
Citation: Li, C.; Chen, Z.; Jiao, Y.

Vibration and Bandgap Behavior of

Sandwich Pyramid Lattice Core Plate

with Resonant Rings. Materials 2023,

16, 2730. https://doi.org/10.3390/

ma16072730

Academic Editor: Leif Kari

Received: 8 March 2023

Revised: 25 March 2023

Accepted: 27 March 2023

Published: 29 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Vibration and Bandgap Behavior of Sandwich Pyramid Lattice
Core Plate with Resonant Rings
Chengfei Li, Zhaobo Chen * and Yinghou Jiao

School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
* Correspondence: chenzb@hit.edu.cn

Abstract: The vibration suppression performance of the pyramid lattice core sandwich plates is
receiving increasing attention and needs further investigation for technical upgrading of potential
engineering applications. Inspired by the localized resonant mechanism of the acoustic metamaterials
and considering the integrity of the lattice sandwich plate, we reshaped a sandwich pyramid lattice
core with resonant rings (SPLCRR). Finite element (FE) models are built up for the calculations of
the dispersion curves and vibration transmission. The validity of the bandgap of the SPLCRR and
remarkable vibration suppression are verified by experimental observations and the numerical meth-
ods. Furthermore, the effects of geometric parameters, material parameters and period parameters
on the bandgaps of the SPLCRR are systematically investigated, which offers a deeper understanding
of the underlying mechanism of bandgap and helps the SPLCRR structure meet the technological
update requirements of practical engineering design.
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1. Introduction

The continuous development and technological update requirements of aerospace
platforms and high-speed rails have led to great efforts for designing new structures and
materials that integrate both lightweight and special multifunctional properties [1–6]. How-
ever, sandwich plates generate harmful vibration and radiated noise that can negatively
impact both equipment functionality and operator safety. Therefore, it is crucial to explore
innovative methods and theories for controlling vibration and noise in plate structures.
The lattice sandwich structure is a multi-layer structure consisting of two panels and a
truss core. In recent years, the lattice sandwich structures attract huge attention due to their
high stiffness, low density and light weight [7–11]. Interestingly, various grid-truss core
structures such as tetrahedron, three-dimensional kagome, and vertebral body structures
have been developed [7,11]. At present, there are many studies on mechanical properties,
manufacturing process, vibration characteristics, and dynamic responses of lattice sand-
wich structures [12–14]. Nevertheless, the elastic wave propagates at lower frequencies
due to the open cell sandwich structure and high stiffness to mass ratio, leading to poor vi-
bration attenuation and acoustic performance [8,10]. The low-frequency mode contributes
the most to sound power, and thus, effective reduction in sound power can be achieved by
suppressing vibrations in the low-frequency range [15]. Therefore, it is still a challenge for
lattice sandwich structures to simultaneously achieve the balance of vibration suppression
and light weight.

Fortunately, in 2000, Liu and co-workers [16] proposed a localized resonant mecha-
nism, also known as elastic metamaterials (EM), to break the conventional mass-density
law of sound transmission, significantly improving sound transmission loss (STL) below
400 Hz. Since then, numerous studies have been carried out relating to the properties of
unusual structures, such as negative modulus [17–19], energy harvesting [20–22], nega-
tive refraction [23], acoustic invisibility [24,25], vibration attenuation [26–30], topological
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acoustics [31] and so forth, which could enhance wave modulation of classical lattice
sandwich structures.

Nowadays, there is plenty of research on the propagation of flexural waves and
band structures in thin plates. It is noteworthy that the structures showed mechanisms
of low frequency forbidden bands and Bragg bandgaps in parallel with local resonance
and Bragg scattering. The bandgaps, in turn, are directly influenced by the geometry and
lattice symmetry of the resonator array [32]. Yong et al. [33] extended the well-known
plane wave expansion method (PWEM) to deal with plate systems with periodic arrays of
spring-mass resonators, and they determined that the bandwidth of the bandgaps is greatly
affected by the frequencies of the causes of the local resonators. Furthermore, considering
the Kirchhoff–Love thin-plate theory, Miranda et al. investigated the band structure of
flexural waves propagating in thin metamaterial plates and the effect of periodic arrays of
multi-degree-of-freedom local resonators in square and triangular lattices [34].

Using finite element model calculations, Massimo et al. [35] investigated the dynamic
response of a three-layer sandwich panel with a honeycomb core. They also investi-
gated the effect of individually periodic placement of cores of different geometries in the
two-dimensional space of the structure. Song et al. [36] studied the sound transmission of
sandwich panels and its reduction using the bandgap concept. The results showed that
sound transmission was significantly reduced over the bandgaps of periodic sandwich
panels. Li and An [27,37] proposed improved three-dimensional truss lattice structures for
low and broadband elastic wave absorption, respectively.

The abovementioned works are concerned with the bandgap, vibration reduction,
and acoustic characteristics of various plated structures. Although some achievements
have been chosen in resolving the vibration attenuation and acoustic characteristics of
thin or sandwich plates by attaching mass block, the uniformity of lattice sandwich plates
was challenged [27]. In this work, inspired by the localized resonant mechanism of the
acoustic metamaterials and considering the integrity of the lattice sandwich plate, we
reshaped a sandwich pyramid lattice core with resonant rings (SPLCRR). Compared to the
typical lattice sandwich plate, the SPLCRR addition of a resonant ring onto the rod enables
the sandwich plate to fulfill the requirements for a smooth outer surface in engineering
applications while also providing increased stiffness, structural simplicity, and ease to
design. The dispersion curves of the SPLCRR and evolution of the bandgaps for the
SPLCRR are investigated to achieve a wide bandgap in the low-frequency range. The effect
of bandgaps on vibration attenuation is further investigated by theoretical and experimental
verification. Furthermore, the effects of geometric parameters, material parameters and
period parameters on the bandgap of the SPLCRR are systematically analyzed, which offers
a deeper understanding of the underlying mechanism of bandgap and helps the SPLCRR
structure meet the technological update requirements of practical engineering design.

2. Model and Theory

Figure 1a illustrates a diagram depicting a typical lattice sandwich structure plate
with periodic lattice-truss-core. As shown in Figure 1b,c, the typical lattice unit cell and
the SPLCRR unit cell are considered in this work, respectively. Different from the system
of the traditional elastic metamaterial (EM) unit cell which is usually made by attaching
different materials to the surface of the plate, the unit cell of SPLCRR has two radius jump
discontinuities in the core rods. The equation that governs the propagation of elastic waves
in solids is expressed as follows:
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∂t2 ; i, j = x, y, z, (1)

where r represents the mass density, u and v denote the displacement vector, t denotes time,
and λ and µ represent the Lame constants. Additionally, x, y and z represent the Cartesian
coordinate variables.
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Figure 1. (a) Typical lattice sandwich plate, (b) typical lattice sandwich unit cell, (c) SPLCRR unit-cell.

In order to investigate the bandgaps of the proposed SPLCRR plate, a series of cal-
culations of dispersion relations are conducted with the FEM based on Solid Mechanics
Module of the COMSOL. Based on the periodicity of the proposed plate, we assumed that
in both the x and y directions, single unit cell was considered, as depicted in Figure 1c. An
adaptive mesh was selected to achieve sufficiently good convergence while minimizing
computational costs within a reasonable time constraint.

Due to the Bloch–Floquet theorem, interface between adjacent cells using Bloch peri-
odic boundary conditions can be expressed as follows:

u(r) = uk(r)eikr, (2)

where u is the displacement and r refers to the coordinate vectors.
After scanning all Bloch wave vectors along the edge of ΓXM in various lattice unit

cells, the dispersion curves for the periodic sandwich plates can be obtained separately.
By modulating the wave vector k within the first irreducible Brillouin zone (as depicted
in the left inset of Figure 2) of the unit cell [30], one can derive the dispersion curves of
the unit cell with respect to its wave number and frequency. These curves facilitate the
determination of the band structure of an infinite periodic plate, which in turn enables the
identification of its bandgaps.

To further verify the bandgap properties of the SPLCRR, the vibration attenuation
characteristics of this plate were calculated by FEM. As shown in the inset on the right panel
of Figure 2, the sandwich plate comprises 7 × 7 cells, a harmonic excitation is loaded at the
edge of the panel, and the response occurs on the other side of the panel. It is assumed that
the deflection of the sandwich panel under the transverse load is far less than its thickness.
As a result, this study only takes into account the out-of-plane bandgaps and disregards
the displacement parameters in the x-y plane.
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Figure 2. Dispersion curves of the sandwich pyramid lattice core plates without and with resonant
rings on the left and right panels, respectively. Inset: The left panel is the first irreducible Brillouin
zone, and the right panel is the input/output setting of numerical simulation.

At point P0 of the plate, an input acceleration excitation (denoted as ain ) is introduced,
and the resulting acceleration response (denoted as aout) is measured at the response acqui-
sition point P1, as depicted in the inset on the right of Figure 2. Ultimately, the vibration
attenuation T can be obtained by altering the frequency of the input acceleration excitation:

T = 20log
|aout|
|ain|

. (3)

3. Results and Discussion

In this section, a series of numerical simulations are conducted to analyze the disper-
sion relations properties of the proposed SPLCRR. The dispersion relations and vibration
attenuation of the SPLCRR design matched up with the typical lattice sandwich plate,
respectively. The influence of geometric parameters, material parameters, and period
parameters on bandgap characteristics is systematically discussed.

3.1. Simulation Parameters

As shown in Figure 1c, the SPLCRR is composed of two face-sheets and a core layer
which is four diagonals with additional resonant rings, wherein the sandwich plate with
truss core is characterized by the total thickness represented by h, where the upper and
lower face sheets possess equal thickness hf‘, and the core height is denoted by hc. The
length, radius and inclination angle of the truss core and the resonant ring are represented
by l, hm, rc, rm and θ, respectively. The geometrical parameters and material properties of
the model are listed in Tables 1 and 2.

Table 1. Geometric parameters of the SPLCRR.

a hc hf hm rc rm θ

40 mm 38 mm 2 mm 10 mm 2 mm 5 mm 30◦

Table 2. Material parameters of the SPLCRR [27].

Density ρ (kg/m3) Modulus E (GPa) Poisson’s Ratio µ

Nylon 1200 3.5 0.37
Steel 7800 210 0.3
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Figure 2 presents the calculated dispersion curves of the proposed SPLCRR and the
typical lattice sandwich plate. According to plate wave theory, a finite thickness plate can
support the propagation of various of anti-symmetric (A-mode) and symmetric (S-mode)
Lamb waves and shear-horizontal (SH-mode) waves with cutoff frequencies, including
three fundamental plate modes. Compared with the typical lattice sandwich plate, the
band structure of the SPLCRR presents a complete bandgap from 780 Hz to 990 Hz (the
dark blue region in Figure 2) and a flexural wave bandgap from 600 Hz to 660 Hz (the light
blue region in Figure 2). In a complete bandgap, the propagation of elastic waves will be
significantly suppressed. Regarding various localized modes of guided elastic waves in
solids, the dispersion curves of longitudinal and shear modes remain straight since their
wave velocity is constant across frequencies. Conversely, the dispersion curves of flexural
waves are non-linear because the wave velocity is dependent on frequency. Generally,
flexural waves carry more vibrational energy than other types of waves. As a result, the
complete flexural-wave bandgap can effectively reduce vibrations [34].

To further illustrate the physical mechanism of the bandgap, the eigenmodes of the
two models at the bandgap boundary frequencies were analyzed and are shown in Figure 3.
The frequencies A, B and C are located on the first and second order dispersion curves. As
depicted in Figure 2, the SPLCRR reduces the frequencies of the eigenmodes and opens
and widens the bandgap at point B. More complex coupling effects are obtained for the
eigenmodes at the upper and lower edges of the bending wave bandgap.
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(c) f C = 625 Hz (d) f D = 874 Hz (e) f F = 964 Hz and (f) f E = 1003 Hz.

As depicted in Figure 2, the eigenmodes at frequencies D, F represent the upper edge
of the complete bandgap and the flexural wave bandgap, which are at fourth and ninth
dispersion curves, respectively. The intermediate state E1 and E2 represent the eigenmodes
of the fourth to eighth dispersion curve. The face-sheets of the SPLCRR primarily exhibit
lateral motion, with negligible movement in the vertical direction. The motion charac-
teristics of the complete bandgap and the flexural wave bandgap will significantly affect
vibration attenuation, as we will show later.

To obtain vibration attenuation, one can calculate T by sweeping a range of excitation
frequencies. Figure 4 shows a comparison of the vibration attenuation calculated for
a typical lattice sandwich plate and SPLCRR. The dispersion spectra yield two distinct



Materials 2023, 16, 2730 6 of 13

bandgaps, represented by dark blue and light blue regions, corresponding to the complete
bandgap and the flexural-wave bandgap, respectively. The vibration attenuation in the
SPLCRR is significantly higher than in the typical lattice sandwich plate, both within the
complete bandgap and the flexural-wave bandgap (represented by the light blue regions).
Moreover, the vibration attenuation bands agree with the bandgaps shown in the dispersion
curve. In contrast, the flexural-wave bandgap in the other region (680 Hz–760 Hz) does not
produce significant vibration attenuation. Corresponding to the eigenmodes (see Figure 3)
of the upper and lower boundaries of this bandgap, it can be seen that the suppression of
out-of-plane vibrations does not play a significant role.
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3.2. Experimental Verification

In Section 3.1, we calculated the vibration transmission of a typical lattice plate and
a SPLCRR plate using FEM and compared it with their dispersion curve to verify the
bandgaps and the performance of the vibration attenuation. To further verify the validity
of the bandgaps and vibration attenuation performance, in this section, a typical lattice
plate and a SPLCRR plate are used for experimental verification.

The specimens contain 7 × 7 units (360 mm × 360 mm) with the same unit geom-
etry and material parameters as in the FEM in Section 3.1. The experimental setup and
experimental specimens are shown in Figure 5. Two end sides of the specimen are simply
supported by foam materials to mimic the simply supported boundary condition. The
vibration transmission spectra of the sandwich plates specimen were obtained by collecting
the impact hammer (Brüel and Kjær, 8206-002) of the exciting point and the vibration
acceleration (Brüel and Kjær, 4507) responses of the acquisition point with date acquisition
(Brüel and Kjær, 3040). The numerical bandgaps detected in Figure 6 are represented
by the blue regions. It was observed that the measured vibration suppression ranges
exhibited a strong agreement with both the predicted bandgaps and the previous FEM sim-
ulation. The vibration suppression performance is experimentally verified in the proposed
SPLCRR plate.
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3.3. Effect of Geometric Parameters on Bandgap

Structural geometric parameters are one of the main factors affecting the bandgap
of metamaterials. To further study the effect of geometric parameters on the bandgap,
the dispersion curves of the SPLCRR are calculated under different rod diameters, angles
between rods and panels, panel thicknesses, oscillator diameters, and oscillator lengths.
Throughout the study, unless explicitly mentioned, the material and geometry parameters
employed are the same as those specified in Section 3.1.

In this section, we present an analysis of bandgap behaviors of SPLCRR with varying
lattice core and face-sheets dimensions. The investigation encompasses nine discrete lattice
core rod radius values (rc = 1 mm–3 mm) and angle values (θ = 20–32◦), and face-sheet
thickness values (hf = 2 mm–3 mm) are chosen. The bandgap behaviors of SPLCRR are



Materials 2023, 16, 2730 8 of 13

significantly influenced by changes in the lattice core and face-sheet dimensions, as evident
from Figure 7, wherein the bandgaps move to higher frequencies with the increase in the
rod radius and face-sheets thickness, but the increase in the lattice core rod angle causes
the bandgaps to move to low frequencies. This is expected, because the change in lattice
core parameters and the face-sheets parameter results in a modification stiffness of lattice
sandwich layer (eq. X). It is worth noting that the width of the second bandgap of our
interest reaches its maximum when rc = 2.5 mm, θ = 22◦ and hf = 2.5 mm, respectively. In
addition, the change in rod radius is more sensitive to width of the second bandgap as
compared to other two parameters.
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As the dimensions of resonant ring are regarded as highly significant parameters in
the whole SPLCRR, it is essential to evaluate its effect on the bandgap behaviors of SPLCRR.
Thus, the influences of two geometric parameters rm and hm (defined in Section 3.1) of
resonant ring on bandgaps are discussed in detail here, where nine different geometric
parameters (rm = 4–6 mm) and (hm = 5–15 mm) chosen in this example. From Figure 8,
it can be observed that the bandgap behaviors are strongly influenced by resonant ring
radius and height, and increasing the radius and height leads to the bandgaps moving
to lower frequency. This is expected, because the increase in resonant ring radius and
height results in a modification of equivalent mass of lattice sandwich layer. In addition,
the change in the resonant ring radius and height has no significant effect on the width
of the second bandgap. In other words, the bandgap frequency range can be adjusted by
changing geometric parameters of the resonant ring without affecting the bandgaps width.
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3.4. Effect of Material Parameters on Bandgap

Material parameters are one of the main factors affecting the bandgap of metamaterials.
To further investigate the effect of material parameters on the bandgap, the dispersion
curves of the SPLCRR were calculated for different rod, panel, resonant ring elastic modulus
and resonant ring damping ratio.

As can be seen in Figure 9, nine different elastic modulus of lattice rod (Ec = 2.5–250 GPa)
and face-sheets (Ef = 0.25–25 GPa) are chosen in this example; the other properties are the
same as those in Section 3.1. From Figure 9, it can be observed that the change in the elastic
modulus of lattice rod and face-sheets exerts a significant impact on the bandgap behaviors
of SPLCRR, wherein the bandgaps move to higher frequencies with the increase in the
elastic modulus of lattice rod and face-sheets. This is reasonable that the increase in the
elastic modulus of lattice rod and face-sheets results in the increase in equivalent stiffness
of lattice sandwich layer. It is worth noting that the width of the second bandgap of our
interest reaches its maximum when Ec = 7.5 GPa and Ef = 2.5 GPa, respectively. In addition,
the width of the second bandgap first increases and then gradually disappears with the
increase in the elastic modulus Ec, while the increase in the elastic modulus Ef shows the
opposite trend.
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As the material parameters of resonant rings are regarded as highly significant param-
eters in the whole SPLCRR, it is essential to evaluate its effect on the bandgap behaviors of
SPLCRR. Thus, the influence of two material parameters Em and ηm (defined in Section 3.1)
of resonant ring on bandgaps are discussed in detail here, where nine different material
parameters (Em = 2.5–250 GPa) and (ηm = 0.01–0.3) are chosen in this example. From
Figure 10, it can be obtained that with the increase of Young's modulus and damping ratio
of the resonant ring, there is no significant change in the upper and lower edge frequencies
of the band gap and no significant change in the bandgap width. Therefore, the Young's
modulus and damping ratio of the resonant ring has little effect on the band gap of the
metamaterial plate.
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3.5. Effect of Period Parameters on Bandgap

The period parameter is one of the main factors affecting the bandgap of metama-
terials. To further investigate the effect of the period parameter on the bandgap, the
dispersion curves of the SPLCRR are calculated for different period lengths and different
distribution forms.

From Figure 11a, it can be obtained that the frequencies of the bandgap are gradually
decreasing as the period length increases, which is because the core does not change as
the period length increases, resulting in a decrease in the stiffness of the sandwich plate,
which causes the bandgap to move to lower frequencies. The width of the first bandgap
increases gradually with the period length and then tends to be unchanged. The widths of
the second and third bandgaps do not change significantly with increasing period length
and then disappear rapidly.

The dispersion curves of the SPLCRR with different distribution forms are calculated
while keeping other parameters constant. The distribution forms are shown in Figure 12a,b.
From Figure 11b, it can be obtained that the frequency of the upper and lower edges of the
bandgap under the square distribution is higher than that of the hexagonal distribution,
where the width of the first and second bandgap of the hexagonal distribution is wider
than that of the square distribution, and the opposite is true for the third bandgap. From
the effect of the period length on the bandgap in the previous section, it can be seen that
the hexagonal distribution increases the distance between the nodes, producing a result
that is commensurate with the variation of the period length.
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4. Conclusions

In this work, inspired by the localized resonant mechanism of classical acoustic meta-
materials and considering the integrity of the lattice sandwich plate, we reshaped a sand-
wich pyramid lattice core with resonant rings (SPLCRR). Based on the experimental verifi-
cations and numerical simulations, the effects of geometric parameters, material parameters
and period parameters on the bandgaps of the SPLCRR were systematically investigated.
Several key observations obtained from the detailed parametric investigation can be sum-
marized as:

(a) Remarkable vibration suppression and bandgaps were verified by comparisons be-
tween numerical and experimental results.

(b) Different geometric parameters were discussed. The thickness of face-sheets and the
rod radius of the core had significant effects on the frequency range and width of
the bandgap, which moved to higher frequency with the increase in the two values.
The rod radius was more sensitive to width of the second bandgap compared to
other parameters.

(c) Different material parameters were discussed. The elastic modulus of lattice core and
face-sheets had significant effects on the frequency range and width of the bandgap,
wherein the bandgaps moved to higher frequencies with the increase in the elastic
modulus of lattice rod and face-sheets.
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(d) Different period parameters were discussed. The frequencies of the bandgap gradually
decrease as the period length increases. The frequency of the upper and lower
edges of the bandgap under the square distribution was higher than that of the
hexagonal distribution.

The research results are expected to be of theoretic significance and offer engineering
application prospects.
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