of the UV irradiation time for all of the coatings. Compared
with the Cu-Ni alloy coating, the absorbance values of the Cu-Ni-ZnO nanocomposite
coatings decreased more significantly. With the increase in (Cu, Ni)-ZnO nanoparticles
addition, the absorbance values of the nanocomposite coatings decreased gradually. The
absorbance values of the RhB solution of the Cu-Ni-ZnO nanocomposite coatings with (Cu,
Ni)-ZnO addition of 6 g/L decreased the most after 5 h of UV irradiation, exhibiting the
best photocatalytic degradation performance.

Table 4. Absorbance values of Cu-Ni-ZnO nanocomposite coatings with different (Cu, Ni)-ZnO
addition under ultraviolet light irradiation.

Radiation
time/h 0 1 2 3 4 5

Cu-Ni 0.51705 0.50481 0.50005 0.49029 0.47829 0.47136
2 g/L 0.51705 0.50228 0.48429 0.47530 0.45872 0.44662
4 g/L 0.51705 0.50235 0.46503 0.45332 0.41467 0.39682
6 g/L 0.51705 0.50028 0.47136 0.42156 0.38779 0.36850
8 g/L 0.51705 0.50235 0.47348 0.46065 0.39378 0.37269

According to the absorbance values in Table 4 and the decolorization rate formula, the
relationship between the decolorization rate and UV irradiation time of the Cu-Ni-ZnO
nanocomposite coatings were obtained, as shown in Figure 10. The decolorization rate η of
all of the samples showed an upward trend with the increase in illumination time. It can be
seen that the η of the Cu-Ni alloy coating changed very little after 5 h of ultraviolet light
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irradiation. The η of the RhB solution for Cu-Ni alloy coating was only 8.84%, indicating
that the degradation effect of the Cu-Ni alloy coating on RhB was poor, and the change in
their η was caused by adsorption. However, the addition of (Cu, Ni)-ZnO nanoparticles
significantly improved the η of the Cu-Ni-ZnO nanocomposite coatings.
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Figure 10. Illumination time and decolorization rate of Cu-Ni-ZnO nanocomposite coatings with
different (Cu, Ni)-ZnO additions.

When the addition of (Cu, Ni)-ZnO nanoparticles in the plating solution was 6 g/L,
the η of RhB solution reached the highest percentage of 28.73% after 5 h of UV irradiation.
At this concentration, the Cu-Ni-ZnO nanocomposite coating exhibited the best photo-
catalytic effect, which was mainly because more nanoparticles were compounded during
the co-deposition process. When the addition of (Cu, Ni)-ZnO nanoparticles was 8 g/L,
the η of Cu-Ni-ZnO nanocomposite coating to RhB solution decreased, which was due to
the reduction in (Cu, Ni)-ZnO nanoparticles in the coating and possible agglomeration,
thus reducing the photocatalytic performance. Although (Cu, Ni)-ZnO nanoparticles had a
higher photocatalytic effect, they were difficult to recycle and reuse. Electrodeposition of
(Cu, Ni)-ZnO nanoparticles on the surface of the metal alloy by nanocomposite electroplat-
ing coud effectively improve the utilization rate and solve the problem of difficult powder
recovery.

4. Conclusions

In this work, Cu and Ni co-doped ZnO nanoparticles were synthesized by the hy-
drothermal method, and then nanocomposite coatings with different (Cu, Ni)-ZnO addi-
tions were prepared using nanocomposite plating technology. The effects of nanoparticle
addition on the phase structure, surface morphology, thickness, microhardness, corrosion
resistance, and photocatalytic performance of the coatings were studied.

(1) Cu-Ni-ZnO nanocomposite coatings had diffraction peaks on (111), (200), and (220)
crystal planes with a wurtzite structure. The surface morphology of the nanocompos-
ite coatings was cauliflower-like, being more uniform and dense. The microhardness,
corrosion resistance, and photocatalytic performance of the nanocomposite coatings
were obviously superior to those of the Cu-Ni alloy coating.

(2) The addition of (Cu, Ni)-ZnO improved the performance of the nanocomposite coat-
ings as a whole, and the various properties reached the peak at 6 g/L. At this con-
centration, the minimum crystallite size was 15.5 nm and the microhardness was
658 HV. The corrosion resistance of the coatings was the best with the minimum
corrosion current density of 2.36 × 10−6 A/cm2 and the maximum Rct of 8.7 kΩ · cm2.
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Meanwhile, the decolorization rate of the RhB solution reached the highest rate of
28.73% after 5 h of UV irradiation.

(3) With the increase in (Cu, Ni)-ZnO additions, the concentration of nanoparticles in
the nanocomposite coatings increased gradually. The increased concentration of
nanoparticles in the coatings favored a finer, more uniform and denser microstructure,
which can further improve the corrosion resistance and photocatalytic degradation
performance of the coatings. However, further increment in the concentration of
(Cu, Ni)-ZnO nanoparticles in the plating bath resulted in an overall performance
decrement, which was due to the reduction in the nanoparticles in the coatings and
possible agglomeration.
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