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Abstract: Differing from metal alloys produced by conventional techniques, metallic products pre-
pared by additive manufacturing experience distinct solidification thermal histories and solid−state
phase transformation processes, resulting in unique microstructures and superior performance. This
review starts with commonly used additive manufacturing techniques in steel−based alloy and
then some typical microstructures produced by metal additive manufacturing technologies with
different components and processes are summarized, including porosity, dislocation cells, dendrite
structures, residual stress, element segregation, etc. The characteristic microstructures may exert a
significant influence on the properties of additively manufactured products, and thus it is important
to tune the components and additive manufacturing process parameters to achieve the desired
microstructures. Finally, the future development and prospects of additive manufacturing technology
in steel are discussed.

Keywords: additive manufacturing; characteristic microstructure; steel−based materials; phase
transformation; heat treatment

1. Introduction

In recent decades, metal additive manufacturing techniques have received more
and more attention [1,2]. The material products fabricated by metal additive manu-
facturing have been extended, but are not limited, to steel [3,4], aluminum alloy [5,6],
magnesium alloy [7,8], titanium alloy [9], high−entropy alloy [10,11], etc. As one of
the most fundamental metal materials, extensive research on additive manufacturing
of iron−based alloys has been reported in the literature, mainly including 18Ni300
mold steel, 316 stainless steel, 304 stainless steel, etc. Compared with traditional
manufacturing techniques (TMT), additive manufacturing methods can effectively
save processing time and improve material utilization [12]. Due to the distinguished
advantages of additive manufacturing (AM), the technique has been widely applied
in industries [13–15].

The basic principle of AM is similar to that of multi−pass welding technology in that
the material powder melts once the heat source passes through and solidifies before the
next heat source [16]. In additive manufacturing, the printing parameters exert a signifi-
cant effect on the characteristic microstructure. For instance, laser−generated melt pools
and thermal gradients during solidification may produce columnar grains and textures
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in the products. In addition, the large temperature gradients cause a non−equilibrium
microstructure, which is distinct from the microstructure produced by TMT. After cool-
ing, the secondary heat cycle caused by the newly melted layer covering the solidified
layer may further facilitate component diffusion and microstructure evolution [17,18].
The deposition path is another important influencing factor on the performance of AM
samples [19,20]. To study the effect of deposition paths on sample performance and
productivity, Veiga et al. [21] conducted several strategies. It was found that waving
and cross−waving were the most beneficial strategies in terms of productivity, which
achieved a 50% torch utilization rate compared to the total time.

The process parameters of additive manufacturing, such as scanning rate, powder
particle size, pre−heat temperature, etc., significantly affect the performance of the
additively manufactured products [22,23]. To investigate the effect of process parameters
on the microstructure evolution and tensile performance of 304L stainless steel by
additive manufacturing, Wang et al. [24] prepared two samples with different heat inputs
by additive manufacturing. It was found that the samples with low linear heat input
displayed higher strength and elongation than the samples with high linear heat input.
Helmer et al. [25] also found that the transition of columnar grains to equiaxed grains
could be achieved by rapidly switching the orientation of the additive manufacturing
heat source and keeping the trajectories of the melted regions overlapped. To investigate
the corrosion performance of 316L stainless steel during selective laser melting (SLM)
additive manufacturing, Zhao et al. [26] employed SLM equipment to manufacture
316L stainless steel with distinct scanning tactics and then soaked the samples in NaCl
aqueous solution (3.5 wt%) for electrochemical tests. It was found that although the
passivation film on the side of the 316L stainless steel sample was thicker than the
head of the surface, there was more pitting and faster corrosion rates occurred on
the sides with more molten pool boundaries. To explore a way to reduce the cost
of fine powder in additive manufacturing, Yang et al. [27] mixed the 316L fine and
coarse powders with different mass ratios via ball milling, finding that the mechanical
properties of the fabricated SLM samples with a mass ratio of 80:20 were comparable to
those of the SLM samples fabricated with pure fine powder, which was closely related
to the complex coupling of temperature gradients and surface tension gradients during
additive manufacturing.

Based on the information retrieved with the keywords “additive manufactur-
ing” and “steel” in the Web of Science database, as shown in Figure 1a, more than
9500 relevant articles on the topic of AM with steel materials have been published in the
past 22 years, and the citation frequency of relevant additive manufacturing literature is
increasing year by year. In the present work, we introduce the rapid development and
advantages of AM and the utilization of additive manufacturing in steels, and then some
commonly used compositions and processes of additive manufacturing are summarized.
Furthermore, as shown in Figure 1b, steel−based alloys printed by additive manufac-
turing display some common characteristic microstructures, such as porosity, dendrites,
residual stress, composition segregation, etc. These microstructures can be tuned by
composition and process parameters, which in turn affect the service performance of the
products prepared by additive manufacturing. Finally, the future development prospects
and directions of AM in steel materials are discussed.
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Figure 1. Utilization of additive manufacturing in steel−based alloys. (a) Histogram of the number
and citation frequency of relevant articles retrieved with the keywords “additive manufacturing”
and “steel” in the Web of Science database. (b) Some typical microstructures produced by additive
manufacturing in steels, and the relationship among the component, process, microstructure and
desired performance.

2. Advanced Additive Manufacturing Techniques

AM is a bottom−up, layer−by−layer manufacturing technique based on 3D model
data, and the fabricated samples can be constructed by melting powder, wire, etc. using a
laser or electron beam [24]. Additive manufacturing techniques with optimized process
parameters can produce many superior properties, such as increased strength, improved
ductility, and effectively enhanced service performance [28]. These technical methods
can produce geometrically complex samples that are difficult to produce by TMT, which



Materials 2023, 16, 2696 4 of 25

is advantageous in integrating digital design and product production. However, it is
worth mentioning that high cost is one of the factors limiting the development of AM.
The vision of additive manufacturing is to use these techniques to produce complex metal
products for critical functions such as turbine blades and jet engines in aerospace [29].
In recent years, the development of AM techniques has been very rapid [30], including
DED, powder bed fusion (PBF), binder jetting [31], metal extrusion [32], atomic diffusion
additive manufacturing (ADAM) [33], sheet lamination [34,35], material jetting [36], arc
additive manufacturing, [37] etc. For steel materials, PBF and DED additive manufacturing
techniques are the most extensively used.

The printing parameter settings of AM influence the melting and solidification process
of the powder and then determine the microstructures of the AM sample [38]. For instance,
excessively high melt pool temperature and the presence of thermal gradients is the main
reason for the formation of columnar grains and textures in the samples. Traditionally,
casting and forging produce near−equilibrium microstructures, but excessive cooling rates
during solidification in additive manufacturing produce non−equilibrium microstructures.
Thermal cycling induced by the duplicate deposition of new molten layers on the solidified
layer also leads to iterative microstructural evolution [39]. Some key parameters affect
specimen quality, including building layer thickness, laser power, hatch spacing, scanning
speed, etc. For the additive manufacturing of steel specimens, some commonly used
process parameters are listed in Table 1.

Table 1. List of several typical deposition techniques and the relevant parameters in AM steel.

Process Material
Shape

Travel Speed
(mm s−1)

Spot Size
(mm)

Layer Height
(mm)

Heat Input
(W)

Material Feed
Speed (mm s−1) Ref.

Laser DED powder 2.5–20 1.2–2 0.25–0.5 360–2600 2–20.4 [40–45]

PTA 1.3–1.7 / / / 25–35 [46]

GMAW
wire

2.5–30 / 0.5–2 3500–8400 28–166 [47–54]

GTAW 2.92–7 / / 1920 16.67–58 [55]

PTA 0.6–2 / / 350–3510 9–28 [55]

2.1. Powder Bed Fusion

In additive manufacturing, powder bed fusion is one of the most prevalent techniques
that selectively melts/sinters areas of powder beds using thermal energy. Its heat sources
mainly include lasers and electron beams. According to these two heat sources, PBF can be
separated into two main techniques: SLM using high−intensity lasers and electron beam
melting (EBM) using electron beams. In both processes, the powder needs to be held on a
build platform [56].

2.1.1. Selective Laser Melting

SLM is a powder bed AM that applies a high−energy laser beam to selectively melt
successive layers of powder in order to fabricate a sample [57–59]. During irradiation with
laser beam energy, the irradiated powder melts and forms a tiny molten pool [60,61]. The
thermal history experienced by samples manufactured by SLM technology is different
from that of samples that have undergone traditional technologies [62,63]. In contrast
to TMT, this technique combines fast melting and solidification, circular heating, and
reciprocal cooling of the deposited layer to produce a characteristic microstructure that
differs from that obtained by TMT [24,64,65]. The SLM manufacturing process displays the
characteristics of a high utilization rate of raw material powder, which has great advantages
in the production of complex samples [66]. SLM production sample quality is influenced
by many factors, for instance, laser scanning speed, powder and shape, energy input, and
so on. The SLM production process involves complex physical processes, such as fast
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melting and solidification [67,68], absorption and transmission of laser energy [69], as well
as material flow in the molten pool [70].

2.1.2. Electron Beam Melting

Selective EBM additive manufacturing builds a sample layer−by−layer in a powder
bed by selectively melting the powder using a beam of high−energy electrons [71,72].
Unlike SLM, electron beam application requires electrical conductivity and is therefore only
suitable for metallic materials. When printing samples, the speed of the electron beam is as
high as 105 m/s, that is, the electron beam can jump from one point to another in an instant.
Therefore, by taking advantage of this feature, electron beam additive manufacturing can
realize innovative heating and melting strategies.

2.2. Direct Energy Deposition

Another commonly used AM is DED. Differing from the SLM process, the DED
production process employs a metal wire or metal powder flow instead of a powder
bed as the raw material injection, and then it melts and deposits the material on a
substrate using an electron beam or laser. Laser−engineered net shape (LENS) is a
representative technique of DED technology [73]. LENS is an AM that uses a laser beam
to feed metal powders of different compositions and properties into a molten pool for
melting. The difference between LENS and SLM is the metal powder addition process.
LENS technology adopts a synchronous powder feeding process in the molding process,
wherein the metal powder is sprayed and heated by the laser beam at the same time. The
LENS process, with the advantages of high molding efficiency and high sample density,
can also be sprayed on the surface of the sample [74]. Another development of DED
technology is the combination with topology optimization technology to design samples
with excellent performance, wherein topology optimization is a mathematical method to
allocate materials within a given design range according to specific physical problems
and optimization targets [75].

3. Characteristic Microstructures of Steel Prepared via AM

Due to the complex phase structure in steel materials, its structure and performance
are usually related to the solidification process and thermal history. Consequently, com-
pared with other metal materials, the subsequent heat treatment strongly affects the mi-
crostructure and performance of the 3D−printed steel material, and thus further process
optimization is very important [76]. Table 2 lists some commonly printed steels in additive
manufacturing, including stainless steel, tool steel, die steel, etc. The characteristics of
additively manufactured samples are summarized from the aspects of composition, process,
and performance.
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Table 2. List of composition, process, and properties of metal materials printed by AM. (SS: stainless steel, AP: as−produced, SA: solution annealed, AH: aging
heat−treated, BP: base plate temperature during the preparation process.).

Steel
Type

Elements (wt%) 3D
Printing

Techniques

Heat
Treatment

Process

Mechanical Properties

Ref.
C Cr Ni Mo Mn Si Ti Al Others YS

(MPa)
UTS

(MPa)
Elongation

(%)
Hardness

(HV or HRC)

316L <0.03 16–18 10–14 2–3 <2 <0.75 / / N < 0.1

L−PBF AP 450 640 59
[77]

L−PBF AP 590 700 36

L−DED AP 470 675 52.5

[78]
L−DED AP 535 665 35

L−DED AP 405 655 57

L−DED AP 505 670 41.58

L−PBF AP 602 664 30
[79]

L−PBF AP 557 591 42

L−PBF AP 534 653 16.2
[80]

L−PBF AP 444 567 8

L−DED AP 490 685 51
[42]

L−DED AP 280 580 62

17-4 PH <0.07 15–17.5 3–5 <1.0 <1.0 / / Nb
0.15–0.45

L−PBF L−PBF 452 1119 15.2 [81]

L−PBF AP 798 1101 15.8 346.3 HV

[82]

L−PBF AP 824 916 4.2 356.1 HV

L−PBF AP 810 948 4.8 350.2 HV

L−PBF AP 773 1043 17.6 355.3 HV

L−PBF AP 873 951 5.3 346.7 HV

L−PBF AP 866 935 3.3 350.3 HV

L−PBF AP 1190 1370 8.3 380 HV [83]

L−PBF AP 570 944 50 [84]
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Table 2. Cont.

Steel
Type

Elements (wt%) 3D
Printing

Techniques

Heat
Treatment

Process

Mechanical Properties

Ref.
C Cr Ni Mo Mn Si Ti Al Others YS

(MPa)
UTS

(MPa)
Elongation

(%)
Hardness

(HV or HRC)

18Ni−300 <0.03 <0.5 17–19 4.5–5.2 <0.1 <0.1 0.6–
0.8

0.05–
0.15

Co
8.5–9.5

L−PBF AP 815–1080 1010–1205 8.3–12 420 HV

[85]L−PBF SA 800 950 13.5 320 HV

L−PBF AH 1750 1850 5.1 600 HV

L−PBF AP 1085–1192 5–8 33 HRC [86]

L−PBF AP 985 1152 7.6 34 HRC [87]

L−PBF AP 915 1188 6.1 371 HV
[88]

L−PBF AH 1957 2017 1.5 600 HV

L−PBF AP 1290 13.3 40 HRC
[89]

L−PBF AH 2217 1.6 58 HRC

L−PBF AP 915 1165 12.4 35 HRC

[90]
L−PBF AH 1967 2014 3.3 54 HRC

L−PBF SA 962 1025 14.4 28 HRC

L−PBF SA+AH 1882 1943 5.6 53 HRC

H13 0.32–
0.45

4.75–
5.5

1.1–
1.75

0.2–
0.6

0.8–
1.2

/ / V
0.8–1.2

L−PBF AP 1003 1370 1.7 59 HRC
[91]

L−PBF AH 1580 1860 2.2 51 HRC

DED AP 1288–1564 2033–2064 5–6 660 HV [92]

L−PBF AP(BP
240 ◦C) 892 1440 1.5 575 HV [93]

L−PBF AP 1236 1712 4.1

[94]L−PBF AP(BP
200 ◦C) 835 1620 4.1

L−PBF AP(BP
400 ◦C) 1073 1965 3.7

L−PBF AP 100 ◦C 1150–1275 1550–1650 1.5–2.25 [95]
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Table 2. Cont.

Steel
Type

Elements (wt%) 3D
Printing

Techniques

Heat
Treatment

Process

Mechanical Properties

Ref.
C Cr Ni Mo Mn Si Ti Al Others YS

(MPa)
UTS

(MPa)
Elongation

(%)
Hardness

(HV or HRC)

Ferritic SS
441

<0.03 18 <1.0 <1 <1 / / Nb < 0.9,
Ti0.1–0.5

L−PBF AP 679 874 30 [96,97]

L−PBF AP 741 896 28 [96,98]

Duplex SS
2205

<0.03 21–23 4.5–
6.5

2.5–
3.5

<2.0 <1.0 / N0.08–0.2
L−PBF AP 950 1071.3 16 [99]

L−PBF AP 940 12 [100]

Duplex SS
2507 <0.03 24–26 6–8 3–5 <1.2 <0.8 Cu < 0.5, N

0.24–0.32 L−PBF AP 1214 1321 8 450 HV [101,102]

Other
steels Also includes duplex stainless steel (SAF2705), ODS steel (PM200), tool steel (M2), etc. [103–105]



Materials 2023, 16, 2696 9 of 25

3.1. Porosity in Additively Manufactured Steel

Porosity is an important concern in metal additive manufacturing, as it worsens the
apparent strength of the sample and decreases the fatigue life of the products. Among
additively manufactured specimens, porosity formation is a hot research topic [106]. The
main causes of porosity in additively manufactured specimens are residual gases from
metal powder raw materials and powder solidification without fusion, which exerts a
notable influence on the corrosion performance of AM samples [107]. Itzhak et al. [108]
conducted a study by putting 316L stainless steel into sulfuric acid. The results showed
that the porosity in the specimen was the major determinant of anti−corrosion. To study
the occurrence of pitting corrosion of stainless steel, Prieto et al. [109] prepared 316L with
a direct metal laser sintering process, finding that the residual porosity and microstruc-
tural deformation rendered the sample more susceptible to pitting. Laleh et al. [110]
observed that the erosion and corrosion of the 316L sample prepared by SLM were poor
and it was closely related to the porosity in the sample. To study the sliding wear be-
havior of 316L, Sun et al. [111] prepared 316L by LSM. It was found that the presence
of porosity in the specimen had a more important effect on the wear behavior than
the microhardness.

To examine the influence of heat treatment temperatures on the mechanical perfor-
mance and wear behavior of AM samples, Emre et al. [112] conducted experiments with
laser selective melting using three heat treatment temperature methods: HT−1, HT−2,
and HT−3 were respectively kept at 600, 850, and 1100 ◦C for 2 h, respectively, and then
air−cooled. Figure 2a presents a schematic drawing of the wear test. The porosity of the
four heat−treated specimens is presented in Figure 2b. The porosity of the as−prepared
specimen, HT−1, HT−2, and HT−3 was measured by optical microscopy, with values of
0.43%, 0.38%, 0.29%, and 0.08%, respectively. As the heat treatment temperature increased,
the sample structure was homogenized and the porosity was further reduced, which
was closely related to factors such as process parameter optimization, gas overflow, etc.
Figure 2c shows the wear curves of the sample wear test. The figure displays that the
various heat treatments exerted a distinct influence on the wear behavior of the samples.
The wear depth of the as−prepared sample was approximately 52 µm, whereas the wear
depth of the samples with HT−1, HT−2, and HT−3 treatments were 62, 53, and 45 µm,
respectively. This study shed light on the fact that the wear resistance of 316L produced
by SLM was significantly affected by the porosity, and the wear resistance increased with
decreasing porosity.
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3.2. Dendrite Structures in Additively Manufactured Steel

During the process of printing metal samples via additive manufacturing, den-
drite structures are developed. To study the dendritic microstructure and its effect
on the mechanical performance of 316L, Chen et al. [113] produced 316L samples us-
ing the gas metal arc additive manufacturing (GMA−AM) technique. It was found
that austenite dendrites were aligned vertically to the GMA−AM 316L sheet. To in-
vestigate the microstructure and its mechanical performance of 308L stainless steel,
Le et al. [49] fabricated thin−walled 308L samples by gas−shielded welding additive
manufacturing (GMAW−AM). It was found that columnar dendrites mainly existed in
the GMAW−AM thin−walled 308L microstructure, and the columnar dendrites grew
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towards the deposited direction with an increasing number of layers in the printed
samples. In addition to the arc additive manufacturing process, cold metal transfer is
another potential technique [37].

To investigate the microstructure and the corresponding mechanical performance
of additive manufactured 304L steel, Ji et al. [114] conducted tensile tests and metallo-
graphic experiments. It was found that as the number of printing layers increased, a
slower cooling rate, thicker dendrites, and much more stable dendrite morphology were
observed. Figure 3a illustrates a schematic drawing of the developed experimental setup.
As shown in Figure 3b, coarse columnar grains appeared on the surface of the chem-
ically etched samples. To better identify the microstructural features, 4 regions were
selected within the sample, which were labeled b2, b3, b4, and b5 from top to bottom,
respectively. Figure 3b presents the microstructure of dendritic growth within the whole
sample, showing that the dendrites became thicker and more stable as the number of
layers increased. From top to bottom, the spacing between primary dendrite arms in
Figure 3(b2–b5) is 15.44, 13.59, 8.23, and 4.94 um, respectively, and the spacing between
the secondary dendrite arms is 7.14, 8.93, 4.98, and 3.52 um, respectively. A total of six
tensile specimens (T1, T2, T3, L1, L2, and L3) were fabricated to identify the mechanical
performance of the specimen, and the results of the six tensile tests are displayed in
Figure 3c. As displayed in Figure 3c, the strength of the T series specimens was higher
than that of the L series specimens but the elongation was much smaller than that of the
L series specimens. On the whole, the performance of the L series samples was superior.
The high strength of the T series samples and high elongation of the L series samples were
due to the presence of dendrites, wherein the T series samples were perpendicular to the
dendrite and the L series samples were parallel to the dendrite. During the tensile process
of the T series samples, the dislocation movement was hindered by the dendrite boundary,
which resulted in the increased strength and decreased elongation. Meanwhile, the tensile
test of the L series samples displayed an opposite trend.
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structure diagram (b1) and metallographic micrographs of four regions (b2–b5); (c) stress−strain
curves of the longitudinal (L1, L2, L3) and transverse (T1, T2, T3) tensile specimens. (Reprinted with
permission from ref. [114]. Copyright 2017, Electronic Material).

3.3. Dislocation Cells in Additively Manufactured Steel

Unlike conventional manufacturing processes, cellular structures are usually gen-
erated inside the grains of some additively manufactured alloys. Due to the high in-
ternal stress inside the sample, a high density of dislocations are formed on the cell
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wall [76], which are usually closely related to the excellent yield strength of additively
manufactured samples [115,116].

To study and examine the cellular boundary of SLM 316L stainless steel, Hong et al. [117]
employed different heat treatments to tune the cellular sub−grains of laser−melted 316L.
It was found that the dislocation density at cellular boundaries exerted a critical role in
interfacial strengthening. As shown in Figure 4(a1), the experimental sample size was
5 mm × 20 mm × 80 mm, which was fabricated by SLM equipment, and the tensile speci-
men is presented in Figure 4(a3). Four different heat treatment temperatures (500, 900, 950,
and 1100 ◦C) were applied for 1 h and then the AM samples were furnace cooled. Ar gas
was filled as a protective gas through the heat treatment operation. According to the tem-
perature of heat treatment, the four samples were designated HT500, HT900, HT950, and
HT1100, respectively. The TEM images shown in Figure 4b are the as−prepared specimen
and the HT1100 sample. The TEM image shown in Figure 4(b1) displays that the cellular
sub−grains include a high density of dislocations. Figure 4(b2) presents many dislocations
around the cell boundaries. Thermal shrinkage stress during rapid solidification greatly
contributed to as−received high dislocation density [118]. The dislocation density shown
in Figure 4(b3) was lower than that shown in Figure 4(b1), which demonstrated that the
dislocation density at the unit cell boundary was greatly reduced after the specimen was
heat−treated. Figure 4(b4) is an enlarged view of the unit cell boundary in Figure 4(b3),
showing that the dislocations were uniformly distributed on the unit cell boundaries.
Figure 4c shows a set of tensile curves for the SLM samples with various heat treatments;
the yield strength reduced from 578 ± 5 MPa for the as−built sample to 326 ± 5 MPa for
the HT1100 sample.
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Figure 4. The effect of dislocation density on the performance of additively manufactured 316L.
(a) Experimental results and process parameters, (a1) schematic diagram of the sample fabricated
by SLM, the X and Y axes denote directions equal to the powder bed, whereas the Z axis represents
the sample build direction, (a2) laser scanning strategy of SLM, (a3) schematic diagram of the tensile
sample size. (b) TEM images of as−prepared and HT1100 samples, (b1) TEM image of as−prepared
sample, (b2) TEM image of an enlarged view of (b1), (b3) TEM image of HT1100 sample, (b4) TEM
image of an enlarged view of (b3). (c) Tensile stress−strain curves for the studied samples. (Reprinted
with permission from ref. [117]. Copyright 2021, Materials Science Engineering: A).

3.4. Residual Stress in Additively Manufactured Steel

During the additive manufacturing process, the powder layers are melted and so-
lidified layer−by−layer and the expansion and contraction stress accumulates, forming
high residual internal stress, which may be released or redistributed during long−term
service, resulting in fatigue cracks, brittle fracture, and stress corrosion failure. For example,
austenitic stainless steel for nuclear applications is prone to stress corrosion cracking (SCC)
in high−temperature water, which is closely related to residual stress. Furthermore, the
main factors affecting SCC are temperature, radiation damage, electrochemical potential,
water chemistry, sensitization, etc. [119–121].

To investigate SCC growth in high−temperature water with 316L manufactured using
the laser powder bed method, Lou et al. [122] evaluated the experimental parameters
and their influence, including crack orientation, microstructure, and stress intensity factor.
Figure 5a shows the direction of the sample compared to the powder bed, while the
X and Y axes are parallel to the powder bed and the Z axis is the orientation in which
the specimen was built. Z−X indicated crack growth in the X direction and loading in
the Z direction. It was found that stress−relieved 316L stainless steel showed two special
cracking characteristics: (1) the cracks grew in the build direction; (2) the hydrogen water
chemistry did not affect the cracks in the X−Z direction when forging along the X direction.
Figure 5b presents the EBSD plot of the crack formation in the AM 316L stainless steel
without cold work. From the crystal boundary diagram and inverse pole diagram, it
could be seen that some cracks developed along the high−angle boundary of adjacent
grains. High−angle grain boundaries were not the only path for SCC propagation, cracks
also propagated along sub−grain structures, such as low−angle grain boundaries and
dislocations. According to Figure 5c, the SCC growth rate was dependent on the stress
intensity factor (K) in AM 316L stainless steel under HIP + SA conditions (annealed and
20% cold work).
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Figure 5. In high−temperature water, SCC develops in additively manufactured stainless steel.
(a) Schematic drawing of the direction of the tensile specimen compared to the powder bed, the X and
Y axes denote the directions parallel to the powder bed, while the Z axis represents the sample build
direction. (b) EBSD plot of SCC in stress−relieved additively manufactured 316L without additional
cold working in the X−Z direction, including inverse pole figure and grain boundary map. (c) The
influence of stress intensity K on the growth rate of SCC in AM 316L stainless−steel in normal water
chemistry. (Reprinted with permission from ref. [122]. Copyright 2017, Corrosion Science).
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3.5. Element Segregation in Additively Manufactured Steel

In additive manufacturing, due to the fast cooling rate, the elements in the solidifica-
tion zone do not have enough time to fully diffuse, thus element aggregation may occur.
Elemental segregation between dendrites of additively manufactured samples plays an
important influence on corrosion resistance [123,124]. To investigate the effect of linear
heat input (LHI) on the microstructure and corrosion behavior of austenitic stainless steel,
Wen et al. [123] prepared austenitic stainless steel using wire−arc additive manufacturing,
observing that steel with high LHI was strongly related to the segregation of Cr and Mo
atoms in Ni−poor δ−ferrite.

To develop a 316L stainless steel (SS) with high yield strength and ductility, Wang et al. [77]
employed two different laser powder bed fusion (L−PBF) techniques (‘Concept’ and
‘Fraunhofer’), which showed strength and ductility beyond traditional 316L SS. Figure 6a
mainly shows the microstructure of 316L SS fabricated by L−PBF, which includes grain
morphology, grain boundary angle, dislocation density, composition segregation, etc.
The detailed EBSD analysis is shown in Figure 6(a3), demonstrating a large number of
small−angle grain boundaries inside the grains. It can be seen from Figure 6(a4) that
the elements Cr and Mo segregated at the cell wall. Elemental segregation and a large
number of low−angle grain boundaries enhanced dislocation pinning and promoted
twinning, which in turn affected the strength and ductility of the additively manufactured
samples. Figure 6b shows the component analysis of the cell wall and cell interior of
the PBF 316L SS manufactured by Fraunhofer machines. It can be seen from the figure
that there was very little elemental segregation in the Fraunhofer samples. As shown in
Figure 6c, both L−PBF−fabricated 316L samples were stronger than the cast and forged
samples in terms of strength and ductility. Figure 6(c2) shows a summary of yield stress
versus uniform elongation for various 316L SS. The outstanding strength and ductility
of 3D−printed steels exceeded that of conventional 316L SS. The excellent performance
depended on many factors, including that the compositional segregation at the grain
boundary may have pinned the dislocation motion and, meanwhile, a large number of
small−angle grain boundaries would also hinder the movement of dislocations, resulting
in increased strength.
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Figure 6. Typical microstructure and mechanical properties of 316L SS prepared by L−PBF. (a) Typical
microstructures of 316L SS produced by L−PBF, (a1) illustration of the multi−scale microstructures
in 316L SS, (a2) cross−sectional EBSD map, SEM image, bright−field TEM image, and dark−field
STEM image of t316L SS, (a3) detailed EBSD analysis, (a4) HAADF STEM (Z contrast) image with
corresponding Cr Fe, and Mo EDS maps showing Cr and Mo segregation at the solidification cellular
walls. (b) Compositional analysis of cell walls and cell interior for L−PBF 316L SS fabricated using the
Fraunhofer machine, (b1) bright−field TEM image of cells, (b2) high−angle annular dark field image
with corresponding elemental maps, (b3) detailed composition of the selected regions. (c) Mechanical
properties of L−PBF 316L SS, (c1) tensile engineering stress−strain curves, (c2) summary of yield
stress vs. uniform elongation for various 316L SS, wherein the references in this figure should
be referred to the original article [77]. (Reprinted with permission from ref. [77]. Copyright 2018,
Nature Materials).

3.6. Other Structural Characteristics in Additively Manufactured Steel

In addition to the above five characteristic microstructures in additively manufactured
products, some other characteristic structures also exert an important effect on the service
properties of additively manufactured samples. Due to local melting and non−uniform
heating during additive manufacturing, there may be defects such as poor powder fusion
that could affect the surface roughness of the printed sample. Melting and directional solid-
ification during printing can lead to periodic cracks, which is one of the main limitations of
the wide application of additive manufacturing in metallic materials.

The DED technique provides an opportunity to print graded [125] or layered [126]
functionally graded materials by changing the powder supply [125]. For instance, changing
the percentage of stainless steel to Inconel during printing can create hardness gradients
in the specimen [127,128]. Hofmann et al. [129] designed a path from one alloy to another
based on a multi−component phase diagram to evade harmful phase formation between
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the two components. On this basis, using a multi−hopper LMD system, linear and radial
gradient alloys could be designed and manufactured.

To study the microstructure and performance of 316L−Inconel 718 composition gradi-
ent stainless steel alloy, Wen et al. [130] used a laser powder bed to prepare composition
gradient alloy (CGA) 316L and Inconel 718 alloys. It was found that the mechanical prop-
erties of the specimens varied with the composition gradient. Figure 7(a1) presents a
schematic diagram of the powder bed. Figure 7(a2) shows the shape of the printed sample
with the manufacturing direction and compositional gradient direction (GD). The authors
mainly studied the composition changes of five main elements, Cr, Mo, Fe, Nb, and Ni, in
316L/IN718 stainless steel constructed along GD. Figure 7b shows the results of the weight
percent of elements measured by EDS. Figure 7c displays a cross−section of the sample
showing the XRF compositional patterns of the five main components. The gradual change
in element color along the GD direction confirmed the existence of a compositional gradient
in the CGA. At different positions along the BD orientation of the sample, the consistent
color of the elements indicated that the powder deposition process was stable. Various
cross−sectional positions of CGA slices were tested for uniaxial tensile performance in
two conditions: as−prepared and heat−treated samples. Figure 7(d1) and Figure 7(d2)
show the relationship between engineering stress and engineering strain for IN718 at 0,
8, 25, 48, 65, 82, and 100 wt% cross−sections, respectively. In the slices with 0, 8, and
25 wt% IN718, σy gradually decreased. The results indicated that σy was reduced with
increased IN718 content at low IN718 content (≤25 wt%). As the proportion of IN718
increased to 48 wt%, σy did not decrease but increased to 647 ± 28 MPa. Then, σy and UTS
significantly increased with further increase in IN718 content. When the IN718 proportion
further increased to ≥82 wt%, YS and UTS were higher while ductility was lower in the
CGA sample relative to the as−prepared sample.
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Figure 7. Composition variation of gradient specimens prepared by powder bed. (a) Schematic dia-
gram and sample image, (a1) schematic illustration of the CGA LPBF system, (a2) image of fabricated
CGA samples; (b) component distribution map measured by EDS technology along the gradient
orientation; (c) composition gradient distribution map of CGA measured by XRF on the plane;
(d) engineering stress−strain curves of (d1) as−prepared and (d2) heat−treated CGA specimens.
(Reprinted with permission from ref. [130]. Copyright 2022, Materials Science Engineering: A).

4. Conclusions and Perspectives

In summary, AM has been widely used in the design and manufacture of high−performance
steels, effectively saving processing time and improving material utilization; however, the
physical metallurgical process of additively manufactured steel is very complex. This
work summarizes some typical microstructures of additively manufactured steel−based
alloys. Specifically, the high−temperature gradients in additive manufacturing processes
can form dislocation cells and alloying elements may segregate and aggregate at defects;
the repeated melting and solidification of the powder layer can cause large residual stress;
improper processing parameters of the laser can generate pores in the specimen, etc. These
characteristic microstructures exert a significant influence on the properties of additively
manufactured products. The characteristic microstructures summarized in this work
will be helpful for follow−up research, and this work may promote the application of
additive manufacturing technology in the field of steel−based alloys. In recent years, the
development of AM has presented a diversified scene, considering the multi−scale and
complex phase transformation characteristics of the steel itself. Nevertheless, there are some
trends in developing high−performance steel−based materials via additive manufacturing.

1. The additive manufacturing technique is a non−equilibrium solidification process,
and the microstructure structure exhibits multi−level and cross−scale characteristics.
It is difficult to quantitatively characterize the microscopic mechanism of additively
manufactured products in experiments. Therefore, it is highly desirable to develop
advanced multi−scale computing techniques to shed light on the complex mechanism
of microstructure evolution and thus improve the macro−performance.

2. As a potential high−throughput experimental method, the additive manufacturing
technique can effectively accelerate the composition and process optimization design
of high−performance steel−based materials by gradient printing.

3. Steel is born with complex solid−state phase transition; therefore, learning from
the abundant traditional heat treatment experience and developing a heat treatment
scheme suitable for additive manufacturing is one of the future research directions.
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4. At present, all grades of steel are proposed for traditional steel preparation processes, but
it is urgent to establish a set of steel grades suitable for additively manufactured steel.

5. Data−driven additive manufacturing technology is another future direction. Unlike
traditional steel preparation, 3D printing of metal specimens lacks a large amount
of high−quality data at present, thus it is also urgent to develop a database and
data−driven strategies for additive manufacturing.
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