
Citation: Qi, M.; Cao, L.; Zhao, Y.;

Jia, F.; Song, S.; He, X.; Yan, X.;

Huang, L.; Yin, Z. Quantitative

Analysis of Mixed Minerals with

Finite Phase Using Thermal Infrared

Hyperspectral Technology. Materials

2023, 16, 2743. https://doi.org/

10.3390/ma16072743

Academic Editors: Alex Kondratiev,

Dmitry Valeev and Jinhe Pan

Received: 27 February 2023

Revised: 27 March 2023

Accepted: 27 March 2023

Published: 29 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Quantitative Analysis of Mixed Minerals with Finite Phase
Using Thermal Infrared Hyperspectral Technology
Meixiang Qi 1,2, Liqin Cao 3,* , Yunliang Zhao 1,2 , Feifei Jia 1,2, Shaoxian Song 1,2, Xinfang He 4, Xiao Yan 4,
Lixue Huang 4 and Zize Yin 4

1 Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology,
122 Luoshi Road, Wuhan 430070, China

2 School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road,
Wuhan 430070, China

3 Research Center of Graphic Communication, Printing and Packaging, Wuhan University,
Wuhan 430079, China

4 Xinjiang Lop Nur Potash Co., Ltd., 470 Tuanjie Road, Ruoqiang County,
Bayingolin Mongolian Autonomous Prefecture 841800, China

* Correspondence: clq@whu.edu.cn

Abstract: It is crucial but challenging to detect intermediate or end products promptly. Traditional
chemical detection methods are time-consuming and cannot detect mineral phase content. Ther-
mal infrared hyperspectral (TIH) technology is an effective means of real-time imaging and can
precisely capture the emissivity characteristics of objects. This study introduces TIH to estimate the
content of potassium salts, with a model based on Competitive Adaptive Reweighted Sampling
(CARS) and Partial Least Squares Regression (PLSR). The model takes the emissivity spectrum of
potassium salt into account and accurately predicts the content of Mixing Potassium (MP), a mineral
mixture produced in Lop Nur, Xinjiang. The main mineral content in MP was measured by Mineral
Liberation Analyzer (MLA), mainly including picromerite, potassium chloride, magnesium sulfate,
and less sodium chloride. 129 configured MP samples were divided into calibration (97 samples)
and prediction (32 samples) sets. The CARS-PLSR method achieved good prediction results for MP
mineral content (picromerite: correlation coefficient of correction set (R2

p) = 0.943, predicted root
mean square error (RMSEP) = 2.72%, relative predictive deviation (RPD) = 4.24; potassium chloride:
R2

p = 0.948, RMSEP = 2.86%, RPD = 4.42). Experimental results convey that TIH technology can
effectively identify the emissivity characteristics of MP minerals, facilitating quantitative detection of
MP mineral content.

Keywords: thermal infrared hyperspectral; potassium; quantitative analysis; finite mineral facies

1. Introduction

During the mineral production process, the composition of intermediate and terminal
products can change within a certain range due to factors such as alterations in the original
ore’s nature, production operations, or other variables. In this type of product, although the
mineral content varies within a certain range, the types of minerals are basically unchanged
and can be referred to as “finite phase minerals”. Not adjusting production parameters in
a timely manner based on actual production conditions can cause production instability,
leading to a waste of resources and increased economic costs. As a result, it is essential
to conduct intermittent sampling and tests to gather production information that can aid
in the production process [1]. The chemical volumetric method is the primary analytical
technique in production. In this method, minerals are dissolved, and specific chemical
reagents are used to identify relevant elements. Although this method can meet production
requirements to some extent, the low detection speed and incapable of detecting mineral
phases cannot be neglected. Other mineral quantitative detection methods [2,3], such as
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Atomic Absorption Spectrometry (ASS) [4] and X-ray Fluorescence spectrometry (XRF) [5],
can also quantitatively analyze and calculate the mineral element or ion content. However,
these methods are still time-consuming and currently in the laboratory application stage.

Prompt-gamma neutron activation analysis [6] and infrared spectroscopy [7] are
widely used and well-developed techniques for the rapid detection of quantitative analysis.
They can be classified into two categories based on the presence of radioactivity. The
first is nuclear radiation’s prompt-gamma neutron activation analysis technology, which
excites atoms in the substance under test to release gamma rays for rapid detection of
various elements. Although this detection technique can be widely used for the rapid
detection of elemental and ion content in various minerals, its detection ability for mixed
minerals containing the same ion is limited. As a result, the information provided by these
techniques may be insufficient to accurately guide actual production. The second category
is non-nuclear radiation’s infrared spectroscopy, which uses the spectral characteristics of
reflected light from substances, combined with a quantitative predictive model [8,9], to
achieve rapid detection of many minerals.

The infrared spectrum is divided into multiple intervals, and each interval has a
specific response mechanism to the mineral’s ion and group spectrum [10], affecting
the recognizing ability of minerals. The electronic processes of some metal ions (Fe2+,
Fe3+, Cr3+, Mn3+, rare earth, etc.) are mainly detected in the visible to near-infrared
bands [11]. The short-wave infrared bands primarily detect the double and harmonic
frequencies of molecular vibrations of aqueous hydroxyl minerals [12,13] such as clay
minerals, carbonate, and a few hydrated sulfates. The thermal infrared bands [14] mainly
detect the fundamental frequency of molecular vibration, which has a good recognition
effect on anhydrous and hydroxy-free minerals, such as silicate, carbonate, and sulfate.
Compared with short-wave infrared, Thermal Infrared Technology (TIH) [15,16] shows a
stronger capability for the detection of minerals containing atomic groups such as SinOk,
SO4, CO3, and PO4. TIH [17,18] can detect the fundamental frequency vibration of atomic
groups and their minor changes, making it easy to distinguish and identify silicates, sulfates,
carbonates, phosphates, oxides, hydroxides, and other minerals. For instance, sulfate [19]
has a characteristic absorption peak at 8.5 µm, and halides have a wide and slow double
absorption peak between 5–10 µm. Potassium salt contains a large number of sulfate
and chloride ions, which have noticeable characteristics in the thermal infrared bands.
Therefore, the application of TIH technology in the rapid detection of potassium salt has
theoretical feasibility.

TIH technology is a promising production monitoring technology due to its fast, safe,
accurate, and stable characteristics. Emissivity [20] is the inherent property of substances,
which can be obtained by TIH technology. High-precision emissivity data can be adopted
to conduct qualitative and quantitative research on various minerals. Many studies have
been carried out on the quantitative analysis of mineral content based on TIH techniques.
An automatic recognition system [21] was proposed for common minerals such as garnet,
olivine, and quartz in ground spectra based on long-wave infrared (7.7–11.8 µm) tech-
nology, achieving a high identification accuracy of 84.91% using cluster analysis. The Fe
concentration was estimated based on long-wave infrared technology and data fusion
method, and the technology could be extended to generate indicative element concen-
trations in polymetallic sulfide deposits in real-time [22,23]. Hyperspectral long-wave
infrared images of Israeli soil were obtained and the emissivity spectrum for each sample
was calculated [24]. Mineral-related emissivity characteristics were identified indicators
and indices were created to determine quartz, clay minerals, and carbonate content in
soils, which agreed with the mineralogical results obtained by chemical analysis. These
studies demonstrate the high feasibility and accuracy of TIH technology in the quantitative
analysis of various minerals with thermal infrared characteristics [21,25–28].

Although there have been numerous studies on using TIH to identify various min-
eral contents in soil, there is currently limited literature available on the identification of
various salt contents [14,17]. Since TIH technology could capture feature information with
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hyperspectral to accurately detect salt mineral content [29], it is promising in detecting salt
minerals that have a tendency to form dense mixtures. Based on this, this study utilized
TIH technology to acquire and quantitatively analyze the emissivity data of potassium
salt. The contributions of this study are as follows: (1) TIH technology was employed
to obtain thermal infrared spectral characteristic information of potassium salt; (2) The
thermal infrared spectrum characteristics of pure minerals in potassium salt were obtained
and the potassium salt grade was detected by CARS-PLSR method.

2. Technical Route

In this study, we aim to figure out the feasibility and accuracy of the TIH technique
in the application of the mineral phases of potassium salts detection. The potash samples
used in the study came from Xinjiang Lop Nur Potash Co., China’s largest potash sulfate
producer. The main research process ware as follows: (1) Based on the actual MP samples,
mixed potassium samples were designed and prepared by adding varying amounts of
Pure minerals. A batch of potassium salt samples were obtained with sufficient and known
mineral phase composition. (2) The samples were standardized by the pellet method,
which stabilized the roughness of each sample and reduced the “noise” in the spectrum
data. Subsequently, the spectral data of the potassium salt samples were collected using the
Hyper-Cam hyperspectral imager in an open environment. (3) The TIH data for potassium
salt was processed to obtain its emissivity data. Based on this emissivity data, prediction
models were established for the mineral phase composition of potassium salt using the
CARS and PLSR methods. (4) The prediction results of the model were evaluated and
analyzed. The flowchart of the experimental and modeling process is shown in Figure 1.
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Figure 1. Schematic diagram of experimental and modeling process.

3. MP Samples Preparation and TIH Data Acquisition
3.1. MP Sample Preparation
3.1.1. MP Samples

Based on a random survey of 738 MP mineral phase data from the Lop Nur Potash
production site in the first half of 2021, 138 MP samples of 5 g each were designed and
configured. The 400 g MP sample from the production site of potassium salt (dried at
50 ◦C, mixed evenly by shifting cone method) was used as a master sample. The mineral
phases and contents of the master sample were accurately analyzed with multiple detection
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methods. The 138 MP samples were then configured by adding one or more salts (contained
in the MP) to the master sample.

3.1.2. Mineral Facies Analysis

By comprehensive analysis of X-ray diffraction analysis (XRD) [30], MLA [31], Chemi-
cal titration, and ASS [32], the types and specific contents of various minerals in the MP
master sample were defined. The specific parameters of the test method are as follows:

XRD: The D8 Advance X-ray diffractometer with Cu target from Bruker, Germany was
used for XRD testing. The acceleration voltage is 40 kV and the anode current is 150 mA.
Wide-angle diffraction patterns are collected in the range of 5–70◦ (2θ) at a scanning speed
of 5◦/min.

MLA: The system consists of a ZEISS Sigma model 300 high-resolution field emission
scanning electron microscopy (FESEM), a Bruker XFlash 6|60 type X-ray spectrometer
(EDS), and a set of AMICS software (including 4 subroutines, AMICSTool, Investigator,
MineralSTDManager, and AMICSProcess). Experimental conditions: accelerating voltage
20 kV, High vacuum mode, a working distance of about 8.5 mm, backscattered electron
detector (HDBSD), High Current mode. The sample was sprayed before testing to eliminate
the charge on the surface of the non-conductive sample. The samples were polished using
saturated MP mother liquor as a polish.

Chemical Titration:
Titration of K+: Sodium tetraphenylboron-quaternary amine salt volumetric method.

Determination principle: Potassium ions react with sodium tetraphenolate boron to form
potassium tetraphenolate boron deposits, and excess sodium tetraphenolate boron reacts
with quaternary amine salt to form insoluble quaternary amine salt sodium tetraphenolate
boron double salt.

Titration of Mg2+: EDTA complexometric titration. Determination principle: The
cation in EDTA complexes with the calcium and magnesium cation in the test solution, so
that the color of the solution changed from tartar red to azure blue, which was the endpoint.

Titration of SO2−
4 : Moore method. Determination principle: Potassium chromate

as indicator was titrated directly with silver nitrate standard solution in neutral weak
alkaline solution.

Titration of Cl-: Barium chloride volumetric method. Determination principle: In an
acidic solution (pH = 2~3), SO2−

4 and BaCl2 generated excessive barium salt precipitation
and alizarin red~S indicator to generate a yellow complex, titrated with a known standard
solution, adding ethanol to improve the sensitivity of the endpoint of the titration.

AAS:
Titration of Na+: According to the general rules of atomic absorption spectrometry, the

sodium ions in the solution were analyzed by using the German continuous light source
atomic absorption spectrometer at the pressure of 0.3 MPa.

3.1.3. Mineral Composition of MP Samples

XRD result in Figure 2 shows that the main components of MP are picromerite
(KMg(SO4)2·6H2O) and potassium chloride (KCl). In the MLA test results shown in
Figure 3, the element Mg:S:K in the red region has a mole ratio of approximately 1:2.03:1.85,
indicating that picromerite is the primary mineral, followed by a small amount of magne-
sium sulfate (MgSO4·7H2O). The mole ratio of element K:Cl in the yellow region is about
1.01:1.00, which is expressed as KCl. The mole ratio of the element Na:Cl in blue is about
1.00:1.00, represented by sodium chloride (NaCl). The MLA detection result shows that the
MP sample contains a large amount of picromerite and sodium chloride in addition to less
potassium sulfate and potassium chloride.



Materials 2023, 16, 2743 5 of 19

Materials 2023, 16, x FOR PEER REVIEW 5 of 20 
 

 

the MP sample contains a large amount of picromerite and sodium chloride in addition to 

less potassium sulfate and potassium chloride. 

 

Figure 2. XRD data of MP sample. 

However, during sample preparation for the MLA test, the MP sample was partially 

dissolved due to the requirement to wash and polish the sample simultaneously, despite 

the saturated MP mother liquor being used as a detergent. As shown in Table 1, 8.18% of 

the MLA test field is not uniform and could not be measured, which means, 5.37% of the 

MP sample could not be identified. Therefore, chemical volumetric methods were used to 

supplement the MLA results. The result of the chemical volumetric test in Figure 3 shows 

that the mass of potassium ion is 27.18%, a magnesium ion is 4.30%, sulfate ion is 33.67%, 

chloride ion is 13.57%, and sodium ion is 0.32%. Finally, the composition of the 400 g MP 

sample can be inferred as follows: picromerite, 65.70%, potassium chloride, 27.50%, mag-

nesium sulfate, 5.97%, sodium chloride, 0.81%, combined with the ionic content data from 

the chemical titration in Table 2. 

 

Figure 2. XRD data of MP sample.

Materials 2023, 16, x FOR PEER REVIEW 5 of 20 
 

 

the MP sample contains a large amount of picromerite and sodium chloride in addition to 

less potassium sulfate and potassium chloride. 

 

Figure 2. XRD data of MP sample. 

However, during sample preparation for the MLA test, the MP sample was partially 

dissolved due to the requirement to wash and polish the sample simultaneously, despite 

the saturated MP mother liquor being used as a detergent. As shown in Table 1, 8.18% of 

the MLA test field is not uniform and could not be measured, which means, 5.37% of the 

MP sample could not be identified. Therefore, chemical volumetric methods were used to 

supplement the MLA results. The result of the chemical volumetric test in Figure 3 shows 

that the mass of potassium ion is 27.18%, a magnesium ion is 4.30%, sulfate ion is 33.67%, 

chloride ion is 13.57%, and sodium ion is 0.32%. Finally, the composition of the 400 g MP 

sample can be inferred as follows: picromerite, 65.70%, potassium chloride, 27.50%, mag-

nesium sulfate, 5.97%, sodium chloride, 0.81%, combined with the ionic content data from 

the chemical titration in Table 2. 

 

Figure 3. MLA test diagram of MP sample, (a) is the original image, and (b) is the processed image:
the red area is picromerite, the dark gray area is low counting rate, the yellow area is potassium
chloride, the blue area is sodium chloride, and light gray area is an unknown mineral.

However, during sample preparation for the MLA test, the MP sample was partially
dissolved due to the requirement to wash and polish the sample simultaneously, despite
the saturated MP mother liquor being used as a detergent. As shown in Table 1, 8.18% of
the MLA test field is not uniform and could not be measured, which means, 5.37% of the
MP sample could not be identified. Therefore, chemical volumetric methods were used
to supplement the MLA results. The result of the chemical volumetric test in Figure 3
shows that the mass of potassium ion is 27.18%, a magnesium ion is 4.30%, sulfate ion
is 33.67%, chloride ion is 13.57%, and sodium ion is 0.32%. Finally, the composition of
the 400 g MP sample can be inferred as follows: picromerite, 65.70%, potassium chloride,
27.50%, magnesium sulfate, 5.97%, sodium chloride, 0.81%, combined with the ionic content
data from the chemical titration in Table 2.
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Table 1. MLA analysis of the MP sample showed that picromerite accounted for 64.60%, potassium
chloride 29.05%, sodium chloride 0.01%, low count rate 5.37%, and unknown minerals 0.96%.

Mineral Name Weight (%) Area (%) Area (µm2) Particle Number Statistical Relative Error(%)

Picromerite 64.60 55.29 10,332,530.00 74,425.00 0.01

Potassium chloride 29.05 35.36 6,607,637.00 44,909.00 0.01

Low count rate 5.37 8.18 1,528,364.25 185,661.00 0.00

Unknown minerals 0.96 1.17 218,234.56 2525.00 0.04

Sodium chloride 0.01 0.01 1517.26 18.00 0.47

Table 2. Chemical titration data of MP sample.

Ion Species K+ Mg2+ SO2−
4 Cl− Na+

Content(%) 27.18 4.30 33.67 13.57 0.32

3.1.4. Samples Library of MP

As shown in Figure 4a, among the 738 MP samples investigated, the content of
picromerite ranged from 30.73% to 76.79%, with an average of 51.20% and a median of
51.19%. In 138 manually configured MP samples, the content parameters of picromerite
ranged from 30.46% to 74.49%, with an average of 53.91% and a median of 53.43%. The
content distribution of 138 MP samples was similar to that of 738 MP samples data. While
Table 3 shows that potassium chloride, magnesium sulfate, and sodium chloride are also
similar, which indicates 138 MP samples manually configured can completely meet the
needs of field production.
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3.2. TIH Data Acquisition
3.2.1. Standardized Processing of MP Samples

The MP samples were then slightly ground and placed in 50 mL centrifuge tubes and
mixed using a vortex oscillating mixer at 300 r/min for 6 min. Finally, the MP samples
were successively put into a square mold with an inner diameter of 2 cm and pressed for
30 s under a pressure equivalent to 6 t to complete sample preparation.
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Table 3. Mineral content parameter statistics of two groups of samples: group one, 738 survey MP
data sets; group two, 138 manually configured MP sample data.

Sum Mean (%) Standard
Deviation (%) Minimum (%) Median (%) Maximum (%)

Group one

Picromerite

738

51.20 6.14 30.73 51.19 76.79
Potassium
chloride 35.94 4.98 17.39 36.13 52.50

Magnesium
sulfate 10.31 2.43 2.25 10.11 17.93

Sodium
chloride 2.55 0.71 0.97 2.56 5.51

Group two

Picromerite

138

53.91 11.67 30.46 53.43 74.49
Potassium
chloride 34.59 12.05 12.46 33.88 61.52

Magnesium
sulfate 9.26 3.10 4.30 9.53 16.00

Sodium
chloride 1.65 0.75 0.59 1.59 3.73

3.2.2. Hyperspectral Imaging System and Image Acquisition

In this study, a Hyper-Cam hyperspectral imager (Telops, Canada) was used for data
acquisition, and its imaging mode was Fourier interference imaging. The spectral range of
the instrument is 7.7–11.8 µm, the spectral resolution range is 0.25–150 cm−1, the Field of
View (FOV) (◦) is 40, and the imaging field is 320 × 256 array.

As shown in Figure 5, the Hyper-Cam hyperspectral imaging system was used to
collect TIH data from samples and a diffuse reflector (gold-plated plate) in a relatively open
environment. The open environment can effectively avoid the interference of other objects
in the surrounding environment and reduce the noise of acquiring data. At the same time,
the sample was preheated with a heating table, and the heating temperature was set to
50 °C. Fluke 54-IIB dual channel contact thermometer was used to record the temperature
of the sample and gold foil before and after imaging, and the mean value was taken as
the temperature of the sample and gold foil. Then, the absolute value of the difference
between the measured temperature and the inverted temperature was used to evaluate the
quality of the sample spectral data. It is generally believed that if the absolute value of the
temperature difference is less than 1 K, the quality of collected sample data is acceptable
and can be used for accurate quantitative analysis and study.

3.3. TIH Data Processing
3.3.1. Emissivity Inversion

The method of obtaining sample emissivity in this study refers to the study [33].
Iterative Spectrally Smooth Temperature and Emissivity Separation (ISSTES) algorithm is
widely used in remote sensing applications to accurately calculate the emissivity of solid
objects from their spectral radiance measurements. The ISSTES takes advantage of the
fact that the emissivity spectrum of solid objects is smoother than the characteristics of the
atmosphere. ISSTES algorithm defines a group of emissivity curves indexed by surface
temperature as follows:

ε(λ) =
Lsensor(λ)− Lu(λ)− τ(λ)E(λ)
τ(λ)B(λ, T)− τ(λ)E(λ)

(1)

where Lsensor(λ) is the total radiance reaching the sensor, λ is the central wavelength of each
channel (µm), ε(λ) is the emissivity, and E(λ) is environmental radiance measured by the
gold-plated plate. τ(λ) and Lu(λ) are atmospheric transmittance and upwelling radiation,
respectively, which are simulated by MODTRAN®5.2. B(λ,T) is the Planck radiance at panel
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temperature T. The units for Lsensor(λ), Lu(λ), B(λ, T) and E(λ), are all W/(m2·sr·µm). ε(λ)
and τ(λ) are dimensionless quantities.

Materials 2023, 16, x FOR PEER REVIEW 8 of 20 
 

 

 

Figure 5. Conditions for collectingTIH data of potassium salt samples. (a) Sample shooting; (b) Po-

tassium salt sample; (c) Hyper-Cam lens; (d) Gold-plate; (e) Thermometer. 

3.3. TIH Data Processing 

3.3.1. Emissivity Inversion 

The method of obtaining sample emissivity in this study refers to the study [33]. It-

erative Spectrally Smooth Temperature and Emissivity Separation (ISSTES) algorithm is 

widely used in remote sensing applications to accurately calculate the emissivity of solid 

objects from their spectral radiance measurements. The ISSTES takes advantage of the fact 

that the emissivity spectrum of solid objects is smoother than the characteristics of the 

atmosphere. ISSTES algorithm defines a group of emissivity curves indexed by surface 

temperature as follows: 

ε(λ) =
Lsensor(λ)  −  Lu(λ)  −  τ(λ)E(λ)

τ(λ)B(λ, T)  −  τ(λ)E(λ)
 (1) 

where Lsensor(λ) is the total radiance reaching the sensor, λ is the central wavelength of 

each channel (μm), ε(λ) is the emissivity, and E(λ) is environmental radiance measured 

by the gold-plated plate. τ(λ) and Lu(λ) are atmospheric transmittance and upwelling ra-

diation, respectively, which are simulated by MODTRAN® 5.2. B(λ,T) is the Planck radi-

ance at panel temperature T. The units for Lsensor(λ), Lu(λ), B(λ, T)  and E(λ), are all 

W/(m²·sr·μm). ε(λ) and τ(λ) are dimensionless quantities. 

As can be seen from Equation (1), given the surface temperature and known atmos-

pheric parameters, the corresponding emissivity spectrum can be calculated. Then, if the 

smoothness criterion of the emissivity curve is determined, the smoothness of a series of 

emissivity curves at different temperatures near the real surface temperature can be cal-

culated, and the temperature corresponding to the estimated emissivity spectrum is the 

smoothest result. The smoothness criterion used by ISSTES is designed as follows: 

S = ∑ (εi −
εi−1+εi+εi+1

3
)

2
N−1
i=2   (2) 

where S is the calculated smoothness criterion value, and N is the frequency band number 

of hyperspectral data. 

In this study, the pretreatment of TIH data as well as the CARS and PLSR algorithms 

were calculated using MATLAB 2019a. 

Figure 5. Conditions for collectingTIH data of potassium salt samples. (a) Sample shooting;
(b) Potassium salt sample; (c) Hyper-Cam lens; (d) Gold-plate; (e) Thermometer.

As can be seen from Equation (1), given the surface temperature and known atmo-
spheric parameters, the corresponding emissivity spectrum can be calculated. Then, if
the smoothness criterion of the emissivity curve is determined, the smoothness of a series
of emissivity curves at different temperatures near the real surface temperature can be
calculated, and the temperature corresponding to the estimated emissivity spectrum is the
smoothest result. The smoothness criterion used by ISSTES is designed as follows:

S = ∑N−1
i=2

(
εi −

εi−1 + εi + εi+1

3

)2
(2)

where S is the calculated smoothness criterion value, and N is the frequency band number
of hyperspectral data.

In this study, the pretreatment of TIH data as well as the CARS and PLSR algorithms
were calculated using MATLAB 2019a.

3.3.2. Data Quality Evaluation by Temperature

In this study, the accuracy of the emissivity data was evaluated indirectly by comparing
the measured temperature of the sample with the temperature obtained through inverted
emissivity data using the algorithm. Since temperature and emissivity are coupled. When
the emissivity error is about 0.015, the temperature error is about 1 k [34]. By comparing
the measured and inverted temperatures, any discrepancies or errors in the emissivity data
could be identified, thereby improving the accuracy of the spectral data and subsequent
analysis. The difference between the measured and inverted temperatures was used as
an indicator of the quality of the inverted data. This approach is crucial for the successful
analysis and interpretation of the TIH data [35]. Figure 6a illustrates that the temperature
difference of all samples is within ±2 K. In Figure 6b, 71.0% of the samples are in the range
of absolute temperature difference ≤1 K, which indicates that the data collection and data
processing process of MP samples is effective and the emissivity data obtained are of high
quality. These emissivity results can be used for quantitative analysis and research of MP.
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Figure 6. (a) Difference between the measured temperature and inverted temperature of 138 MP
samples; (b) cumulative distribution of absolute temperature difference; (c) temperature profile of
some MP samples.

As can be seen from the temperature distribution of some MP samples in Figure 6c, the
surface emissivity of MP samples is relatively uniform, indicating that MP samples are fully
and evenly mixed during preparation. In addition, the mean emissivity of the 15 × 20 pixel
at the center of the MP sample surface is taken as the emissivity of the corresponding
sample to further reduce the effect of systematic errors in sample preparation.

4. Methods
4.1. Prediction Model

Firstly, 138 samples were tested for outliers and removed. To avoid some unreliable
samples in the modeling calculation [36], the 138 samples were sorted and classified
according to their picromerite content and then divided into 5 groups by regular interval
sampling. Then, 4 groups of samples were randomly selected as the correction set, and
the remaining group of samples was the prediction set. PLSR calculations were performed
5 times. Therefore, each sample had 4 calibration residual errors (CRE) and 1 predicted
residual error (PRE). Then, PLSR [37] was used for analysis and calculation, and the
CARS [38] method was introduced to choose feature wavelength. The PLSR model and the
CARS-PLSR model were constructed separately. CARS were employed to screen out the
sensitive bands corresponding to the minerals, while PLSR is utilized to establish a linear
relationship between the mineral-sensitive bands and mineral content. The resulting model
was then employed to estimate the content of salt ore.
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The PLSR method, by projection, obtains orthogonal feature vectors for independent
and dependent variables, respectively, and then establishes a unitary linear regression
relation between the feature vectors. This approach not only resolves the issue of collinearity
but also emphasizes the importance of independent variables in explaining and predicting
dependent variables during the selection of feature vectors. By selecting several key
variables, this method enables the model to achieve the minimum number of variables
necessary for optimal performance. For the CARS method, the absolute value of the
regression coefficient of the PLSR model is used as the index to evaluate the importance
of each wavelength. In each sampling run, a fixed proportion of samples is randomly
selected to establish the correction model. The number of samples selected in this study
is 80% of the number of calibrations set. The wavelength for selection bands with larger
absolute regression coefficients in the PLSR model is defined through adaptive reweighting
sampling (ARS) technology. That is, CARS can often find the optimal combination of some
key wavelengths that explain the chemical properties of interest.

4.2. Model Evaluation

To fully verify the performance of the model, the samples in the MP sample bank
were divided into a calibration set and a testing set. The calculated parameters for the
calibration set include the correlation coefficient (R2

c) and root mean square error (RMSEC).
The calculated parameters for the prediction set include the correlation coefficient (R2

p),
root mean square error (RMSEP), and relative prediction deviation (RPD). The higher R2

c ,
R2

p, and RPD, the lower RMSEC, and RMSEP, the better the predictive effect of the model.
If R2

c is close to R2
p, or RMSEC is close to RMSEP, the model is robust. In particular, an RPD

value between 1.8 and 2.0 indicates a good model, between 2.0 and 2.5 indicates a very
good model, and above 2.5 indicates excellent model performance [39].

R2 =
∑n

i=1(ŷi − y)2

∑n
i=1(yi − y)2 (3)

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
(4)

RPD =

√
∑n

i=1(yi−y)2

n−1√
∑n

i=1(ŷi−yi)
2

n

(5)

In Formulas (3)–(5), ŷi represents the predicted sample mineral content, ŷi represents
the mean value of the actual sample mineral content, yi represents the actual sample
mineral content, and n represents the number of samples involved in the calculation.

5. Experiments and Results
5.1. Model Establishment for MP Prediction
5.1.1. Outlier Detection

The outlier observation map of the MP sample was established using MCRE with
abscissa and PRE with ordinate, as shown in Figure 7. The mean of corrected residual
error (MPCE) and predicted residual error (PRE) were taken as the reference, and the larger
samples were eliminated. Among them, the points with large MCRE and PRE values
are removed. The samples with numbers 108, 84, and 131 are removed with picromerite;
samples with numbers 21, 68, 84, 119, and 131 are removed with potassium chloride;
samples with number 44 and 55 are removed with magnesium sulfate; samples with
number 94 and 106 are removed with sodium chloride. That is, a total of 9 outliers are
detected, and the remaining 129 points are used for subsequent model calculation.
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5.1.2. Calibration Set and Prediction Set

As shown in Table 4 and Figure 8, a statistical analysis of the mineral composition of
the four MP in the prediction and calibration sets is performed in terms of mean, standard
deviation, minimum, median, and maximum. It illustrates that the range of sample
parameters of the prediction set are all within the range of the calibration set. Moreover,
from the two statistical terms mean and median, it can be found that the distribution of
sample parameters of the prediction set and the calibration set is close, which means the
results of the prediction set can fully illustrate the model performance of the calibration set.

5.2. MP Content Prediction

In the calibration set, PLSR conducts internal validation of the model based on leave-
one-out validation, and the calculation results are shown in Table 5 and Figure 9. PLSR is
the calculation method of multivariate linear relationship analysis, and the relationship
between the percentage content of the four minerals in the MP is not clear. Therefore,
univariate PLSR (U-PLSR) and multivariate PLSR (U-PLSR) are used for calculation. From
the comparison of RPD values of the prediction set, the prediction accuracy of U-PLSR
is higher than that of M-PLSR. The RPD values of four minerals of U-PLSR are 4.59, 4.06,
2.16, and 1.57, respectively, and those of four minerals of M-PLSR are 4.00, 4.06, 2.08, and
1.57, respectively. In the process of PLSR calculation, the components extracted from the
joint composition matrix Y of the four minerals cannot represent the various minerals
themselves, which deduced that there should be no correlation between the percentage
contents of the four minerals.
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Table 4. Mineral composition statistics from the calibration set (104 MP samples) and the prediction
set (34 MP samples): mean, standard deviation, minimum, median, and maximum.

Sum Mean (%) Standard
Deviation (%) Minimum (%) Median (%) Maximum (%)

Calibration set

Picromerite

97

54.05 11.67 30.46 53.76 74.49
Potassium
chloride 34.50 11.73 12.46 34.17 61.52

Magnesium
sulfate 9.24 3.23 4.30 9.43 16.00

Sodium
chloride 1.65 0.80 0.59 1.59 3.71

Prediction set

Picromerite

32

54.54 11.55 33.45 54.03 74.10
Potassium
chloride 33.68 12.66 14.05 32.80 57.84

Magnesium
sulfate 9.46 2.52 4.30 9.72 15.51

Sodium
chloride 1.64 0.55 0.59 1.61 3.31
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Table 5. Results of calibration and prediction sets for U-PLSR and M-PLSR models.

Calibration Set Prediction Set

R2
c RMSEC R2

p RMSEP RPD

U-PLSR

Picromerite 0.970 2.00% 0.949 2.52% 4.59
Potassium chloride 0.959 2.36% 0.938 3.12% 4.06
Magnesium sulfate 0.931 0.83% 0.805 1.17% 2.16

Sodium chloride 0.621 0.49% 0.574 0.35% 1.57

M-PLSR

Picromerite 0.964 2.20% 0.936 2.88% 4.00
Potassium chloride 0.958 2.38% 0.936 3.22% 3.94
Magnesium sulfate 0.915 0.92% 0.785 1.21% 2.08

Sodium chloride 0.706 0.43% 0.609 0.34% 1.61
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In the calibration set of U-PLSR, the R2
c of picromerite and potassium chloride is larger,

while the R2
c of magnesium sulfate and sodium chloride is smaller, which may be related

to the ratio of four minerals in the MP sample. It means that the content of picromerite
and potassium chloride in the calibration set is greater than that of magnesium sulfate
and sodium chloride. In MP samples, the signal strength may be more pronounced when
the content of a particular mineral is larger, and the final prediction accuracy is higher. In
the U-PLSR, the RMSEP values of the four minerals are 2.52%, 3.12%, 1.17%, and 0.35%,
respectively, which increase by 0.52%, 0.76%, 0.34%, and 0.14% compared with the RMSEC
values. The results indicate that the prediction set is accurate and the PLSR model is robust
to the mineral content prediction of MP.

5.3. Sensitive Bands Selection of Pure Mineral

The CARS method is implemented through PLSR calculation of a single dependent
variable, which can screen out the respective sensitive wavelengths of each mineral in MP
samples. The CARS method could simplify the entire prediction method and enhance
the feasibility of application in realistic scenarios of potassium salts. Table 6 shows that
there are 12 sensitive wavelengths for picromerite, 11 sensitive wavelengths for potassium
chloride, 11 sensitive wavelengths for magnesium sulfate, and 8 sensitive wavelengths for
sodium chloride. Figure 10 maps and compares the sensitive wavelengths of each mineral,
pure mineral, and MP mean emissivity spectrum data.

Table 6. CARS sensitive wavelengths screening results.

Mineral Species Number Sensitive Wavelengths (µm)

Picromerite 12 8.44, 8.48, 8.54, 8.65, 8.72, 8.86,
9.13, 9.53, 9.62, 9.98, 10.17, 11.01

Potassium chloride 11 8.48, 8.72, 8.86, 9.21, 9.53, 9.58,
9.62, 9.66, 10.22, 10.68, 11.07

Magnesium sulfate 11 8.48, 8.51, 8.94, 9.45, 9.62, 9.93,
10.12, 10.42, 10.68, 10.73, 10.84

Sodium chloride 8 8.34, 8.54, 8.58, 9.84,
9.98, 11.01, 11.30, 11.36

The sensitive wavelength distribution of picromerite is relatively uniform and dis-
tributed in the whole wavelength, among which there are four sensitive wavelengths
concentrated in the trough of 8.5–9.0 µm. For the sensitive wavelengths of magnesium
sulfate, the distribution of sensitive wavelengths is far away from the trough at 9.1 um,
except for one near the trough at about 8.9 µm. The emissivity curves of potassium chloride
and sodium chloride are similar in shape, with a broad peak between 8.5 and 9.5 µm, but the
sensitive wavelengths do not overlap. The sensitive wavelength of potassium chloride is
uniformly distributed over the entire thermal infrared band, while the sensitive wavelength
of sodium chloride is mainly distributed on both sides of the thermal infrared band.

Since the sensitive wavelengths selected by the CARS method for four minerals in
MP overlaps, U-PLSR and M-CARS-PLSR methods are used to establish prediction models
for U-CARS-PLSR and M-CARS-PLSR (the input wavelength is the union of the sensitive
wavelengths of four minerals, 31 wavelengths), as shown in Figure 11 and Table 7. In
the calibration set, the values of R2

c and RMSEC of the U-CARS-PLSR model are higher
than those of the M-CARS-PLSR for picromerite and potassium chloride, while the results
reverse for magnesium sulfate and sodium chloride. In the prediction set, the values of
RMSEP and RPD for picromerite are almost the same (RMSEP: 2.72%, 2.78%, and RPD:
4.24, 4.15; RMSEP of sodium chloride: 0.40%, 0.40%, and RPD: 1.37, 1.36), but the results
of potassium chloride and magnesium sulfate were significantly different (RMSEP of
potassium chloride: 2.86%, 3.16%, and RPD: 4.42, 4.00; RMSEP of magnesium sulfate:
1.45%, 1.29%, and RPD: 1.73, 1.96).
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Table 7. Results of calibration and prediction sets for U-CARS-PLSR and M-CARS-PLSR models.

Calibration Set Prediction Set

R2
c RMSEC R2

p RMSEP RPD

U-CARS-
PLSR

Picromerite 0.968 2.05% 0.943 2.72% 4.24
Potassium chloride 0.959 2.36% 0.948 2.86% 4.42
Magnesium sulfate 0.868 1.15% 0.690 1.45% 1.73

Sodium chloride 0.682 0.44% 0.485 0.40% 1.37

M-CARS-
PLSR

Picromerite 0.964 2.20% 0.940 2.78% 4.15
Potassium chloride 0.955 2.47% 0.938 3.16% 4.00
Magnesium sulfate 0.922 0.88% 0.770 1.29% 1.96

Sodium chloride 0.715 0.42% 0.500 0.40% 1.36

Considering that the percentage of magnesium sulfate is much smaller than potassium
chloride (standard deviation: potassium chloride, 12.66%; magnesium sulfate: 2.52%), it
can be concluded that the performance of U-CARS-PLSR is better than that of M-CARS-
PLSR. As Figure 12 shows, four minerals of RPD values of U-PLSR and U-CARS-PLSR
are compared: picromerite 4.59, 4.24; potassium chloride, 4.06, 4.42; magnesium sulfate
2.16, 1.73; sodium chloride 1.37, 1.57. The results deduced that the prediction accuracy of
U-CARS-PLSR has decreased to a certain extent except for potassium chloride. However,
the CARS method reduced the number of selected calculated wavelengths (from 69 to
31 wavelengths), and the RPD values of major minerals in MP samples are both greater
than 4.00, indicating that the prediction effect was still acceptable. In other words, CARS
have a great role in reducing the cost of TIH technology and then being applied to the
production and detection of potassium salt.
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6. Conclusions

To solve the problem of rapid detection in the process of mineral production, this
paper introduced the application of TIH technology in the detection of potassium salt
samples as an example. The relationship between the potassium salt spectrum and mineral
content was constructed, and the potassium salt content was successfully predicted under
the PLSR method. The following conclusions are reached:

(1) TIH imaging revealed highly prominent emissivity characteristics of the MP samples
in the thermal infrared band. Furthermore, the temperature discrepancy between the
inverted and actual temperatures of the samples was relatively small, with 71% of
the samples exhibiting a temperature difference of less than 1 K. This suggests that
the emissivity accuracy of the samples obtained in this experimental process is high
and can be approximated as the emissivity spectrum corresponding to potassium
salt samples.

(2) The CARS-PLSR model, which is based on MP sample emissivity data training, is
effective for MP sample prediction. In the U-PLSR model, the RPD values of the four
minerals are 4.59, 4.06, 2.16, and 1.57, respectively, indicating that PLSR has a good
prediction effect on MP. The calculation results of the U-CARS-PLSR model using
the CARS method for sensitive wavelength selection show that the CARS method
can effectively reduce the number of wavelengths, which is of great benefit to the
practical application of TIH technology. With the CARS method, the number of
selected wavelengths for the four minerals is reduced to 12, 11, 11, and 8, with RPD
values of 4.24, 4.42, 1.73, and 1.37. The prediction accuracy of major minerals in MP is
high (RPD > 4). The model has a good prediction effect on MP.

The study deduces that TIH technology has high accuracy for detecting potassium
salts with limited mineral phases. It is reasonable to expect that TIH technology could have
potential applications not only in detecting other minerals in production but also in other
scenarios where mineral phases are limited, such as in the detection of allotropes.

TIH technology can accurately and rapidly detect mineral phases with limited mineral
phases, compared with traditional detection methods. However, it is important to note that
in this study, the TIH technology was used to collect data on dry potassium salt samples in
a relatively open environment, which may be difficult to replicate under actual production
conditions. Therefore, in subsequent studies, two approaches will be taken to address this
issue: (1) Construct “shielding conditions” using low emissivity substances to simulate a
more realistic environment; (2) Increase the sample size of potassium salt under aqueous
conditions and quantitatively investigate the influence of water. These two approaches
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represent the focal points of follow-up research aimed at bringing the technology closer to
practical application.
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Systems of the Taupō Volcanic Zone, New Zealand. Geothermics 2018, 73, 74–90. [CrossRef]

14. van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; van der Meijde, M.;
Carranza, E.J.M.; de Smeth, J.B.; Woldai, T. Multi- and Hyperspectral Geologic Remote Sensing: A Review. Int. J. Appl. Earth Obs.
Geoinf. 2012, 14, 112–128. [CrossRef]

15. Christensen, P.R.; Bandfield, J.L.; Hamilton, V.E.; Howard, D.A.; Lane, M.D.; Piatek, J.L.; Ruff, S.W.; Stefanov, W.L. A Thermal
Emission Spectral Library of Rock-Forming Minerals. J. Geophys. Res. Planets 2000, 105, 9735–9739. [CrossRef]

16. Cui, J.; Yan, B.; Dong, X.; Zhang, S.; Zhang, J.; Tian, F.; Wang, R. Temperature and Emissivity Separation and Mineral Mapping
Based on Airborne TASI Hyperspectral Thermal Infrared Data. Int. J. Appl. Earth Obs. Geoinf. 2015, 40, 19–28. [CrossRef]

17. Christensen, P.R.; Jakosky, B.M.; Kieffer, H.H.; Malin, M.C.; Mcsween, H.Y.; Nealson, K.; Mehall, G.L.; Silverman, S.H.; Ferry, S.;
Caplinger, M.; et al. The Thermal Emission Imaging System (Themis) for the Mars 2001 Odyssey Mission. Space Sci. Rev. 2004,
110, 85–130. [CrossRef]

18. Pelkey, S.M.; Mustard, J.F.; Murchie, S.; Clancy, R.T.; Wolff, M.; Smith, M.; Milliken, R.E.; Bibring, J.P.; Gendrin, A.; Poulet, F.; et al.
CRISM Multispectral Summary Products: Parameterizing Mineral Diversity on Mars from Reflectance. J. Geophys. Res. Planets
2007, 112, E8. [CrossRef]

http://doi.org/10.3390/min9090523
http://doi.org/10.3390/ma14164590
http://www.ncbi.nlm.nih.gov/pubmed/34443113
http://doi.org/10.3390/ma14216277
http://www.ncbi.nlm.nih.gov/pubmed/34771799
http://doi.org/10.1016/j.trac.2020.115955
http://doi.org/10.1002/xrs.3135
http://doi.org/10.1016/j.nima.2003.07.044
http://doi.org/10.2116/analsci.20R008
http://doi.org/10.3390/ma14164437
http://doi.org/10.3390/ma14164628
http://doi.org/10.1016/j.aca.2018.04.004
http://doi.org/10.1016/j.ccr.2011.01.014
http://doi.org/10.1016/j.gexplo.2005.07.002
http://doi.org/10.1016/j.geothermics.2018.01.006
http://doi.org/10.1016/j.jag.2011.08.002
http://doi.org/10.1029/1998JE000624
http://doi.org/10.1016/j.jag.2015.03.014
http://doi.org/10.1023/B:SPAC.0000021008.16305.94
http://doi.org/10.1029/2006JE002831


Materials 2023, 16, 2743 19 of 19

19. Mauger, A.J.; Ehrig, K.; Kontonikas-Charos, A.; Ciobanu, C.L.; Cook, N.J.; Kamenetsky, V.S. Alteration at the Olympic Dam
IOCG–U Deposit: Insights into Distal to Proximal Feldspar and Phyllosilicate Chemistry from Infrared Reflectance Spectroscopy.
Aust. J. Earth Sci. 2016, 63, 959–972. [CrossRef]

20. Hamilton, V.E. Thermal Infrared (Vibrational) Spectroscopy of Mg-Fe Olivines: A Review and Applications to Determining the
Composition of Planetary Surfaces. Chem. Erde 2010, 70, 7–33. [CrossRef]

21. Yousefi, B.; Sojasi, S.; Castanedo, C.I.; Maldague, X.P.V.; Beaudoin, G.; Chamberland, M. Comparison Assessment of Low Rank
Sparse-PCA Based-Clustering/Classification for Automatic Mineral Identification in Long Wave Infrared Hyperspectral Imagery.
Infrared Phys. Technol. 2018, 93, 103–111. [CrossRef]

22. Desta, F.; Buxton, M.; Jansen, J. Data Fusion for the Prediction of Elemental Concentrations in Polymetallic Sulphide Ore Using
Mid-Wave Infrared and Long-Wave Infrared Reflectance Data. Minerals 2020, 10, 235. [CrossRef]

23. Desta, F.; Buxton, M.; Jansen, J. Fusion of Mid-Wave Infrared and Long-Wave Infrared Reflectance Spectra for Quantitative
Analysis of Minerals. Sensors 2020, 20, 1472. [CrossRef] [PubMed]

24. Notesco, G.; Weksler, S.; Ben-Dor, E. Mineral Classification of Soils Using Hyperspectral Longwave Infrared (LWIR) Ground-Based
Data. Remote Sens. 2019, 11, 1429. [CrossRef]

25. Kopăcková, V.; Koucká, L. Integration of Absorption Feature Information from Visible to Longwave Infrared Spectral Ranges for
Mineral Mapping. Remote Sens. 2017, 9, 1006. [CrossRef]

26. Guzmán, Q.J.A.; Rivard, B.; Sánchez-Azofeifa, G.A. Discrimination of Liana and Tree Leaves from a Neotropical Dry Forest Using
Visible-near Infrared and Longwave Infrared Reflectance Spectra. Remote Sens. Environ. 2018, 219, 135–144. [CrossRef]

27. Weksler, S.; Rozenstein, O.; Ben-Dor, E. Mapping Surface Quartz Content in Sand Dunes Covered by Biological Soil Crusts Using
Airborne Hyperspectral Images in the Longwave Infrared Region. Minerals 2018, 8, 318. [CrossRef]

28. Laakso, K.; Turner, D.J.; Rivard, B.; Sánchez-Azofeifa, A. The Long-Wave Infrared (8–12 µm) Spectral Features of Selected Rare
Earth Element—Bearing Carbonate, Phosphate and Silicate Minerals. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 77–83. [CrossRef]

29. Manolakis, D.; Pieper, M.; Truslow, E.; Lockwood, R.; Weisner, A.; Jacobson, J.; Cooley, T. Longwave Infrared Hyperspectral
Imaging: Principles, Progress, and Challenges. IEEE Geosci. Remote Sens. Mag. 2019, 7, 72–100. [CrossRef]
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