Multifunctional TiO2 Nanotube-Matrix Composites with Enhanced Photocatalysis and Lithium-Ion Storage Performances
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of TiO2 Nanotube (TiO2 NT)
2.2. Synthesis of TiO2 Nanotube@Au Nanoparticle (TiO2 NT@Au NP) and TiO2 Nanotube@MoS2 Nanosheet (TiO2 NT@MoS2 NS)
2.3. Synthesis of TiO2 Nanotube@MoS2 Nanosheet@Au Nanoparticle (TiO2 NT@MoS2 NS@Au NP)
2.4. Photocatalytic Degradation Measurement
2.5. Electrochemical Evaluation
3. Results and Discussion
3.1. Materials Characterization
3.2. Photocatalytic Properties of TiO2 NT@Au NP Composites
3.3. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Chen, Z.; Tsang, C.K.; Li, Z.; Ran, X.; Lee, C.; Nie, B.; Zheng, L.; Hung, T.; Lu, J.; et al. Electrochemical doping of anatase TiO2 in organic electrolytes for high-performance supercapacitors and photocatalysts. J. Mater. Chem. A 2014, 2, 229–236. [Google Scholar] [CrossRef]
- Zhang, M.M.; Wang, C.R.; Li, H.; Wang, J.L.; Li, M.; Chen, X.S. Enhanced performance of lithium ion batteries from self-doped TiO2 nanotube anodes via an adjustable electrochemical process. Electrochim. Acta 2019, 326, 134972. [Google Scholar] [CrossRef]
- Zhang, M.M.; Chen, J.Y.; Li, H.; Wang, C.R. Recent progress in Li-ion batteries with TiO2 nanotube anodes grown by electrochemical anodization. Rare Met. 2021, 40, 249–271. [Google Scholar]
- Duan, J.; Hou, H.; Liu, X.; Yan, C.; Liu, S.; Meng, R.; Hao, Z.; Yao, Y.; Liao, Q. In situ Ti3+-doped TiO2 nanotubes anode for lithium ion battery. J. Porous Mater. 2016, 23, 837–843. [Google Scholar] [CrossRef]
- Myung, S.T.; Kikuchi, M.; Yoon, C.S.; Yashiro, H.; Kim, S.J.; Sun, Y.K.; Scrosati, B. Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy Environ. Sci. 2013, 6, 2609–2614. [Google Scholar] [CrossRef]
- He, J.Y.; Chen, T.S. Synthesis of Cross-like TiO2 Thermally Derived from Ammonium Oxofluorotitanate Mesocrystals Under Different Calcination Temperatures and Their Photocatalytic Activity. Electron. Mater. Lett. 2023, 19, 84–93. [Google Scholar] [CrossRef]
- Puga, M.L.; Venturini, J.; ten Caten, C.S.; Bergmann, C.P. Influencing parameters in the electrochemical anodization of TiO2 nanotubes: Systematic review and meta-analysis. Ceram. Int. 2022, 48, 19513–19526. [Google Scholar] [CrossRef]
- Yi, T.F.; Fang, Z.K.; Xie, Y.; Zhu, Y.R.; Yang, S.Y. Rapid Charge-Discharge Property of Li4Ti5O12-TiO2 Nanosheet and Nanotube Composites as Anode Material for Power Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2014, 6, 20205–20213. [Google Scholar] [CrossRef]
- Li, X.Y.; Chen, Y.M.; Zhou, L.M.; Mai, Y.W.; Huang, H.T. Exceptional electrochemical performance of porous TiO2-carbon nanofibers for lithium ion battery anodes. J. Mater. Chem. A 2014, 2, 3875–3880. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Li, J.; Li, W.Y.; Kang, D.N. Synthesis of One-Dimensional Mesoporous Ag Nanoparticles-Modified TiO2 Nanofibers by Electrospinning for Lithium Ion Batteries. Materials 2019, 12, 2630. [Google Scholar] [CrossRef][Green Version]
- Li, X.H.; Chen, G.Y.; Yang, L.B.; Jin, Z.; Liu, J.H. Multifunctional Au-Coated TiO2 Nanotube Arrays as Recyclable SERS Substrates for Multifold Organic Pollutants Detection. Adv. Funct. Mater. 2010, 20, 2815–2824. [Google Scholar] [CrossRef]
- Zhang, X.D.; Yue, D.; Zhang, L.; Lin, S.W. Three-dimensional flexible Au nanoparticles-decorated TiO2 nanotube arrays for photoelectrochemical biosensing. J. Mater. Sci. Technol. 2020, 56, 162–169. [Google Scholar] [CrossRef]
- He, F.; Meng, A.Y.; Cheng, B.; Ho, W.K.; Yu, J.G. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chin. J. Catal. 2020, 41, 9–20. [Google Scholar] [CrossRef]
- Wu, X.D.; Wang, Z.X.; Chen, L.Q.; Huang, X.J. Ag-enhanced SEI formation on Si particles for lithium batteries. Electrochem. Commun. 2003, 5, 935–939. [Google Scholar] [CrossRef]
- Kwon, E.; Lim, H.S.; Sun, Y.K.; Suh, K.D. Improved rate capability of lithium-ion batteries with Ag nanoparticles deposited onto silicon/carbon composite microspheres as an anode material. Solid State Ion. 2013, 237, 28–33. [Google Scholar] [CrossRef]
- Rahman, M.M.; Wang, J.Z.; Wexler, D.; Zhang, Y.Y.; Li, X.J.; Chou, S.L.; Liu, H.K. Silver-coated TiO2 nanostructured anode materials for lithium ion batteries. J. Solid State Electrochem. 2010, 14, 571–578. [Google Scholar] [CrossRef][Green Version]
- Wang, H.Y.; Jiang, H.; Hu, Y.J.; Deng, Z.N.; Li, C.Z. Interface engineering of few-layered MoS2 nanosheets with ultrafine TiO2 nanoparticles for ultrastable Li-ion batteries. Chem. Eng. J. 2018, 345, 320–326. [Google Scholar] [CrossRef]
- Shan, T.T.; Xin, S.; You, Y.; Cong, H.P.; Yu, S.H.; Manthiram, A. Combining Nitrogen-Doped Graphene Sheets and MoS2: A Unique Film-Foam-Film Structure for Enhanced Lithium Storage. Angew. Chem.-Int. Ed. 2016, 55, 12783–12788. [Google Scholar] [CrossRef]
- Politano, G.G.; Castriota, M.; De Santo, M.P.; Pipita, M.M.; Desiderio, G.; Vena, C.; Versace, C. Variable angle spectroscopic ellipsometry characterization of spin-coated MoS2 films. Vacuum 2021, 189, 110232. [Google Scholar] [CrossRef]
- Liu, Y.P.; He, X.Y.; Hanlon, D.; Harvey, A.; Khan, U.; Li, Y.G.; Coleman, J.N. Electrical, Mechanical, and Capacity Percolation Leads to High-Performance MoS2/Nanotube Composite Lithium Ion Battery Electrodes. ACS Nano 2016, 10, 5980–5990. [Google Scholar] [CrossRef]
- Fang, Y.; Lv, Y.Y.; Gong, F.; Elzatahry, A.A.; Zheng, G.F.; Zhao, D.Y. Synthesis of 2D-Mesoporous-Carbon/MoS2 Heterostructures with Well-Defined Interfaces for High-Performance Lithium-Ion Batteries. Adv. Mater. 2016, 28, 9385–9390. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.M.; Lv, P.F.; Xia, X.; Zhang, J.; Yu, J.; Pang, Z.Y.; Qiao, H.; Wei, Q.F. MoS2 nanograins doped TiO2 nanofibers as intensified anodes for lithium ion batteries. Mater. Lett. 2018, 218, 47–51. [Google Scholar] [CrossRef]
- Wu, H.J.; Zhang, Z.H. Photoelectrochemical water splitting and simultaneous photoelectrocatalytic degradation of organic pollutant on highly smooth and ordered TiO2 nanotube arrays. J. Solid State Chem. 2011, 184, 3202–3207. [Google Scholar] [CrossRef]
- Wu, H.J.; Zhang, Z.H. High photoelectrochemical water splitting performance on nitrogen doped double-wall TiO2 nanotube array electrodes. Int. J. Hydrogen Energy 2011, 36, 13481–13487. [Google Scholar] [CrossRef]
- Zhang, M.M.; Zhou, X.; Wang, C.R.; Chen, Z.H.; Li, H. Evaluation of the Titanium Substrate Effect on the Morphology of Anodic TiO2 Nanotubes. ECS J. Solid State Sci. Technol. 2021, 10, 083008. [Google Scholar] [CrossRef]
- Sitler, S.J.; Raja, K.S.; Karmiol, Z.; Chidambaram, D. Self-ordering dual-layered honeycomb nanotubular titania: Enhanced structural stability and energy storage capacity. Appl. Surf. Sci. 2017, 401, 127–141. [Google Scholar] [CrossRef]
- Wu, H.J.; Wang, Y.; Ma, Y.; Xiao, T.X.; Yuan, D.D.; Zhang, Z.H. Honeycombed TiO2 nanotube arrays with top-porous/bottom-tubular structures for enhanced photocatalytic activity. Ceram. Int. 2015, 41, 2527–2532. [Google Scholar] [CrossRef]
- Fang, Y.Z.; Zhang, Y.Y.; Miao, C.X.; Zhu, K.; Chen, Y.; Du, F.; Yin, J.L.; Ye, K.; Cheng, K.; Yan, J.; et al. MXene-Derived Defect-Rich TiO2@rGO as High-Rate Anodes for Full Na Ion Batteries and Capacitors. Nano-Micro Lett. 2020, 12, 128. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, Q.; Zhao, H.P.; Mi, Y.; Li, W.; Dong, Y.L.; Wu, M.H.; Lei, Y. MOF-assisted three-dimensional TiO2@C core/shell nanobelt arrays as superior sodium ion battery anodes. J. Alloys Compd. 2018, 769, 257–263. [Google Scholar] [CrossRef]
- Zhang, M.M.; Lu, A.J.; Li, H.; Li, M.; Wang, J.E.; Wang, C.R. Defective TiO2-Supported Dual-Schottky Heterostructure Boosts Fast Reaction Kinetics for High Performance Lithium-Ion Storage. ACS Appl. Energy Mater. 2023, 6, 1781–1798. [Google Scholar] [CrossRef]
- Chen, K.; Guo, H.N.; Li, W.Q.; Wang, Y.J. MOF-derived Core-Shell CoP@NC@TiO2 Composite as a High-Performance Anode Material for Li-ion Batteries. Chem.-Asian J. 2021, 16, 322–328. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, Y.F.; Elzatahry, A.A.; Luo, W.; Che, R.C.; Fan, J.W.; Lan, K.; Al-Enizi, A.M.; Sun, Z.K.; Li, B.; et al. Mesoporous TiO2 Mesocrystals: Remarkable Defects-Induced Crystallite-Interface Reactivity and Their in Situ Conversion to Single Crystals. ACS Central Sci. 2015, 1, 400–408. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tan, B.Y.; Zhang, X.H.; Li, Y.J.; Chen, H.; Ye, X.Z.; Wang, Y.; Ye, J.F. Anatase TiO2 Mesocrystals: Green Synthesis, In Situ Conversion to Porous Single Crystals, and Self-Doping Ti3+ for Enhanced Visible Light Driven Photocatalytic Removal of NO. Chem.-Eur. J. 2017, 23, 5478–5487. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.Y.; Lei, B.X.; Wang, Y.F.; Liu, J.M.; Su, C.Y.; Kuang, D.B. Hydrothermal Fabrication of Quasi-One-Dimensional Single-Crystalline Anatase TiO2 Nanostructures on FTO Glass and Their Applications in Dye-Sensitized Solar Cells. Chem.-Eur. J. 2011, 17, 1352–1357. [Google Scholar] [CrossRef]
- Fu, Y.J.; Wang, C.R.; Wang, L.L.; Peng, X.; Wu, B.H.; Sun, X.Q.; Chen, X.S. Synthesis and electrochemical property of few-layer molybdenum disulfide nanosheets. Jpn. J. Appl. Phys. 2016, 55, 125201. [Google Scholar] [CrossRef]
- Lee, C.; Yan, H.; Brus, L.E.; Heinz, T.F.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 2010, 4, 2695–2700. [Google Scholar] [CrossRef][Green Version]
- Liang, L.B.; Meunier, V. First-principles Raman spectra of MoS2, WS2 and their heterostructures. Nanoscale 2014, 6, 5394–5401. [Google Scholar] [CrossRef]
- Berger, S.; Hahn, R.; Roy, P.; Schmuki, P. Self-organized TiO2 nanotubes: Factors affecting their morphology and properties. Phys. Status Solidi B 2010, 247, 2424–2435. [Google Scholar] [CrossRef]
- Hwang, J.; Ejsmont, A.; Freund, R.; Goscianska, J.; Schmidt, B.; Wuttke, S. Controlling the morphology of metal-organic frameworks and porous carbon materials: Metal oxides as primary architecture-directing agents. Chem. Soc. Rev. 2020, 49, 3348–3422. [Google Scholar] [CrossRef]
- Shang, F.; Chen, S.; Liang, J.; Liu, C. Preparation and Photocatalytic Properties of ZnO Deposited TiO2 Nanotube Arrays by Anodization. J. Nanosci. Nanotechnol. 2019, 19, 2070–2077. [Google Scholar] [CrossRef]
- Cardenas-Lizana, F.; Gomez-Quero, S.; Idriss, H.; Keane, M.A. Gold particle size effects in the gas-phase hydrogenation of m-dinitrobenzene over Au/TiO2. J. Catal. 2009, 268, 223–234. [Google Scholar] [CrossRef]
- Yoo, S.J.; Jeon, T.Y.; Lee, K.S.; Park, K.W.; Sung, Y.E. Effects of particle size on surface electronic and electrocatalytic properties of Pt/TiO2 nanocatalysts. Chem. Commun. 2010, 46, 794–796. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.S.; Tan, H.H.; Shi, T.Y.; Tang, T.; Li, J.Q. Preparation of Ag-doped TiO2 nanoparticles for photocatalytic degradation of acetamiprid in water. J. Chem. Technol. Biotechnol. 2008, 83, 546–552. [Google Scholar] [CrossRef]
- Sung-Suh, H.M.; Choi, J.R.; Hah, H.J.; Koo, S.M.; Bae, Y.C. Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. J. Photochem. Photobiol. A-Chem. 2004, 163, 37–44. [Google Scholar] [CrossRef]
- Swaminathan, J.; Ravichandran, S. Insights into the Electrocatalytic Behavior of Defect-Centered Reduced Titania (TiO1.23). J. Phys. Chem. C 2018, 122, 1670–1680. [Google Scholar] [CrossRef]
- Choi, H.; Shin, J.; Shin, C. Impact of Source/Drain Metal Work Function on the Electrical Characteristics of Anatase TiO2-Based Thin Film Transistors. ECS J. Solid State Sci. Technol. 2017, 6, P379–P382. [Google Scholar] [CrossRef]
- Zhu, K.; Wang, C.R.; Camargo, P.H.C.; Wang, J.L. Investigating the effect of MnO2 band gap in hybrid MnO2-Au materials over the SPR-mediated activities under visible light. J. Mater. Chem. A 2019, 7, 925–931. [Google Scholar] [CrossRef]
- Zheng, L.; Han, S.; Liu, H.; Yu, P.; Fang, X. Hierarchical MoS2 Nanosheet@TiO2 Nanotube Array Composites with Enhanced Photocatalytic and Photocurrent Performances. Small 2016, 12, 1527–1536. [Google Scholar] [CrossRef]
- Lin, Y.G.; Hsu, Y.K.; Chen, S.Y.; Lin, Y.K.; Chen, L.C.; Chen, K.H. Nanostructured Zinc Oxide Nanorods with Copper Nanoparticles as a Microreformation Catalyst. Angew. Chem.-Int. Ed. 2009, 48, 7586–7590. [Google Scholar] [CrossRef]
- Ho, W.K.; Yu, J.C.; Lin, J.; Yu, J.G.; Li, P.S. Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. Langmuir 2004, 20, 5865–5869. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Y.X.; Zhang, W.D. MoS2/CdS Heterojunction with High Photoelectrochemical Activity for H2 Evolution under Visible Light: The Role of MoS2. J. Phys. Chem. C 2013, 117, 12949–12957. [Google Scholar] [CrossRef]
- Scalise, E.; Houssa, M.; Pourtois, G.; Afanas∙ev, V.V.; Stesmans, A. First-principles study of strained 2D MoS2. Physica E 2014, 56, 416–421. [Google Scholar] [CrossRef]
- Chen, B.A.; Liu, E.Z.; He, F.; Shi, C.S.; He, C.N.; Li, J.J.; Zhao, N.Q. 2D sandwich-like carbon-coated ultrathin TiO2@defect-rich MoS2 hybrid nanosheets: Synergistic-effect-promoted electrochemical performance for lithium ion batteries. Nano Energy 2016, 26, 541–549. [Google Scholar] [CrossRef]
- Ryu, W.-H.; Nam, D.-H.; Ko, Y.-S.; Kim, R.-H.; Kwon, H.-S. Electrochemical performance of a smooth and highly ordered TiO2 nanotube electrode for Li-ion batteries. Electrochim. Acta 2012, 61, 19–24. [Google Scholar] [CrossRef]
- Meng, R.; Hou, H.; Liu, X.; Hu, W.; Duan, J.; Liu, S. Reassessment of the roles of Ag in TiO2 nanotubes anode material for lithium ion battery. Ceram. Int. 2015, 41, 9988–9994. [Google Scholar] [CrossRef]
- Brumbarov, J.; Vivek, J.P.; Leonardi, S.; Valero-Vidal, C.; Portenkirchner, E.; Kunze-Liebhauser, J. Oxygen deficient, carbon coated self-organized TiO2 nanotubes as anode material for Li-ion intercalation. J. Mater. Chem. A 2015, 3, 16469–16477. [Google Scholar] [CrossRef]
- Jiang, Y.; Hall, C.; Burr, P.A.; Song, N.; Lau, D.; Yuwono, J.; Wang, D.W.; Ouyang, Z.; Lennon, A. Fabrication strategies for high-rate TiO2 nanotube anodes for Li ion energy storage. J. Power Sources 2020, 463, 228205. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Cai, Y.; Yin, K.L.; Li, H.Z.; Shen, D.; Qin, N.; Lu, Z.G.; Liu, C.P.; Wang, H.E. Carbon-bonded, oxygen-deficient TiO2 nanotubes with hybridized phases for superior Na-ion storage. Chem. Eng. J. 2018, 350, 201–208. [Google Scholar] [CrossRef]
- Zeng, S.Z.; Wang, C.R.; Li, H.; Wang, J.L.; Xu, X.F.; Wu, B.H.; He, B. Hydrothermal Synthesis VO2(B) Nanorod/MoS2 Nanosheet Heterostructures for Enhanced Performance Lithium-ion Battery Anodes. Chem. Lett. 2019, 48, 367–370. [Google Scholar] [CrossRef]
- Qi, D.M.; Li, S.; Chen, Y.H.; Huang, J.G. A hierarchical carbon@TiO2@MoS2 nanofibrous composite derived from cellulose substance as an anodic material for lithium-ion batteries. J. Alloys Compd. 2017, 728, 506–517. [Google Scholar] [CrossRef]
- Ahmad, M.; Shi, Y.Y.; Nisar, A.; Sun, H.Y.; Shen, W.C.; Wei, M.; Zhu, J. Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J. Mater. Chem. 2011, 21, 7723–7729. [Google Scholar] [CrossRef]
- Li, C.C.; Li, Q.H.; Chen, L.B.; Wang, T.H. A Facile Titanium Glycolate Precursor Route to Mesoporous Au/Li4Ti5O12 Spheres for High-Rate Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2012, 4, 1233–1238. [Google Scholar] [CrossRef] [PubMed]
Capacity | Initial Discharge Capacity (μAh cm−2) | Initial Coulomb Efficiency (%) | Capacity Retention after 50 Cycles (%) | |
---|---|---|---|---|
Samples | ||||
TiO2 NT | 188.5 | 60.0 | 89.6 | |
TiO2 NT@Au NP | 310.6 | 76.5 | 67.8 | |
TiO2 NT@MoS2 NS | 391.3 | 51.0 | 74.8 | |
TiO2 NT@MoS2 NS@Au NP | 487.4 | 65.8 | 81.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Li, H.; Wang, C. Multifunctional TiO2 Nanotube-Matrix Composites with Enhanced Photocatalysis and Lithium-Ion Storage Performances. Materials 2023, 16, 2716. https://doi.org/10.3390/ma16072716
Zhang M, Li H, Wang C. Multifunctional TiO2 Nanotube-Matrix Composites with Enhanced Photocatalysis and Lithium-Ion Storage Performances. Materials. 2023; 16(7):2716. https://doi.org/10.3390/ma16072716
Chicago/Turabian StyleZhang, Mengmeng, Hui Li, and Chunrui Wang. 2023. "Multifunctional TiO2 Nanotube-Matrix Composites with Enhanced Photocatalysis and Lithium-Ion Storage Performances" Materials 16, no. 7: 2716. https://doi.org/10.3390/ma16072716