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Abstract: The widespread use of geopolymer cement (GPC) has been hindered by a lack of scientific
knowledge that still exists regarding its synthesis process. Key points, such as the release of alumi-
nosilicate species from the raw materials and its link to the properties of GPC, have still not been
completely studied. As a result, most of the GPC formulations covered in the literature are based on
precursors’ elemental analysis using XRF (X-ray Fluorescence), or other equivalent analysis methods,
and consider that the total aluminosilicate content of the precursors is available for participating in
the geopolymerization process, which seems very unlikely. In this study, the amounts of aluminate
and silicate species released from metakaolin (MK), electric arc furnace slag (EAFS), and biomass
fly ash (BFA) in alkaline dissolution tests were determined by simple spectrophotometric methods.
It was found that MK yields the highest aluminosilicate dissolution amount, about 2.1 mmol of
silicate + aluminate per gram of MK, while EAFS and BFA yield about 0.53 and 0.32 mmol/g precur-
sor, respectively. These results were used to estimate the total amounts of dissolved aluminosilicates
in a series of GPC mortars prepared from these raw materials, which were thereafter subjected to
mechanical tests. It was shown that the mortars’ compressive strength (which ranged from 1 to
63 MPa) is linearly correlated with their estimated total amount of dissolved aluminosilicates, with
the best linear fit yielding a coefficient of determination above 0.99. It was concluded that by using
the results of the dissolution tests, the estimation of compressive strength is greatly improved when
compared to using the elemental analysis obtained by XRF, which yields a coefficient of determination
of 0.88 and a larger dispersion of data points. The results reveal the usefulness of this simple method
for evaluating the potential of inorganic industrial waste streams as precursors for GPC.

Keywords: geopolymerization; geopolymer cement formulation; circular economy; inorganic
industrial waste

1. Introduction

The intense global consumption of raw materials is expected to continue and is
estimated to double over the next four decades, resulting in an astonishing 70% increase in
annual waste generation by 2050 [1]. Inorganic industrial waste, such as unused slag and
fly ash, is commonly disposed of in landfills, which is an environmentally and economically
unsustainable option, as existing landfills are reaching exhaustion and landfill taxes have
increased in recent years [2]. The application of a circular economy paradigm, in which,
e.g., virgin raw materials are replaced by byproducts or waste streams, is therefore a key
factor in the industry’s path towards sustainability, enabling a critical reduction in extracted
materials, generated waste, and greenhouse gas emissions.
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In this context, the geopolymerization synthesis process has shown the potential to
incorporate a significant proportion of inorganic byproducts or waste streams into the
formulation of new and added-value materials, such as geopolymer cement (GPC). GPC
can be described as a synthetic aluminosilicate cement and is produced by reacting a solid
source of aluminosilicates in powder form with an aqueous alkaline solution, typically a
hydroxide or silicate solution. GPC is comparable to ordinary Portland cement binders,
namely in terms of the mechanical performance that can be obtained, and has the added
environmental advantage of being able to recycle a wide variety of inorganic byproducts
or waste streams as its main constituents (the source of aluminosilicates), resulting in a
significantly lower carbon footprint [3–7]. The three most common raw material classes
used in GPC synthesis are calcined clays (e.g., metakaolin) [6,8,9], fly ashes (e.g., coal
fly ash) [9–12], and slags (e.g., metallurgical blast furnace slag) [9,11,13], all possessing
pozzolanic activity. Apart from the most commonly used MK, FA, and GGBFS, many other
byproducts and industrial wastes containing considerable amounts of reactive silica and
alumina might be used as raw materials in the geopolymerization process. Among others,
materials such as glass waste [14,15], ceramics waste [16–18], mine tailings [19,20], waste
from natural stone processing [21,22], and rice husk ash [23,24] are currently being studied
for possible integration in GPC formulations.

Despite the potential of GPC as an eco-friendly binder, the understanding of its synthe-
sis process and technology is far from being complete, hindering its widespread use as an
alternative to more conventional binders associated with a larger environmental footprint.
In fact, the complex physico-chemical mechanisms on the basis of the geopolymerization
process are still under study [5,8,12], but there has been agreement on the importance of the
initial alkaline dissolution of raw material particles, which releases aluminate and silicate
species into solution according to the following simplified processes [25]:

Al2O3 + 3H2O + 2OH− → 2[Al(OH)4]− (aluminate)

SiO2 + 2OH− → [SiO2(OH)2]2− (silicate)

Aluminate and silicate species, which are recognized as the most important chemical
species in the GPC synthesis process [9,25], will therefore begin to accumulate in solution,
reaching a point where they are able to recombine and reorganize, forming an aluminosili-
cate network that will progressively increase in extension and connectivity, allowing the
material to set and harden [6,25]. In this respect, knowledge of the rate and extension of
dissolution of aluminate and silicate species from the raw materials is critical, since the
elemental composition alone will not enable a suitable characterization of the geopoly-
merization process, due to differences in phase reactivity and other physical and chemical
effects [26,27]. In fact, the likelihood of the total silica and alumina content of the raw
materials being involved in the geopolymerization reactions is very low [28,29]. Taking
this into account, an estimation of the dissolved amounts of silicate and aluminate species
is important in designing the GPC mix because these seem more likely related to the actual
amounts taking part in the formation of the GPC matrix than the total SiO2 and Al2O3
present in the precursors [30]. However, most published works on GPC mix design have
relied on the total oxide content reported in the precursors’ chemical analysis to calculate
chemical ratios and mix proportions [30–36]. In fact, only a few recent research exam-
ples have explicitly investigated the relationship between the properties of the obtained
GPC and the measured dissolution extent of silicates and aluminates from the precursors
used [37,38].

In this study, the alkaline dissolution process of metakaolin (MK), biomass fly ash (BFA),
and electric arc furnace slag (EAFS) is investigated. MK is a powdered material obtained by the
calcination of kaolin clay. It is estimated that the production of kaolin in Portugal is currently
around 320 kton/year [39] and that each ton of kaolin can eventually yield 840 kg of MK [40].
BFA is a solid waste stream produced during the combustion process in biomass power plants
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and is collected as dust from the gaseous stream exiting the furnace. In Portugal, the produced
amount of BFA is expected to reach around 135 kton/year [41]. EAFS is a solid non-metallic
waste material that forms during the recycling of scrap steel in an electric arc furnace. After
some processing steps (crushing, metallic fraction separation, sieving) this material can be
used, e.g., as an artificial aggregate [42–44]. Currently in Portugal, the production of treated
EAFS is estimated at about 250 kton/year [45]. A 10 M sodium hydroxide (SH) solution is used
as the alkaline medium and simple spectrophotometric methods are employed to measure the
concentration of silicate and aluminate species dissolved from these precursors [37]. These
results were then correlated with the chemical composition of the precursors and with the
mechanical strength achieved by the resulting GPC mortar specimens prepared from these
materials, with the aim of establishing a simple method for assessing the potential of such
raw materials for the production of GPC mortars.

2. Materials and Methods

The general formulation of GPC mortars used in this study was:

• Precursor mix, comprised of one or more of the three aluminosilicate-containing raw
materials MK, BFA, and EAFS.;

• Sand, used as fine aggregates;
• Alkalination or activation mix, comprised of a combination of sodium silicate (SS) and

SH solutions, adjusted with additional water or SH pellets.

2.1. Precursors, Aggregates, and Alkalination Mix

In the present study, MK, BFA, and EAFS were used as the main aluminosilicate-
containing raw materials; i.e., the precursors of the geopolymerization process (Figure 1).
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Figure 1. Used GPC precursors. From left to right: MK, BFA, and ground EAFS.

MK used in this research was supplied by Mota Ceramic Solutions (Alvares, Portu-
gal), while the used BFA originates from a plant of Greenvolt (Lisboa, Portugal), where
it was separated from the gaseous stream by bag filters. Both MK and BFA are originally
powdered materials and were used as received. As for EAFS, the material was supplied
by Harsco Environmental (Maia, Portugal) and was composed of large granules (as large
as 5 cm, in our case) that are not suited for use in the geopolymerization process. For this
reason, the original material was ground in a laboratory mill (MGS, Rapid Mill MGS1800/2)
to produce the fine powder needed for the GPC preparation. The specific gravity of MK,
BFA, and EAFS, provided by the suppliers, is 2.4, 2.3, and 3.5, respectively. The particle
size distribution (PSD) curves and the main PSD parameters for each used precursor, deter-
mined in a Masterziser 3000 laser diffraction particle size analyzer (Malvern Panalytical,
Malvern, UK), are shown in Figure 2 and Table 1, respectively.
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Table 1. PSD D10, D50, and D90 parameters for GPC precursors.

D10 (µm) D50 (µm) D90 (µm)

MK 2.98 30.0 122

BFA 6.07 59.3 460

EAFS 0.80 8.43 113

D10, D50, and D90 correspond to the particle size, below which 10%, 50%, and 90% of
the sample volume is found, respectively.

The chemical composition of the precursors was determined by X-ray Fluorescence.
For the case of MK, the composition was given by the supplier, whereas for BFA and EAFS,
a Zetium XRF spectrometer (Malvern Panalytical), equipped with a 4 kW Rhodium X-ray
tube, was used for the measurements. The main oxide proportions are reported in Table 2.

Table 2. Main oxide composition of GPC precursors.

SiO2 Al2O3 CaO K2O MgO Fe2O3 MnO SO3

MK 59.3% 33.5% 0.1% 3.2% 0.2% 3.2% − −
BFA 35.7% 4.5% 28.1% 4.1% 2.2% 1.3% 0.4% 3.2%

EAFS 13.7% 8.6% 24.0% − 4.8% 24.6% 4.8% 0.5%

The amount of dissolved aluminate and silicate species from the precursors in alkaline
medium or, in other words, their potential reactivity towards the geopolymerization process
was assessed by an alkaline dissolution test carried out as follows. A 10 M SH solution
was prepared, dissolving SH pellets (Sharlau, ACS) in deionized water, and used as
the alkaline medium or alkalination solution at a ratio of 200 mL/g of precursor. The
resulting suspension was allowed to react for 120 min under controlled agitation, at room
temperature (Figure 3).

Thereafter, the suspension was centrifuged and the liquid phase (comprised of silicates and
aluminates in alkaline solution) was decanted and neutralized to a pH≈ 7 with hydrochloric
acid (Sigma-Aldrich, St. Louis, MI, USA, fuming, ≥37%). The concentration of silicate and
aluminate species in the resulting solutions was then determined by visible spectrophotometric
methods—the silicomolybdic acid method (SMA) [46] and the Eriochrome Cyanine R (ECR)
method [47], respectively—using a SPECTROstarNano spectrophotometer from BMG LABTECH
(Ortenberg, Germany). Sodium metasilicate (Sigma-Aldrich) and hydrated aluminum nitrate
(Sigma-Aldrich, aluminum nitrate nonahydrate,≥98%) were used for preparing the aqueous
solutions for the calibration of the SMA and ERC methods, respectively.
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Figure 3. Suspension of GPC precursors resulting from 120 min of reaction time with 10 M sodium
hydroxide solution. From left to right: MK, BFA, and EAFS.

Using this method, the total silicate and aluminate dissolved from the solid precursor
into an alkalination solution—that, thus, becomes available for the geopolymerization
process—could be estimated in terms of mol (SiO2 + Al2O3) per unit weight of raw material.

In all GPC mortars, natural washed river sand with a specific gravity of 2.6, supplied
by SACT, Lda. (Alpedriz, Portugal), was used as fine aggregate. The PSD cumulative curve
and the main PSD parameters of sand, determined in a Mastersizer 3000, are presented in
Figure 4 and Table 3, respectively.
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Figure 4. Cumulative PSD curves for sand used as fine aggregates.

Table 3. PSD D10, D50, and D90 parameters for sand used as fine aggregates.

D10 (µm) D50 (µm) D90 (µm)

sand 228 370 595

The alkalination mix solution was comprised of varying proportions of SS solution
(sodium silicate D40, supplied by Quimialmel, Lda. (Albergaria-a-Velha, Portugal)), SH
solution (32% (38º BE), supplied by Ângelo Coimbra, S.A. (Maia, Portugal)), water, and
solid SH (Sharlau, pellets, ACS).

2.2. Geopolymerization Parameters

GPC mortars were prepared with the abovementioned precursors, sand, and alkalina-
tion mix in six different formulations, and so that the performance of the different mortars
could be compared, some of the most important geopolymerization parameters were fixed,
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as shown in Table 4. In order to obtain the desired ratios for all formulations, the alkalina-
tion mix had to be adjusted in each one, by varying the proportions of sodium silicate and
sodium hydroxide solutions and correcting it with the addition of supplementary water or
solid sodium hydroxide (see Table 5).

Table 4. Fixed geopolymerization ratios.

Ratio Fixed Value

SiO2/Al2O3 4.4

H2O/Na2O 16

Water to solids (W/S) 0.15

Aggregates to precursors (Agg/P) 2.0

Table 5. Used GPC mortar formulations, expressed as mass fractions of each material.

Material M1
(MK)

M2
(BFA)

M3
(EAFS)

M4
(MK + BFA)

M5
(MK + EAFS)

M6
(MK + BFA + EAFS)

Precursor Mix
MK 26.6% − − 13.6% 13.6% 9.1%
BFA − 27.9% − 13.6% − 9.1%
EAFS − − 27.7% − 13.6% 9.1%
Alkalination
Mix
SS (aq.) 17.5% 1.6% 4.3% 9.8% 11.0% 8.0%
SH (aq., 32%) 1.2% 11.1% 10.2% 8.3% 7.4% 8.9%
SH (sol.) 1.4% − − − 0.1% 0.9%
Water − 3.5% 2.5% 0.2% − −
Aggregates and
Fillers
Sand 53.3% 55.8% 55.3% 54.5% 54.3% 54.8%

SiO2/Al2O3 is the ratio between silica and alumina in precursors and will affect
the resulting GPC structure. To obtain a geopolymer material suited for cement-like
applications, a reference value of SiO2/Al2O3 between 3.3 and 4.5 in the actual geopolymer
structure should be respected [48]. Therefore, in this study, the used ratio of 4.4 is based on
the results of reactivity tests instead of XRF analysis, since, as it will be shown later, the
amount of silicates and aluminates released by the precursors (in other words, the reactive
portion) is only a modest fraction of the total amount they contain as measured by XRF.

H2O/Na2O is the ratio between total water and total sodium oxide in solution and
represents a measure of the pH used in the process. The pH of the alkalination solution will
affect the dissolution process of aluminosilicates from precursors—generally, the higher the
pH (lower H2O/Na2O), the higher the extent of dissolution of aluminosilicates [48] that
will, therefore, be available for recombining and form the geopolymer matrix.

Water to solids (W/S) is the ratio between total water and total solids in the mortar
(including precursors, aggregates, and dissolved solids in the alkalination solution). It will
affect the consistency and workability of the GPC mortar and its ability to cure fast, as well
as the final achieved mechanical strength [48]. Since the consistency and workability of a
mortar depend on many factors, the used fixed value of W/S = 0.15 was chosen based on
initial trials to adjust these parameters to a satisfactory level.

Aggregates to precursors (Agg/P) is the ratio between aggregates and precursors
used in the mortar formulation. Since aggregates are assumed to be essentially inert,
this ratio will determine the proportion of solid material available for taking part in the
geopolymerization reaction. The higher the ratio, the lower the expected mechanical
performance of the mortar, since there will be less binding material. In the present study,
the fixed value of Agg/P = 2.0 was selected based on the typical range reported in the
literature (between 1.0 and 3.0) for GPC mortars cured in room conditions [14–17,21,49–53].
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2.3. Mortar Mixing, Casting, Curing, and Mechanical Testing

The mortar mixing procedure was carried out in a (Controls, 65-L0502) by first adding
the weighted precursors and alkalination solution into the mixer and mixing for 120 s at
140 rpm, with a pause at 60 s for scraping off the mixer bowl walls. Thereafter, the weighted
amount of sand was added, and mixing was continued at 140 rpm for 120 s, and then, after
scraping off the mixer bowl walls again, for another 120 s at 285 rpm.

After mixing, the produced mortars were cast and allowed to cure inside
160 mm × 40 mm × 40 mm molds at room conditions. During the mixing and casting
processes, it was observed that the mortars sustained a level of workability and fluidity
suitable for their use in construction applications. The specimens were demolded after at
least one day or as soon as sufficient mechanical strength was achieved to withstand the
demolding process. Thereafter, the specimens were allowed to continue curing at room
conditions until the end of the seventh day after casting.

After 7 days of curing, the GPC mortar specimens were tested for unconfined com-
pressive strength (CS) in a Instron 4505 universal mechanical testing machine (Instron,
Norwood, MA, USA). A total of six specimens from each formulation were measured.

2.4. GPC Mortar Overall Composition

The composition of the six GPC mortar formulations, in terms of mass fractions
(wt%) of each used material, is reported in Table 5. The first three formulations are single-
precursor mortars (MK, BFA, and EAFS). The other three are multi-precursor formulations,
with equal mass fractions of each used material in the precursor mix: 50% in the MK + BFA
and MK + EAFS formulations; 33.3% in the MK + BFA + EAFS formulation.

3. Results and Discussion
3.1. Precursors Reactivity Tests

The potential reactivity of precursors towards the geopolymerization process was
assessed by measuring the amount of dissolved aluminate and silicate species in a 10 M
sodium hydroxide solution, as explained in Section 2.1. The results, in terms of mmol of
SiO2 and Al2O3 per unit weight of precursor, are presented in Figure 5.
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dissolution tests.

From Figure 5, it becomes clear that MK shows the highest aluminosilicate disso-
lution amount in the alkaline conditions used in this study: about 1.2 mmol of silicate
and 0.9 mmol of aluminate per gram of material. Both EAFS and BFA show much lower
amounts of dissolved aluminosilicates, below 0.3 mmol/g for SiO2 and Al2O3. This means
that, in absolute terms, MK should be a better choice as a precursor for geopolymeriza-
tion, when compared to BFA and EAFS, since it contributes with a higher amount of
aluminosilicates to the formation of the GPC matrix.
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On the other hand, we can also analyze the fraction of dissolved silicate and aluminate
from each material (shown in Figure 6), assuming that the total content is that measured by
XRF (see Table 2).
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From this point of view, it can be concluded that the aluminate dissolution extent
is in the same range for all three precursors, between 20 and 30% of the total content of
this chemical species in the precursors, and the silicate dissolution extent is very similar
in the case of MK and EAFS, about 12% to 13.5%. This means that the reactivity (in
terms of alkaline dissolution) of the aluminate phase present in the solid material is very
similar for all three precursors, and the same applies to the silicate phase in the case of MK
and EAFS. Therefore, it seems that the significantly higher amount of dissolved silicates
and aluminates from MK (Figure 5) mainly arises from the fact that the total content of
aluminosilicate in its composition is also higher, since the reactivity of these phases in the
solid raw material is similar among the different precursors.

3.2. Estimation of Dissolved Silicates and Aluminates in GPC Fresh Mortars

Based on the results of the dissolution tests with each precursor, the total amount
of dissolved silicates and aluminates for each of the six GPC mortar formulations was
estimated in terms of mmol SiO2 and Al2O3 per unit weight of fresh mortar and is shown
in Figure 7.

Materials 2023, 16, x FOR PEER REVIEW 9 of 14 
 

 

3.2. Estimation of Dissolved Silicates and Aluminates in GPC Fresh Mortars  

Based on the results of the dissolution tests with each precursor, the total amount of 

dissolved silicates and aluminates for each of the six GPC mortar formulations was esti-

mated in terms of mmol SiO2 and Al2O3 per unit weight of fresh mortar and is shown in 

Figure 7. 

 

Figure 7. Estimated total dissolved SiO2 and Al2O3 for each GPC mortar formulation. 

For this estimation, the results of the dissolution tests were combined with the con-

tent of the respective precursor in the mortar formulation. In addition, the mass of the 

sodium silicate solution was also considered as it directly contributes to the total amount 

of dissolved silicates. The estimates in Figure 7 are therefore calculated for each mortar as 

follows: 

𝑇𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑠. 𝑆𝑖𝑂2 + 𝐴𝑙2𝑂3 (𝑚𝑚𝑜𝑙 𝑔⁄ 𝑚𝑜𝑟𝑡𝑎𝑟)

= ∑[𝑆𝑖𝑂2,𝑖  (𝑚𝑚𝑜𝑙 𝑔 𝑃𝑖) × %𝑃𝑖⁄ ]

𝑖

+
0.267

0.06008
× %𝑆𝑆

+ ∑[𝐴𝑙2𝑂3,𝑖  (𝑚𝑚𝑜𝑙 𝑔 𝑃𝑖) × %𝑃𝑖⁄ ]

𝑖

 

 

where SiO2,i and Al2O3,i are the amounts of dissolved silicates and aluminates as deter-

mined by the alkaline dissolution test for precursor i (MK, BFA or EAFS), %Pi and %SS 

are the mass fractions of precursor i and sodium silicate solution in the mortar, respec-

tively (reported in Table 5). The numerical parameter represents the concentration of SiO2 

in the SS solution (in mmol SiO2/ g SS solution). 

From the data shown in Figure 7, it can be concluded that the formulation including 

MK as the only precursor (M1) produces the highest estimated amount of dissolved alu-

minosilicates in the fresh mortar. For the case of multi-precursor GPC mortar formula-

tions, the M5 (MK+EAFS) formulation is estimated to produce a higher amount of dis-

solved aluminosilicates than the M4 (MK + BFA) formulation, since the content of MK is 

equal in both cases (13.6% of the total mortar weight) and, according to the dissolution 

tests, EAFS yields a slightly higher amount of dissolved aluminosilicates than BFA. In the 

case of the M6 (MK + BFA + EAFS) formulation, in which the content of MK is lower (9.1% 

of total mortar weight) when compared to M4 and M5 (13.6% of mortar weight), the esti-

mated amount of dissolved aluminosilicates is also lower. 

3.3. Mechanical Tests  

After 7 days of curing, six specimens from each GPC mortar formulation were tested 

for unconfined CS. From the obtained results (shown in Figure 8), it can be stated that the 

trend of CS is very similar to that of estimated total dissolved SiO2 and Al2O3 presented in 

Figure 7. Estimated total dissolved SiO2 and Al2O3 for each GPC mortar formulation.



Materials 2023, 16, 2741 9 of 14

For this estimation, the results of the dissolution tests were combined with the content
of the respective precursor in the mortar formulation. In addition, the mass of the sodium
silicate solution was also considered as it directly contributes to the total amount of dissolved
silicates. The estimates in Figure 7 are therefore calculated for each mortar as follows:

Total diss. SiO2 + Al2O3 (mmol/g mortar)
= ∑

i
[SiO2,i (mmol/g Pi)×%Pi] +

0.267
0.06008 ×%SS

+∑
i
[Al2O3, i (mmol/g Pi)×%Pi]

where SiO2,i and Al2O3,i are the amounts of dissolved silicates and aluminates as deter-
mined by the alkaline dissolution test for precursor i (MK, BFA or EAFS), %Pi and %SS are
the mass fractions of precursor i and sodium silicate solution in the mortar, respectively
(reported in Table 5). The numerical parameter represents the concentration of SiO2 in the
SS solution (in mmol SiO2/g SS solution).

From the data shown in Figure 7, it can be concluded that the formulation including
MK as the only precursor (M1) produces the highest estimated amount of dissolved alumi-
nosilicates in the fresh mortar. For the case of multi-precursor GPC mortar formulations,
the M5 (MK + EAFS) formulation is estimated to produce a higher amount of dissolved
aluminosilicates than the M4 (MK + BFA) formulation, since the content of MK is equal in
both cases (13.6% of the total mortar weight) and, according to the dissolution tests, EAFS
yields a slightly higher amount of dissolved aluminosilicates than BFA. In the case of the
M6 (MK + BFA + EAFS) formulation, in which the content of MK is lower (9.1% of total
mortar weight) when compared to M4 and M5 (13.6% of mortar weight), the estimated
amount of dissolved aluminosilicates is also lower.

3.3. Mechanical Tests

After 7 days of curing, six specimens from each GPC mortar formulation were tested
for unconfined CS. From the obtained results (shown in Figure 8), it can be stated that the
trend of CS is very similar to that of estimated total dissolved SiO2 and Al2O3 presented in
Figure 7 and leads, thus, to the conclusion that the amount of dissolved aluminosilicates
plays a key role in terms of the mechanical performance of the GPC mortar.
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Furthermore, if the obtained CS is explicitly correlated with the estimated total amount
of dissolved aluminosilicates in each formulation, the relationship becomes evident, as can
be seen in Figure 9.
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Figure 9. Correlation between CS of GPC mortars and total estimated dissolved aluminosilicates
based on alkaline dissolution tests of precursors.

Considering all six formulations, it is clear that a higher estimated amount of dissolved
SiO2 and Al2O3 corresponds to a higher CS of the mortar. The red dotted line is the best
linear fit to the complete data set, obtained by the least squares fitting method, and,
although it represents the general trend, some significant deviations are evident. On the
other hand, if we only consider the GPC mortar formulations that include MK (excluding
the M2 and M3 formulations), the linear fit (obtained by the same method) is very good
(blue dotted line) and represents the data almost perfectly. From these results, it seems that,
for estimated low amounts of dissolved SiO2 and Al2O3 (below about 0.6 mmol/g mortar)
or CS below about 14 MPa, the influence of dissolved aluminosilicates in the development
of strength is less significant. A possible explanation for this is that, for low CS (such as
those obtained for the formulations M2 and M3, with BFA and EAFS as single precursors),
other variables, such as the level of compacity of the materials and the mechanical strength
of individual constituents of the mortar (disregarding the binding mechanism) become
more important for the overall CS.

It is also worth comparing the correlation in Figure 9 to the one obtained if total
precursor SiO2 and Al3O2 content, as measured by XRF, was used instead of the dissolved
amounts from the alkaline dissolution test. For this case, the correlation with CS is shown
in Figure 10.
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As can be stated, although the data variation is still generally captured by a linear
trend, there are significant deviations of experimental points from the best linear fit ob-
tained by the least squares method. This fact makes this correlation much less valuable
in predicting the CS of new formulations than the one using the estimated amounts of
dissolved aluminosilicates in the fresh mortars based on the dissolution tests (shown in
Figure 9). This is in line with the assumption that the actual amounts of aluminosilicates
involved in the formation of the GPC matrix (which ultimately determines its mechanical
properties) are more likely linked to the dissolved amounts of silicate and aluminate species
in mortars (as estimated through dissolution tests) than to the total SiO2 and Al2O3 present
in the precursors (as measured by XRF). Therefore, the potential of different raw materials
for the formulation of GPC mortars seems to be better evaluated if the dissolution tests
(proposed as a method for estimating the available aluminosilicates) are used, instead of
simply relying on the precursors’ chemical composition normally obtained by XRF.

4. Conclusions and Future Work

The importance of studying the dissolution process of aluminosilicates from GPC
precursors lies in the fact that it represents the basis for the formation of the GPC matrix,
which will act as the binder that will enable the setting and hardening of the final material.
In the present work, the alkaline dissolution process of MK, EAFS, and BFA was studied and
correlated with the precursors’ composition and with the mechanical strength achieved by
GPC mortar specimens prepared from these materials. The main conclusions are as follows:

• In the alkaline dissolution tests, MK produced a higher amount of dissolved
SiO2 + Al2O3 (2.1 mmol/g) when compared to BFA and EAFS, which yielded 0.32
and 0.53 mmol/g, respectively. This was attributed to a higher content of silica and
alumina in the composition of MK when compared to BFA and EAFS rather than to
higher reactivity of these phases.

• The 7-day CS of the six GPC mortars prepared was shown to follow a linear correlation
with the total dissolved aluminosilicates in the mortars, estimated by the results of the
dissolution tests of precursors—the higher the amount of total dissolved aluminosil-
icates in the fresh mortar, the higher the CS achieved. The correlation based on the
complete set of six different GPC mortars was found to yield an R2 of 0.96.

• Furthermore, if we consider only the four GPC mortar formulations with a total
estimated amount of dissolved aluminosilicates above 0.6 mmol/g mortar, a very
accurate linear correlation (R2 > 0.99) is obtained that explains the CS data in the range
of around 15 MPa to 60 MPa.

• The same correlation based on the total silica and alumina content in precursors
measured by XRF was shown to be much less accurate in explaining the CS variation
(R2 ≈ 0.88). This is in line with the assumption that the amount of dissolved silicate
and aluminate species has a stronger influence on the formation of the GPC matrix
than the total content of SiO2 and Al2O3 in the source materials.

• These results support the usefulness of a simple method for screening and evaluat-
ing the relative potential of aluminosilicate-containing materials, in the present case
inorganic industrial waste, in the geopolymerization process.

Further work will focus on assessing the applicability of the obtained correlation in the
case of GPC mortars produced with different precursors and under similar conditions, so
that a straightforward estimation of the CS of a generic GPC mortar could be achieved based
on the reactivity of its constituent in a simple alkaline dissolution test. Additionally, along
with the influence of SiO2 and Al2O3, the effect of the content of CaO in the precursors
will also be studied since it is known to also contribute to the hardened properties of
geopolymer materials.
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