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Abstract: The friction and wear performance of high-performance bearings directly affects the accu-
racy and maneuverability of weapons and equipment. In this study, high-speed, high-temperature,
and heavy-load durability experiments of weapon bearings were carried out, and their wear prop-
erties (i.e., surface wear, metamorphic layer, scanning electron microscopy/energy-dispersive spec-
troscopy (SEM/EDS), residual stress, and retained austenite) were analyzed in multiple dimensions.
The results showed the following: (1) The experimental temperature of the serviced front-end bearing
is always lower than that of the rear bearing. (2) The metamorphic layer of the serviced rear bearing
(i.e., inner ring, outer ring, rolling body, and cage) > the metamorphic layer of the serviced front-end
bearing > the metamorphic layer of the unserviced bearing. (3) The rolling body of the rear bearing at
high experimental temperatures contains not only elemental O, but also elemental P and Sr. (4) In the
EDS analysis of the rolling elements, with the migration from the “ball edge” to the “ball center”, the
elemental C in the rolling elements of serviced or unserviced bearings decreases slowly, while the
elemental Fe content increases slowly.

Keywords: high-performance bearings; experiment; multidimensional analysis; wear; performance

1. Introduction

The advanced nature and maneuverability of weapons and equipment is one of the
symbols of national military strength, and the characteristics of high-performance bearings
directly affect the advanced nature and maneuverability of weapons and equipment [1,2].
Because weapons and equipment are in continuous motion, high-performance bearings
will rotate under various conditions, such as high temperature, high speed, heavy load, etc.
In the research of bearings, many scholars have made several contributions.

Wang P et al. [3] designed an early-warning method for wear faults of rolling bearings
based on empirical mode decomposition (EMD). After verification, the signal denoising
effect of this method is good, the early-warning accuracy is always over 94%, and the
average alarm time is close to 0.27 s. Alves D S et al. [4] analyzed the time response
of rotating machinery with bearing wear in order to observe the vibration behavior of
the bearing wear. Shi XiJiang et al. [5] put forward a combined numerical algorithm for
judging the lubrication state of high-speed and heavy-duty angular-contact ball bearings
of aero-engine spindles. The research showed that the bearings maintain the full oil film
state under normal operation conditions, and short-term poor lubrication may occur under
deceleration, start-up, or stop conditions. Zmarzy P [6] established a multidimensional
mathematical model to evaluate the effects of selected factors on the vibration wear of
6304ZZ rolling bearings from three manufacturers. Shi X et al. [7] developed a numerical
friction dynamics analysis program for predicting the dynamic performance, lubrication
state, friction temperature, and surface stress of aviation ball bearings. The results showed
that a large dry contact area, high friction temperature, high peak local stress value, and
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poor lubrication state of bearings at heavy loads and low speeds may lead to a large number
of wear, scratch, and micro-pitting failures. Xi Zhang et al. [8] established a dynamic contact-
wear model of ball bearings, composed of wear degree and position distribution. Yang
Z et al. [9] studied the influence of the uncertainty of angular deviation on the wear of
angular-contact ball bearings in a spindle system. The results showed that the uncertainty
of the initial angular deviation leads to obvious dispersion of the wear depth of the ball
bearings, but the degree of dispersion is related to the spindle speed, angular deviation,
and bearing installation position.

In the field of fatigue life research, Shi X et al. [10] put forward a new method to
calculate the relative fatigue life of bearings. The influence of the surface texture direction
on subsurface stress and relative fatigue life was studied. Hiraki K et al. [11] carried out 93
N-387 N rolling-contact fatigue tests in the radial load range of 600 rpm. They found that the
friction coefficient ranged from 0.013 to 0.032 in the whole test. Yang Z et al. [12] proposed
an image-based evaluation method for cage stability. In order to accurately determine
the motion trajectory of the bearing cage, a new experimental device was developed. The
research results were concluded to provide reference for the structural optimization design
and life prediction of high-precision ball bearings. Trivedi H K et al. [13] analyzed the
friction film formed on the bearing surface and studied the lubricant additive. The research
showed that the gas turbine lubricant prepared with tricresyl phosphate (TCP) should form
a beneficial friction film to improve the fatigue life and performance of the bearings. Cheng
Y et al. [14] proposed a new two-stage remaining useful life (RUL) prediction method based
on depth learning, which uses fast search and find of density peaks clustering (FSFDPC) and
a multidimensional deep neural network (MDDNN). The research showed that this method
has good prediction performance under different working conditions. References [15–18]
also predicted the wear, friction, oil film thickness, and lubrication of high-performance
bearings through mathematical models. El Laithy et al. [19] carried out detailed mechanical
research through scanning electron microscopy (SEM), electron backscatter diffraction
(EBSD), and nanoindentation analysis, showing the evolution of ferrite grains (equiaxed
grains and elongated grains) and the carbide structure in the network formed in the inner
ring of the angular-contact ball bearings at different life stages. Abdullah et al. [20] analyzed
and reported for the first time the bearing ball-to-ball point-contact loading conditions
through comprehensive rolling-contact fatigue (RCF) data. The area fraction of the dark
etched zone observed experimentally in rolling bearings has been evaluated according
to the dark etching regions (DER%) and compared with the dislocation-assisted carbon
diffusion model used for DER formation. Jouini et al. [21] studied the surface integrity of
AISI 52,100 bearing rings after high-precision hard turning and grinding, along with its
influence on fatigue life. The residual stresses measured in the RCF tests (after running-
in and spalling) showed peak compression values at a depth of 140 µm underground.
The fatigue life of rings machined by high-precision hard turning is four times that of
those machined by grinding. Zhao et al. [22] compared the rolling-contact fatigue life of
carburized and uncarburized 100 Cr6 alloy. The results showed that the life of RCF (L10)
was increased from 1 × 107 cycles to more than 1 × 108 cycles by carburization. Zhang
et al. [23] put forward a theoretical model to analyze the influence of friction on the rolling-
contact fatigue life of angular-contact ball bearings. The relative RCF life of ball–raceway
contact was calculated, and the accuracy of the calculation was confirmed by published
research. Watanuki et al. [24] carried out fatigue tests on real bearings with various artificial
defects on the outer-ring raceway. Through simulation, the gap fittings between the outer
ring and the shell were determined, as well as the size of the initial defects, both of which
will affect the fatigue threshold of the bearing. Lorenz et al. [25] studied the effects of
various spatial hardness gradients (e.g., linear and nonlinear) on RCF life through a Mises-
based plastic framework. The RCF results showed that the polynomial gradient with a
degree greater than 1 was superior to the linear and polynomial gradients with a degree
less than 1, and the difference between the gradient types was more obvious at shallower
gradient depths. With the increase in the gradient depth and residual compressive stress,
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the RCF resistance was improved. Yang et al. [26] proposed an image-based cage stability
evaluation method. In order to accurately determine the motion trajectory of the cage, a
new experimental device was developed. The research results have a certain reference value
for the structural design optimization and life prediction of high-precision ball bearings.
Schwendemann et al. [26] discussed the most important methods for fault analysis of
grinder bearings and introduced the prediction of remaining service life. Paiva et al. [27]
analyzed the morphology of the ground surface and the microhardness below the machined
surface. The results showed that the surfaces milled with semi-synthetic fluid usually had
lower Ra values and microhardness changes. The model for the prediction of Ra showed a
maximum error of 14% compared with the measured value. Sridharan et al. [28] reliably
predicted that thermal damage in penetration-hardening bearing steels is independent of
grinding variables. Through metallographic and residual stress analysis, various strengths
of material transformation were accurately detected and verified. The results showed that
material-specific models that are independent of the grinding process variables can be
effectively used to predict thermal damage. Cui et al. [29] studied a new rolling-contact
fatigue (RCF) life model of rolling bearings, which is helpful to promote the development
of cyclic fatigue theory of rolling bearings. Duan et al. [30] established a coupling model—
including a quasi-static model, a fatigue life model, and a mixed lubrication model—to
study the effects of angular eccentricity on high-speed cylindrical roller bearings. Kong
et al. [31] established a nonlinear dynamic model of a gear-bearing system. The dynamic
model can calculate the internal load of the bearings and determine their fatigue life by
using linear damage theory. Jouini et al. [21] investigated the surface integrity of AISI
52,100 bearing rings. The influence of high-precision hard turning and grinding on the
fatigue life of the bearing rings was analyzed. The results showed that the fatigue life of
ring specimens machined by high-precision hard turning is four times longer than that of
those machined by grinding. Zhuang et al. [32] studied the fatigue life of raceways based
on the ISO 281-2007 bearing life theory. The results showed that the friction on the contact
surface has a certain influence on the stress and fatigue life.

In addition to the above team’s research on bearing fatigue life, this study lists the
factors that affect bearings’ performance and life, as shown in Figure 1.
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As shown in Figure 1, the influence on high-performance bearings can be mainly
divided into four important parts—namely, the heat treatment process, the precision
grinding technology of the bearing raceway, the bearing assembly process, and the bearing
service conditions. The key influencing factors are listed in each part. Because of the
above research, a new research idea was proposed. High-speed, high-temperature, and
heavy-load durability tests were conducted to study the performance of high-performance



Materials 2023, 16, 2714 4 of 17

bearings during and after the experiments. The results were analyzed and compared from a
multidimensional perspective, including the surface wear of the inner and outer rings, cages
and balls, raceway metamorphic layer and element content, etc. Among them, microscopic
changes in the surface quality of high-performance bearings were observed by SEM. The
contents of the high-performance bearings before and after testing were compared and
analyzed by EDS. Finally, combined with the experimental data and bearing life theory, the
life influence of high-performance bearings was analyzed. The factors influencing the life
of high-performance bearings under actual service conditions—such as the changes in the
microscopic quality and element contents on the surface of the inner and outer rings and
rolling bodies of the bearings—were comprehensively discussed. These findings provide
data support and a research foundation for high-performance bearing manufacturers and
scholars in related fields.

2. Multidimensional Experimental Analysis

In this study, many advanced devices were used to carry out high-speed, high-
temperature, and heavy-duty durability experiments on high-performance bearings. Fur-
thermore, characterization equipment was used to inspect and observe the manufacture of
the metallographic test pieces, as shown in Figure 2.
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As shown in Figure 2, the T30-70Nf bearing testing machine (speed range: 0–120,000 r/min;
temperature range: −300 ◦C~100 ◦C; load range: 0~30 T) was selected for high-speed, high-
temperature, and heavy-load experiments. The TAT-400 wire-cutting machine tool was
selected for the bearing cutting equipment (cutting efficiency: ≤220 mm/min; positioning
accuracy: ≤0.01 mm; wire speed: 3–12 m/s; pulse resolution: 0.4 µm). The Zeiss Primotech
microscope and Zeiss GeminiSEM 500 scanning electron microscope were selected for
microscopic SEM and EDS. Residual stress and retained austenite were measured using a
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Rigaku AutoMATE II high-power micro-are X-ray diffractometer (2θ: 98◦–168◦; scanning
accuracy: 0.1 µm; minimum step: 1/10,000; power: 3 KW). The model of high-performance
bearing tested was QJ214 (bearing series: four-point angular-contact ball bearing; material:
high-carbon chromium bearing steel GCr15; rated dynamic load: 106,000 N; rated static
load: 197,000 N; the radial runout and axial runout of the bearing’s outer ring were 2 µm
and 5 µm, respectively).

2.1. High-Speed Durability Experiment

Since most bearings are used in pairs, a set of bearings (front-end and rear bearings)
was selected and tested at high speed for 8 h continuously. In the experiment, the speed of
1000 r/min (fixed for 15 min) was continuously increased in the first two hours. After 2 h,
the speed was 9000 r/min, where it was maintained for 6 h. Figure 3 shows the relationship
between the bearing temperature and the vibration of high-performance bearings under
high-speed operation.
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According to the macroscopic analysis of Figure 3, the temperature and vibration of
the front-end bearing did not change much in the first two hours, while the rear bearing
increased in gradient. When the rotation speed reached 9000 r/min, the temperature and
vibration of the front-end and rear bearings increased dramatically.

According to the microscopic analysis of Figure 3, the temperature of the front-end
bearing was essentially stable at 24 ◦C, and the vibration was stable at 0.035 g in the
first two hours. The temperature of the rear bearing started at 25 ◦C and increased by
2.5 ◦C when the rotation speed increased by 1000 r/min. In the process of increasing, the
temperature increased sharply for a short time when it was maintained for 15 min, and
the vibration increased with the increase in the rotation speed. When the rotation speed
reached 9000 r/min, the temperature of the front-end and the rear bearings was 25.2 ◦C
and 46.4 ◦C, respectively. The vibrations were 0.035 g and 0.15 g, respectively. With the
speed (9000 r/min) maintained for 6 h, the temperature of the front-end and rear bearings
ultimately reached 37.6 ◦C and 67.8 ◦C, respectively, and the vibrations ultimately reached
0.072 g and 0.282 g, respectively.
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2.2. High-Temperature Durability Experiment

High-performance bearings also bear internal friction and high temperature caused
from the outside (such as heavy loads and temperature changes in different environ-
ments) [33]. In this study, we also carried out high-temperature durability testing of
high-performance bearings in continuous operation for 300 h (the base temperature was
20 ◦C, and no external cooling was required during the test.). Comprehensive analysis was
carried out, consisting of bearing temperature, oil pressure, axial load, radial load, and
rotational speed experiments, as shown in Figure 4.
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According to the macroscopic analysis of Figure 4, with the increase in speed and time,
the temperature of the front-end bearing was always lower than that of the rear bearing.
The oil supply pressure was relatively stable. The axial load and radial load fluctuated
briefly.

According to the microscopic analysis of Figure 4, with the increase in the rotation
speed (minimum rotation speed 3000 r/min, maximum rotation speed 6300 r/min) and
time, the highest and lowest temperatures of the front-end bearings were 36.7 ◦C and
27.2 ◦C, respectively. The highest and lowest temperatures of the rear bearings were 85.8 ◦C
and 52.4 ◦C, respectively. The highest and lowest oil supply pressures were 0.25 MPa and
0.18 MPa, respectively. The maximum and minimum axial loads were 7703 N and 382 N,
respectively. The maximum and minimum radial loads were 414 N and 9 N, respectively.

2.3. Heavy-Load Durability Experiment

In addition to the high-speed and high-temperature experiments, the high-performance
shafts were also subjected to heavy-load testing. In this study, the heavy-load durability
testing of high-performance bearings was carried out for 1200 h continuously (the base
temperature was 20 ◦C, and no external cooling was required during the test). Similarly, a
comprehensive analysis was conducted, consisting of bearing temperature, oil pressure,
axial load, radial load, and rotational speed experiments, as shown in Figure 5.

According to the macroscopic analysis of Figure 5, the speed was set to 4000 r/min,
and with the increase in time, the temperature of the front bearing was generally lower
than that of the rear bearing. The oil supply pressure was relatively stable. The axial load
and radial load fluctuated briefly.
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According to the microscopic analysis of Figure 5, at a constant speed (3000 r/min)
and with the increase in time, the highest and lowest temperatures of the front-end bearings
were 41.9 ◦C and 19.6 ◦C, respectively. The highest and lowest temperatures of the rear
bearings were 48.8 ◦C and 26.1 ◦C, respectively. The highest and lowest oil supply pressures
were 0.23 MPa and 0.06 MPa, respectively. The maximum and minimum axial loads were
23,076 N and 620 N, respectively, and the axial loads were typically maintained above
22,500 N. The maximum and minimum radial loads were 583 N and 259 N, respectively.
The radial load increased sharply in the later period and lasted for 90 h, with the load
ranging from 500 N to 593 N.

3. Comparative Analysis of the Surface Integrity of High-Performance Bearings

In this study, the high-speed, high-temperature, and heavy-load durability of high-
performance bearings were tested and analyzed, as described in the previous section. In
this section, after the durability experiments, we compare and analyze the serviced and
unserviced bearing conditions, including the surface wear, metamorphic layer, and surface
element contents of the inner and outer rings, cages, and rolling bodies of the bearings.
Among them, the bearings that were tested are called serviced bearings. The bearings that
were been tested are called unserviced bearings.

3.1. Surface Wear

After the testing of the high-performance bearings, the bearing surface will be worn
to some extent. In order to more clearly analyze the bearing surface conditions, images of
sample bearings were taken before and after the durability experiments. This can enable
the naked-eye study and comparison of surface wear, as shown in Figure 6.

As shown in Figure 6, in the comparison of the bearings’ rolling elements, the surface
glossiness of the tested rolling elements was obviously dim, and impurities penetrated into
their surface. In the comparison of the cages, the surface of the tested cages had slight wear.
There were slight indentations and burns on the parts that fit with the rolling body. In the
comparison of the inner and outer rings, the surface gloss of the experimental inner rings
of the bearings had become dim and had scratches. There were impurities infiltrated into
the end face of the experimental outer ring, and there were obvious wear phenomena. The
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surface gloss of the inner and outer ring grooves was also dimmer than that of the inner-
and outer-ring raceways of the bearings that were unserviced.
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3.2. Metamorphic Layers

According to the surface analysis in the previous section, the tested bearing surface
had slight wear and impurity infiltration. This study also compared and analyzed the
surface metamorphic layers of the inner- and outer-ring raceways and rolling bodies of the
front-end and rear bearings, as shown in Figure 7. The formation of the metamorphic layer
is mainly caused by the tempering of the matrix structure and the change in the grinding
temperature. The metamorphic layer is divided into a “white layer” and a “dark layer”.
The “white layer” has the characteristics of corrosion resistance, high hardness, fine grains,
and high residual tensile stress, and microcracks with different angles generally exist in the
“white layer”. Therefore, the “white layer” should be avoided in production practice. As
for the “dark layer”, it is generally considered that it is caused by tempering of the matrix
structure.

Figure 7a–d represent the metamorphic layers of the inner ring, outer ring, rolling
body, and cage of the front-end serviced bearing, respectively. Figure 7e–h represent the
metamorphic layers of the inner ring, outer ring, rolling body, and cage of the rear serviced
bearing, respectively. Figure 7i–l represent the metamorphic layers of the inner ring, outer
ring, rolling body, and cage of unserviced bearings, respectively.

According to the macroscopic analysis of Figure 7, in the experimental inner ring, outer
ring, rolling body, and cage metamorphic layers of the front- and rear-end serviced bearings,
there was not only a “white layer” (Figure 7a,b,e,f), but also a “dark layer” (Figure 7d,h).
On the other hand, the inner ring (Figure 7i) of the unserviced bearing had almost no
metamorphic layers, while the rest of the outer ring (Figure 7j), the rolling body (Figure 6k),
and the cage (Figure 7l) also had metamorphic layers, and there were “white layers” and
“dark layers” in the cage (Figure 7l).

The microscopic analysis Figure 7 shows that the maximum thickness of the metamor-
phic layers of the inner and outer rings of the front bearing was about 5 µm. The maximum
“white layer” thickness in the cage (Figure 7d) was 6 µm. The maximum thickness of the
metamorphic layers of the inner ring of the rear serviced bearing was 8 µm and 10 µm,
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respectively. In the cage (Figure 7h), the maximum “dark layer” thickness was 11 µm.
However, there were essentially no metamorphic layers in the inner ring of the unserviced
bearing. The maximum “dark layer” thickness of the outer ring (Figure 7j) was 3 µm.
The maximum “white layer” and “dark layer” thickness in the cage was 1 µm and 2 µm,
respectively.
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durability experiments.

3.3. Damage (Microscopic)

As shown in Figure 7, we also found two layers (Figure 7c,k) or even three layers
(Figure 7g) of wear with different microscopic shapes on the surface of the rolling body
from the metamorphic layers of the rolling body of the front-end, rear, and unserviced
bearings after the experiment. In addition to the rolling elements, the inner ring of the
front-end serviced bearing and the outer ring of the rear serviced bearing also had different
levels of wear, as shown in Figure 8.

Figure 8a–c represent the microscopic wear of the inner ring, outer ring, and rolling
body of the front-end bearing after the durability experiment, respectively. Figure 8d–f
represent the microscopic wear of the rear bearing’s inner ring, outer ring, and rolling body
after the durability experiment, respectively. Figure 8g–i represent the microscopic wear
of the inner ring, outer ring, and rolling body of unserviced bearings, respectively. The
numbers 1, 2, and 3 in Figure 8 represent the severity of different degrees of microscopic
wear areas, where 1 is the lowest level of wear severity.

According to Figure 8, there were three different degrees of wear on the front-end
bearing’s inner ring (Figure 8a), the rear bearing’s inner ring (Figure 8d), the rear bearing’s
outer ring (Figure 8e), and the rear bearing’s rolling body (Figure 8f) after the experiment.
After the experiment, the front-end bearing’s outer ring (Figure 8b), the front-end bearing’s
rolling element (Figure 8c), and the unserviced bearing’s rolling element (Figure 8i) all had
two different degrees of wear. The inner ring (Figure 8g) and the outer ring (Figure 8h) of
the unserviced bearing did not have different degrees of microscopic wear.
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durability experiments.

3.4. EDS Analysis

In this study, according to the different degrees of micro-wear in Figure 8, the layered
EDS analysis of the inner and outer rings of the bearings after the durability experiments
was carried out, as shown in Figure 9 and Table 1. Because the rolling elements were
parts in direct contact with the inner- and outer-ring raceways, the rolling elements of
the front-end and rear bearings after the durability experiment, as well as those of the
unserviced bearings, were also analyzed by layered EDS, as shown in Figures 10–12 and
Table 2.

Table 1. EDS results of the wear delamination of the inner and outer rings of the front-end and rear
bearings.

Project C (wt%) O (wt%) Fe (wt%) Si (wt%) S (wt%) Cu (wt%) Cr (wt%) Pr (wt%)

Front-end bearing outer
ring 1 9.99 3.03 81.32 0.24 0.30 5.12

Front-end bearing outer
ring 3 15.36 3.10 77.16 0.24 4.14

Rear bearing inner ring 3 8.82 1.04 57.56 0.17 2.68 29.73
Rear bearing inner ring 2 6.25 56.84 0.18 6.68 30.04
Rear bearing inner ring 1 3.97 52.73 0.17 5.18 37.94
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Table 2. EDS of the wear delamination of high-performance bearings’ rolling bodies before and after
the durability experiments.

Figure Color C
(wt%)

O
(wt%)

Fe
(wt%)

Si
(wt%)

Ca
(wt%)

P
(wt%)

Br
(wt%)

Cr
(wt%)

Al
(wt%)

W
(wt%)

Sr
(wt%)

Figure 9 Red 10.98 6.23 77.03 0.72 0.24 4.79
Blue 3.76 90.71 0.21 5.11 0.05 0.16

Figure 10
Red 9.23 4.63 81.59 0.50 0.21 0.35 0.61
Blue 3.6 91.00 0.29 0.06 4.79 0.08 0.19

Yellow 3.8 90.09 0.20 5.91

Figure 11 Red 6.78 84.54 0.26 0.07 4.62 0.1
Blue 4.87 89.93 0.22 0.21 4.62 0.14

In Figure 9, front-end bearing outer ring 1 represents the area denoted by the number
1 in Figure 8b. Front-end bearing outer ring 3 represents the area denoted by the number
3 in Figure 8b. Rear bearing inner ring 3 represents the area denoted by the number 3
in Figure 8d. Rear bearing inner ring 2 represents the area denoted by the number 2
in Figure 8d. Rear bearing inner ring 1 represents the area denoted by the number 1 in
Figure 8d.
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The macroscopic analysis of Figure 9 and Table 1 shows that the front-end bearing’s
outer rings contained the elements C, O, Fe, and Cu. The elements C, Fe, Si, Cr, and Pr were
contained in the inner rings of the rear bearing. In addition, front-end bearing outer ring 1
also contained 0.3% elemental S. Rear bearing inner ring 3 contained 1.04% elemental O.

The microscopic analysis of Figure 9 and Table 1 shows that both front-end bearing
outer ring 1 and front-end bearing outer ring 3 contained 0.24% elemental Si. The contents
of elemental Fe and Cu in front-end bearing outer ring 1 were 4.16% and 0.98% more than
those in front-end bearing outer ring 3, respectively. The contents of elemental C and O in
front-end bearing outer ring 1 were 5.37% and 0.07% less than those of elemental Fe and Cu
in front-end bearing outer ring 3, respectively. Meanwhile, among rear bearing inner rings
1, 2, and 3, rear bearing inner ring 3 also contained 1.04% elemental O. With the decrease in
surface microscopic “spot” density shown in Figure 8d, the contents of elemental Fe and C
decreased gradually, while the elemental Pr content increased gradually.

The macroscopic analysis of Figures 10–12 and Table 2 shows that in the rolling element
contents of the front bearing after the experiment, with the migration from the “ball edge”
to the “ball center”, there was elemental C, O, Fe, Si, Ca, and Cr in the “ball edge”(the
red part in Figure 10). In the “ball center”, which is the blue part in Figure 10, there was
elemental C, Fe, Si, Cr, Al, and W. After the experiment, there were three layers of changes
in the elemental contents of the rolling body of the rear-end bearing with the migration
from the “ball edge” to the “ball center”. At the “edge of the ball”, which is the red part
in Figure 11, there was elemental C, O, Fe, Si, Ca, Br, and Cr. The blue part in Figure 11
contained the elements C, Fe, Si, P, Cr, Al, and Sr. In the “ball center”, which is the yellow
part in Figure 11, there was elemental C, Fe, Si, and Cr. In the rolling element contents of
the unserviced bearings, with the migration from the “ball edge” to the “ball center”, the
elements C, Fe, Si, Ca, and Cr were contained in the “ball edge”, which is the red part in
Figure 12. In the “ball center”, which is the blue part in Figure 12, there was elemental
C, Fe, Si, Br, Cr, and W. Meanwhile, the biggest difference between the unserviced and
serviced rolling bodies was whether they contained elemental O.

The microscopic analysis of Figures 10–12 and Table 2 showed that the front-end
and rear bearing rollers after the experiments contained 6.23% and 4.63% elemental O,
respectively, while the unserviced bearing rollers did not contain elemental O. The contents
of C and Fe in the “ball edge” were always smaller than those in the “ball center”, regardless
of whether the rolling elements of the bearings were serviced or not, and C and Fe were
the most varied elements in the contents of each layer (color). As shown in Figure 10, the
difference in the contents of C and Fe between the “sphere edge” and the “ball center” was
7.22% and 13.68%, respectively. As shown in Figure 11, the difference in the contents of
C and Fe between the “ball edge” and the “ball center” was 5.43% and 8.5%, respectively.
As shown in Figure 12, the difference in the contents of C and Fe between the “ball edge”
and the “ball center” was 1.91% and 5.39%, respectively. Meanwhile, it was found that the
contents of C in the “ball edge” and “ball center” decreased slowly, while the contents of Fe
increased slowly.

4. Comprehensive Analysis

Based on the comprehensive analysis of Sections 2 and 3 of this paper, the following
can be derived:

(1) In Section 2 of this study, the total durability test time was 1508 h, including the
high-speed (8 h), high-temperature (300 h) and heavy-load (1200 h) experiments. The
bearing life was calculated according to Equation (1) [34,35]:

L10 =

(
C
P

)3
× 106

60n
(1)

where C is the basic rated dynamic load (122 kN), P is the equivalent dynamic load
(17.07 kN), and n is the average speed (4108 r/min); these values were derived from the
actual working conditions.
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The calculated life of the bearing was 1481 h, which was less than the running life of
the bearing (1508 h). The operating temperature was higher than the normal temperature,
leading to a decline in the actual life of the bearings. Therefore, the rated dynamic load of
the bearing was greater than 122 kN.

(2) In Section 3 of this paper, the metamorphic layers of the high-performance bearings
(Figure 7) were analyzed, and the following sequence was determined: the metamorphic
layers of rear bearing (i.e., inner ring, outer ring, rolling body, and cage) > the metamorphic
layers of the front-end bearing > the metamorphic layers of the unserviced bearing. Com-
bining the results shown in Figure 9 and Table 1, the contents of C and Fe in the inner ring
of the rear bearing were less than those in the outer ring of the front-end bearing, while
the contents of Cr and Pr were greater. Compared with the EDS analysis of the unserviced
rolling body (containing the elements C, Fe, Si, Ca, Br, Cr, and W), the rolling body after
the experiment also contained elemental O, P, and Sr. However, the presence of O in the
bearings will accelerate their internal oxidation and lead to a decrease in their fatigue life.
The content of elemental P in the bearing steel was generally no more than 0.030–0.040%,
but the presence of 0.06% elemental P will cause serious segregation, increase the tempering
brittleness, significantly reduce the plasticity and toughness of the bearing steel, and cause
it to be prone to brittle cracking during cold working. At high temperatures, elemental
Sr can easily react with water and acid to release hydrogen, which will damage the fa-
tigue strength of the bearings. Therefore, in the use of bearings, the lubricating medium
and sealing mode of the bearings are the key measures to improve the fatigue life of the
bearings. On the other hand, with the migration from the “ball edge” to the “ball center”,
the adsorption capacity and contents of elemental C will decrease gradually, leading to a
decrease in the surface hardness of the rolling body and, ultimately, to fatigue failure of the
rolling body.

(3) Residual stress and retained austenite are two of the important indices to evaluate
the surface integrity of bearing grooves [36,37]. Because the metamorphic layers of the
rear bearing were larger than the metamorphic layers of the front-end bearing, the residual
stress and retained austenite of the inner-ring and outer-ring raceways of the rear bearing
were measured. The tangential residual stress, axial residual stress, and retained austenite
in the inner-ring raceway were −991.8 MPa, −1353.5 MPa, and 11.4%, respectively. The
tangential residual stress (Figure 13a), axial residual stress (Figure 13a), and retained
austenite (Figure 13b) in the outer-ring raceway were −942.1 MPa, −1043.1 MPa, and
13.7%, respectively. These values easily meet the requirements of actual working conditions.
Of course, if we want to make these characteristics better, we need to analyze the bearings’
grinding process.
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5. Conclusions

In this study, the wear and metamorphic layers of the front-end and rear bearings
were observed by analyzing the high-speed (lasting 8 h), high-temperature (lasting 300 h),
and heavy-load (lasting 1200 h) durability experiments of high-performance bearings. In
view of the wear and metamorphic layers, a multidimensional comprehensive comparison
between the serviced and unserviced bearings was carried out, and the conclusions were
as follows:

(1) In the high-speed, high-temperature, and heavy-load durability experiments, the
experimental temperature of the front-end bearings was always lower than that of the
rear bearings. In the high-speed endurance experiment, when the speed was stable at a
given time, the temperature of both the front-end and rear bearings increased sharply. In
the high-temperature durability experiment, with the increase in speed (minimum speed
3000 r/min, maximum speed 6300 r/min) and time, the maximum temperature of the
front and rear bearings was 36.7 ◦C and 85.8 ◦C, respectively. In the heavy-load durability
experiment, with a constant speed (3000 r/min) and the increase in time, the maximum
axial loads of the front-end and rear bearings were 23,076 N and 583 N, respectively.

(2) After the experiments, the surface glossiness of the front-end and rear bearings
decreased obviously (including the inner ring, outer ring, rolling body, and cage). The
metamorphic layers of the serviced rear bearing (i.e., inner ring, outer ring, rolling body,
and cage) > the metamorphic layers of the serviced front-end bearing > the metamorphic
layers of the unserviced bearing. In the EDS analysis of the bearings after the experiments,
the outer ring contained elemental C, O, Fe, Si, S, and Cu. The inner ring contained
elemental C, O, Fe, Si, Cr, and Pr. With the migration from the “ball edge” to the “ball
center”, the C content of the rolling body of serviced or unserviced bearings decreased
slowly, while the content of Fe increased slowly. However, in actual working conditions,
the infiltration of some harmful elements is inevitable. In order to reasonably control the
occurrence of surface-layer deterioration, it is necessary to study the processing of bearings’
raw materials and precision grinding technology.

(3) Comprehensive analysis showed that the thickness of the rear bearing at high
temperatures in the high-speed, high-temperature, and heavy-load durability experiments
was greater than that of the front-end bearing at low experimental temperatures. Similarly,
the number of metamorphic layers of the rear bearings (including the inner ring, outer ring
and rolling body) at high test temperatures was greater than the number of metamorphic
layers at low test temperatures. Moreover, the rolling body of the rear bearing at high
experimental temperatures contained not only elemental O, but also elemental P and Sr.
These three elements have a great impact on the surface integrity of the rolling body when
in service. Therefore, the surface of the rolling body is damaged, resulting in impurities
being adsorbed on the surface of the rolling body. This further affects the surface integrity
of the inner- and outer-ring raceways of the bearings and reduces the effective service
cycle of high-performance bearings. In subsequent work, we will analyze the thickness
of the metamorphic layer throughout the precision grinding process of bearings. In the
service of bearings, the grinding process can be optimized by analyzing the thickness of
the metamorphic layer by EDS, so as to prolong the service life of the bearings.

(4) A very important problem has been solved by the experimental investigation of
high-performance bearings for up to 1500 h. Before the bearing is used, it is necessary
to predict the actual working conditions. It is very necessary to deal with the processing
technology of front and rear bearings separately. That is, the front- and rear-end bearings
cannot be randomly used under a batch production process. This problem suggests that
many manufacturers and users need to select bearings with different performances as
front and rear bearings to ensure the stability of weapons and equipment and prolong
their service life. In the analysis of the metamorphic layer, elemental contents, residual
stress, and retained austenite, it is suggested that bearing manufacturers should control
the grinding temperature and grinding force during precision grinding or lapping of the
bearings’ raceways. The grinding temperature and grinding force will directly affect the
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surface fatigue strength of high-performance bearings, thereby affecting their service life.
Therefore, in subsequent work, we will analyze the thickness of the metamorphic layer
throughout the precision grinding process of bearings. The retained austenite and hardness
of the surface and inner layers of high-performance bearing raceways will be analyzed.
In the process of wear, grain refinement will occur in the surface layer of the raceway.
Based on the grain refinement model of high-performance bearings and the thickness of
the modified layer analyzed by EDS, the grinding process can be optimized to prolong the
service life of the bearings.
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