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Abstract: Time and temperature affect the viscoelasticity of woven composites, and thus affect their
long-term mechanical properties. We develop a multiscale method considering fiber twist angle and
interfaces to predict viscoelasticity. The multiscale approach is based on homogenization theory and
the time-temperature superposition principle (TTSP). It is carried out in two steps. Firstly, the effective
viscoelasticity properties of yarn are calculated using microscale homogenization; yarn comprises
elastic fibers, interface, and a viscoelastic matrix. Subsequently, the effective viscoelasticity properties
of woven composites are computed by mesoscale homogenization; it consists of homogenized
viscoelastic yarns and matrix. Moreover, the multiscale method is verified using the Mechanics of
Structure genome (MSG) consequence. Finally, the effect of temperature, fiber twist angle, fiber array,
and coating on either the yarn’s effective relaxation stiffness or the relaxation moduli of the woven
composite is investigated. The results show that increased temperature shortens the relaxation time of
viscoelastic woven composites, and fiber twist angle affects tensors in the relaxation stiffness matrix
of the yarn; the coating affects the overall mechanical properties of woven composites as well.

Keywords: viscoelasticity; woven composites; multiscale; twist angle; coating

1. Introduction

Woven composites have the advantage of high strength, high stiffness, good oxidation
resistance, and excellent thermal stability. They have been widely utilized in aerospace,
national defense, biomedical, and other industrial fields. Woven composites are often
subjected to long-term load in engineering practice, which seriously affects their viscoelas-
tic behavior leading to the failure of the structure, especially at high temperature. Stress
relaxation occurs when viscoelastic materials are subjected to static or variable strain con-
tinuously and this phenomenon is called creep [1]. Researchers have now developed
a number of approaches to investigate the viscoelasticity of composites. Hashin [1,2]
proposes the elastic viscoelastic correspondence principle. Via this principle, the para-
metric three-dimensional finite-volume direct averaging micromechanics (FVDAM) by
Chen et al. [3] and the elastic-based locally exact homogenization theory (LEHT) by Wang
and Pindera [4] are developed to accommodate linearly viscoelastic phase response. As an
extension of the Eshelby-based Mori-Tanaka (MT) model, Weng et al. [5] investigated the
overall viscoelastic behavior of composites with different shapes according to different as-
pect ratios. Katouzian et al. [6] employ the MT method to study the response of viscoelastic
composites vs. the time compared with the experiment data. Moreover, Yang et al. [7-9]
experimentally studied the long-term creep behavior of fiber-reinforced composite tubes
subjected to flexural loading. Martynenko et al. [10,11] conduct numerical simulations
and experiments to investigate the effect of the temperature and the lasting time on the
effective viscoelasticity of fiber-reinforced composites. Kwok et al. [12] establish a vis-
coelastic model of single-layer plain woven carbon fiber-reinforced epoxy composites after
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being folded for a period of time compared with experimental measurements to study the
deployment of tape springs at different times and temperatures. However, the classical
models, elasticity-based homogenization approaches, or mechanics experiments among
techniques are presently limited. For instance, the MT model may provide a reasonable
estimate of elastic homogenized moduli but not the local stress distributions [3]; the LEHT
is limited to composites reinforced by long cylindrical fibers, and experiments cost much
money, time, and effort.

In recent years, homogenization theory (HT), the finite element method (FEM), and
multiscale analysis have been widely used to predict woven composites’ stiffness and
strength. For example, Zhao et al. [13] used multiphysics locally exact homogeniza-
tion theory to investigate the multiscale homogenized thermal conductivity and ther-
momechanical properties of Advanced European superconductors filament groups (EAS).
Pathan et al. [14,15] studied the sensitivity of the viscoelastic response of fiber-reinforced
polymers (FRPs) to fiber shapes, fiber volume fraction, interphase volume fraction, and
interphase properties via FEM. Also, they compare the Monte Carlo simulations’ results
on random RVEs to those obtained by analyzing periodic square and hexagonal unit cells.
Deviredy et al. [16] investigate the square array RVE (S-RVE) and hexagonal array RVE
(H-RVE) of FPRs with the circular and square cross section of fiber and calculate the elastic
modulus and thermal conductivity. Moreover, Liu et al. [17] used mechanics of structure
genome (MSG) solid and plate model to capture the long-term viscoelastic behaviors of
textile composites. Rique et al. [18] extend MSG to construct a linear thermo-viscoelastic
model to analyze three-dimensional heterogeneous materials made of constituents with
time- and temperature-dependent behavior. Seifert et al. [19] proposed a finite element-
based micromechanical model to obtain the viscoelastic properties of glass fiber composites
at high temperatures. Cai et al. [20] propose a multiscale model of three-dimensional
four-way woven composites to analyze the influence of braiding angles and fiber volume
fractions on the viscoelastic properties by FEM and creep experiment.

Further, the microscopic parameters of woven composites relating to viscoelasticity
should be studied more comprehensively. As shown in Figure 1a,b, a traditional twist
yarn in a fabric consists of fibers at an angle with the direction of the yarn axis. Twisted
fiber bundles characterized by the twist angel, distinguishing significantly from untwisted
ones in the mechanical property, contribute to the mechanical properties of the composite
through fiber—yarn—fabric sequence. In Figure 1d, a region exists at the boundary between
fibers and matrix, which possesses mechanical properties different from those of the fibers
and the matrix due to physical and chemical reactions between the two main phases;
this region is usually modeled as a physical coating of the continuum [21], so that the
thickness, the material property, and the bonding condition of the coating significantly
affect the overall mechanical properties of the woven composite. Some relevant studies
are as follows. Miao et al. [22,23] attempt to optimize the yarn structure of fiber-reinforced
polymer composites and establish the relationship between the fiber twist angle and
mechanical properties of unidirectional fiber composites. Xiong et al. [24] construct a
multiscale mechanical model and study the influence of fiber twist angle on the mechanical
properties of plain woven composites. Fisher and Brinson [25] analyze the mechanical
response of fiber-reinforced polymer matrix composites with viscoelastic interface regions
by Mori-Tanaka micromechanical model and study the physical aging of viscoelastic
composites. To obtain the viscoelastic behavior of polymer-based heterogeneous materials,
Huang et al. [26] developed 3D viscoelastic calculated grains (CGs) containing spherical
inclusions, interfacial phases/coatings, and non-interfacial phases/coatings. Yang et al. [27]
theoretically study the frequency- and temperature-dependent viscoelastic behavior of
the short fiber-reinforced polymers (SFRPs) and consider interface/interface conditions.
Although these applications provide various aspects of viscoelastic behavior of composites,
they are limited to composites with infinitesimally small microstructures.
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Figure 1. SEM photographs: (a) Natural fiber fabric [24]; (b) The orientation of sisal fibers in the
yarn [28]; (c) The fiber rod end surface [29]; (d) The fiber and coating in the yarn [30]. (Reproduced
with permission ref. [24]. Copyright 2018 Elsevier; ref. [28]. Copyright 2016 Elsevier; ref. [29].
Copyright 2020 MDPT; ref. [30]. Copyright 2010 Elsevier).

Usually, multiscale methods are classified as hierarchical and concurrent methods by
Belystchko and Song [31]. Based on the structure of woven composite having hierarchy
and feature, this paper develops a hierarchical multiscale method to predict the viscoelastic
of woven composite. The technique can study the influence of microscopic parameters on
the long-term viscoelastic behavior of two-dimensional woven composites. Considering
the non-isotropic viscoelastic materials cannot be calculated directly by commercial finite
element software, the mesoscale estimate in the multiscale method introduces the dis-
cretization theory. Therefore, the long-term viscoelastic properties of yarns are divided into
multiple transient properties with equal intervals. The long-term anisotropic viscoelastic
simulation of RVE2 is equivalent to the instantaneous elastic simulation. This method is
easy to calculate the viscoelastic properties of 2D woven composites. We were, moreover,
using the multiscale approach to investigate the effect of more factors, such as twist yarn,
coating interface, fiber array, and ambient temperature.

The remainder part of the paper is organized as follows: Section 2 establishes a
multiscale RVE structure of a 2D woven composite and defines the fiber twist angle.
Section 3 describes a viscoelastic multiscale model considering fiber twist angle and coating
interface. Section 4 verifies the accuracy of the multiscale method via MSG methods. In
Section 5 we investigate the combined effects of temperature, fiber twist angle, coating
interface, and array type on the homogenized viscoelasticity moduli of woven composites,
reporting new results. Conclusions are presented in Section 6.

2. The Microstructure, Multiscale Framework and RVEs of Woven Composites
2.1. Multiscale Framework and RVEs

The 2D and 3D woven composites have complex hierarchical structures composed with
matrix and interwoven yarns and the fill yarn and warp yarn have periodical characteristics,
respectively. The mechanical properties of woven composites mainly depend on the
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intrinsic properties of the fiber and matrix, the yarn, and the woven composite structure.
The yarn structure, such as its geometry, internal fiber orientation, and fiber volume
fraction, determines the main properties of the woven composite, especially mechanical
properties [32]. As shown in Figure 2, it can be seen that the hierarchical structures of 2D
woven composites consist of three scales: microscale, mesoscale, and macroscale. We start
from the modeling of the yarn as RVE1 at microscale, which consists of twisted or untwisted
fibers distributed in the matrix and there is the interface between the fiber and matrix; in
this paper, we account the fiber with hexagonal or square array in matrix. The mesoscale as
RVE2 consists of warp and fill yarns embedding in the matrix. The macroscale is 2D woven
composites which is composed with RVE2s. The numerical examples of the latter two scales
used in this paper were generated and analyzed by Texgen software (v3.12.0, University
of Nottingham, Nottingham, UK) [33] and finite element analysis software ABAQUS
2020. Based on the “bottom-up” analysis process, we predict the overall performance of
macroscopic 2D woven composites from the inherent properties of microscopic fibers and
matrices. Fibers are assumed to be linear elastic and transversely isotropic, while the matrix
is viscoelastic and isotropic.

Macroscale
I

Yarn ,7 Interface Fiber Tow
.

r's
. M fiber
/ interface

matrix =z

Yarn

Mesoscale Microscale

RVE2

Figure 2. Multiscale framework of the 2D woven composites considering the twisted angle and
interface in RVE. The H-RVE is fiber arrayed in hexagonal and the S-RVE is fiber arrayed in square.

2.2. Twist Angle and Coating of Fiber in the Yarn

The viscoelastic properties of every scale model are subject to the components and
structure. Yarns play an important role in the woven composites. Effective properties
of yarn are computed based on fibers and matrix. The twisted yarn axis has an angle
6 with the fiber axis, and the angle is called a torsion angle or twist angle as shown in
Figure 1a,b. During the injection molding and extrusion process [34], the twist angle of
a fiber, related to the fiber orientation, depends on its radical location in the yarn’s cross
section and changes gradually and continuously from the interior of the yarn to its surface,
as shown in Figure 3, so the fiber orientation distribution function can be defined as seen in
the following. Xiong et al. [24] used a spatial coordinate system to define the orientation of
fibers in the yarn in order to describe the fiber orientation distribution (FOD). As shown in
Figure 3b [34], 1-axis is the principal axis of the fiber, and the 2-axis and the 3-axisareradial-
axes perpendicular to the 1-axis. x1, y; and z; are the coordinate system of the RVE1. 6 is
defined as the angle between 1-axis and the zj-axis of the spatial coordinate system; the
value range is (—6p, 0p). 6y is the twisting of the fibers on the surface of the yarn. ¢ between
the projection of the fiber on the x; — y; plane and the y;-axis; the value range is (0, 27).
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Figure 3. Definitions of the fiber orientation angles. (a) The twisting angle of fiber from inner
periphery to outer periphery in the yarn; (b) The relation between the fiber orientation with the RVE1
coordinate system.

The twist angle of the fiber in the yarn depends on the radial position of the yarn cross
section, and the twist angle of the fiber near the surface of the yarn is greater than the twist
angle inside the yarn, as shown in Figure 3b. The fiber orientation distribution function can
be defined as [24]:

f(6,¢) =g(0)g(p)(—00 <0 <6),0< ¢ <2m) €]
_ |tan6|sec? 6
g(0) = W(—GO <0 <6h) ()
1
g(p) = T 3)
© T 6, p)ded — 1 4
/_eoof(,qv) ¢ = )

Although fibers in the yarn are randomly arranged, the microstructure of the yarn is
usually idealized in the literature as a square or hexagonal pack, and representative volume
element is S-RVE or H-RVE, as shown in Figure 4. To be considered are the interfaces
between the fiber and matrix (shown in Figure 1d) and it is assumed the interfaces or
coating are perfect enough to connect the fiber and matrix together. a is the diameter of
the fiber and b is the exterior diameter of the coating. /1, [ and I3 are the lengths of RVEs.
In Figure 5, the mesoscale RVE2 model was created by Texgen software. w and h are the
width and thickness of the yarn embedding in the matrix of L, thickness and L, length in
the periodical interval c.
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(b)
Figure 4. Microscale RVE of the yarn consisting of fibers and the matrix: (a) H-RVE; (b) S-RVE.

(a) warp

Figure 5. FE model of mesoscale RVE: (a) the woven yarn; (b) the matrix.

3. Multiscale Viscoelastic Model of Woven Composites
3.1. Viscoelastic Constitutive Model
The constitutive relationship of viscoelastic materials depends on the time and the

temperature, and the uniaxial stress—strain relationship of isotropic viscoelastic materials
can be represented by the Boltzmann’s heredity integral:

o(t) = /0 "E(t—7) d‘;(:) dt 5)
() = /OtD(t—T) d‘;(:) it ©)

t dD(t—1) _
fO E(t — T) It dt =1 (7)

t is a time variable, T is a passed time, o (t) is the time-dependent stress, £(t) is the time-
dependent strain, D(t) is the creep modulus, and the elastic modulus E(t) can be defined
by the Prony series over a wide range of timescale [35]:

n
E(t) = Ew+ Y Eje /i )
i=1

E is the long-term modulus, E; are the Prony coefficients, and p; are the relaxation times,
whose value is the larger, the slower the stress relaxation decays.

Temperature has a significant influence on viscoelastic behavior, and TTSP (the time—
temperature superposition principle) provides a theoretical foundation to study the long-
term behavior of viscoelastic materials by short-term characterization experiments. This
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principle relates the temperature-dependent relaxation modulus to the time-dependent
one, justas E(t,T) = E(¥, Tp), which indicates that the modulus at temperature T and time
t is equal to that at the reference temperature Tj and shortened time t'. Therefore, we can
cut down the observation time to study the long-term viscoelastic behavior of the polymer
by increasing the temperature of the experimental environment, and this equivalence can
be achieved by means of a conversion factor at, which is the ratio of the relaxation time at
two different temperatures:

p(T)
p(To)
where T is the general temperature, and T is the reference temperature that is often taken
as the glass transition temperature. In order to illustrate the dependence of viscoelasticity
on temperature, the viscoelastic material studied in this paper is a thermos-rheological
simplicity material and the conversion factor at of the material is applicable over the whole
relaxation time. When the temperature changes with time, the shortened time is obtained

by integration:
P L
Y0 = |, ar "

According to TTSP, the temperature shift function can be expressed by the Williams—
Landel-Ferry (WLF) equation [36]:

©)

ar =

—c1(T —Tp)

c2+ (T —To) th

logar =
here c; and c; are material-dependent constants and the logarithm base is 10. Thus, the

viscoelastic constitutive relation Equation (5) at temperature T can be rewritten as:

o(t) = /OtE(t— 7, T) d‘;(;) dt (12)

For the anisotropic material, the stress—strain relationship can be expressed in the time

domain as: ,
o(t) = /0 C(t—T,T)dil(;)dT (13)

Then, the relaxation modulus tensor can be expressed as

n
Cijkt = Cije,c0 + 3 Cijerme /P (14)
m=1

3.2. Multiscale Homogenization

The homogenization theory (HT) is employed by [3,4,13]. The theory can harvest
the equivalent material properties of the composite material having periodic feature. In
the twisted yarn, the helical fibers in different radial positions have different twist angles
(shown in Figure 3). Thus, the stiffness matrix of each fiber and coating at the twist angle
can be calculated as [24]:

€] = [M[C)[m)" (15)

[CY] is the stiffness matrix of a single fiber and coating at 6 = 0, [M] is the stiffness
transformation matrix between the offset coordinate system and the global coordinate
system, and [M]” is the transpose matrix of [M]. The definitions of [C°] and [M] are
described in Appendix A Equations (A1)—(A3).

Since the fiber is an elastic material, its stiffness matrix does not change with time. A
series of helical fibers located at the point of the same radius in the yarn cross section can be
assumed as a layer, whose orientation changes continuously from the center to the surface
of the yarn. Based on the directional average method and the iso-strain hypothesis [34,37],
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~RVE1

the stiffness matrix of each helix layer is integrated by helix angle to obtain the average
stiffness matrix after fiber and coating torsion [24]:

cf] = / o / £(6, 9)d0dg (16)

The yarn is composed of fibers, coatings, and the matrix. The first two of these are
elastic and the matrix is made from the polymer of viscoelastic elasticity, so the yarn is
transversely isotropic. According to the model of the RVEL1 established in the previous
section, the overall average stress component of the twisted yarn can be expressed as:

( ) 1 f .

T + 0. dVe + / ontqv. 17

VRVEl/ ; rvELJV; i v Vever Jv,, U int (17)
ézy(t) = RVEL(t) with gi(t) =1 (18)

where f, int and m represent the fiber, interfacial phase and matrix, and the superscript
in the formulation indicates the homogenized sign of linear viscoelasticity. 7RVEL(t) is

“_r

the average time-varying stress field in RVEI1, Cly( ) is the time-varying relaxation stiffness
tensor in RVE1, and Viygq is the volume.

The in-plane structure of the 2D woven composite material is symmetrical and period-
ical, and the mesoscale model is in-plane isotropic. The relaxation stiffness matrix of warp
and fill yarns in the global coordinate system can be described as:

— [Twarp][(zy t)][Tmrp]T(warp)
€y { T [ (DT ] (£l 19)

Here [CY(t)] is the equivalent stiffness matrix of the yarn in RVE2. [Tewarp] and [Ty are
the transformation matrix between the microscale coordinate system of the warp yarn (fill
yarn) and the mesoscale coordinate system; [Twarp]T and [T fi”]T are the transpose matrices
of [Tuwarp] and [Tiy], respectively, which are described in Equation (A4) of Appendix A.

Based on the RVE2 built in the previous section, the average stress component of the
2D woven composite can be expressed as:

de;(t)
GRVE2A( CRVE2A( j '
Tij 1/V/ / C; 7,T) 0T J(A = warp, fill,m)  (20)
~ ~(RVE2, ~(RVE2,fill ~(RVE2,
UiIJgVEz _ Ug\u/rEpz ‘Ti(j warp) | o, }illvllsz ‘71(] Sil) oRVE2 ‘71‘(/‘ m) 1)

In the formulation, the subscript A means that the variable belongs to the correspond-
ing phase, such as the warp, the fill, and the matrix.

We can apply the corresponding normal strain or shear strain to the single-cell model
of different scales, and then solve the viscoelastic partial differential equation according to
the above analytical models to restore the stress distribution in the numerical microelement,
and finally calculate the macroscopic overall average stress component of the 2D woven
composite material in the form of integration:

it =Y 1/ / / CRVE(t )d%it)drdv (22)
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The constitutive equations of 2D woven composites are represented in the form of
relaxation stiffness matrix engineering:

5“ i gxx gxy gxz 0 0 0 Exx
Tyy Coy Gy Gz 0 00 | fey
gzz _ Crvz Cyz Cy 9 0 0 €2z (23)
Oyz 0 0 0 C vz 9 0 &yz
Oxz 0 0 0 0 Cyz 0 Exz
Ty L0 0 0 0 0 Cyl ey

3.3. Periodic Boundary Conditions of RVEs

Periodic boundary conditions must be applied to RVE of different scales to ensure
uniform deformation and continuity of RVE under various loading conditions. In this
paper, the periodic boundary condition proposed by [38] is adopted, and the displacement
equation for each pair of nodes on the parallel boundary surface of RVE is as follows:

W= Eikxfr +u; (24)

i =

Wl = §ikx£_ +uf (25)

where the superscripts j+ and j— refer to the two corresponding nodes on the boundary

of RVE and g is the average strain of RVE. x; is the coordinate value of k-axis and u; is

the periodic displacement of i-axis. The relative displacement between two corresponding

nodes on a parallel boundary surface can be expressed as:

W —ul” =g (ot —x) =l (ik=1,2,3) (26)
Equation (26) can be easily implemented by setting the displacement constraint on

each pair of coupled nodes on the boundary of RVE.

4. Validation

To verify the result based on the multiscale model and homogenization viscoelasticity
to every scale RVE, the results at the microscale predicted in this paper are compared with
that of the literature [17]. In this case, the yarn has no coating and twist angel, and the fiber
volume fraction vy is fixed at 0.64 in the yarn. The elastic properties of the fiber are shown
in Table 1, the viscoelasticity of the matrix is expressed by the relaxation time and Prony
coefficient, as shown in Table 2, and the Poisson’s ratio is assumed to be constant at 0.33.

Table 1. Material parameters of fiber.

Young's Modulus (GPa) Shear Modulus (GPa) Poisson’s Ratio
Parameter
En Ep=Ep  Gpa=Gps Gps Uiz = U3 vp23
Value 233 15 8.963 5.639 0.2 0.33

Table 2. Relaxation times and Prony coefficients for PMT-F4 epoxy.

i o 1 2 3 4 5 6 7

E;(MPa) 1000 224.1 450.8 406.1 392.7 810.4 203.7 1486.0
pi(s) - 1.0 x 103 1.0 x 10° 1.0 x 10° 1.0 x 107 1.0 x 108 1.0 x 107 1.0 x 1010
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FE models of S-RVE1 and H-RVEI1 are established in ABAQUS 2020, as shown in
Figure 4a. Each analysis consists of two steps and the relaxation stiffness is defined with
the option *VISCO in ABAQUS. The first step lasting a short time period (0.1 s) is to apply
a unit strain on RVEL. In the second step, the strain remains constant and lasts 101’ s.

In Figure 6, the results of microscale S-RVE1 and H-RVEL in this paper are compared
with that of Liu-MSG in [17], whose work only focuses on S-RVE1 and both results agree
well. Additionally, results of two RVE1s have a small difference in axial relaxation stiffness
tensor éﬁv El the maximum difference of which is between 0.05~2.2%, while the maximum
difference in radial relaxation stiffness tensor éé{ZVEl is about 2.1~8.4%. The effect of time
for tensor éﬁVEl is almost negligible, because the behavior in this direction is dominated
by the fibers, whose elastic behavior is independent of time. Other tensors of the relaxation
stiffness decrease with the time increased, exhibiting a trend of variation over time. More
importantly, the microstructure has more significant effect on the radial relaxation tensor
than that on the axial relaxation one, which can be explained by the dominated contribution
of fibers to the axial direction of the yarn and the behavioral gap between the matrix and
the fiber which is not obvious in the radial direction.

We employed the FEM to get the homogenization viscoelasticity prediction for the
woven composite. The width and thickness L, of the warp or fill in Figure 5 are 0.9 mm
and 0.06 mm, respectively, while the thickness of the fabric is 0.12 mm, and the interval of
neighboring warps or fills is 1.75 mm. Progressive meshes with C3D8R and C3D10 solid
elements are adopted in ABAQUS to guarantee the convergence, and co-node grids are set
up at the interface between the yarn and the matrix. It is well established that yarn and
RVE2 are not isotropic, and finite element software cannot directly define the viscoelastic-
ity of the anisotropic material [17]. However, the long-term relaxation viscoelasticity of
RVE2 has consisted of many transient responses. Based on the discretization theory, the
long-term relaxation response of RVE2 can be decomposed into multiple transient reactions
with the same interval, simplifying the finite element calculation. The yarn’s transient
properties are summarized in Tables A1 and A2 of Appendix A. Then, periodic boundary
conditions can be applied to RVE2, and the woven composite’s overall mechanical proper-
ties, EEVEZ(Gf}VEz), are obtained via Equations (20)—(23) and (A5) of the Appendix A. In
Figure 7, the results of the paper are compared with that of Rique-MSG in [18], and both of
results are in good agreement.

Figure 7 shows the relaxation moduli of plain woven composites by viscoelastic
multiscale homogenization. S-RVE2 and H-RVE2 represent the relaxation moduli of the
mesoscale corresponding to S-RVE1 or H-RVE], respectively. Rique-MSG represents the
relaxation moduli of plain woven composites calculated by Rique et al. [18] using the
Mechanics of Structure genome MSG under periodic boundary conditions. In Rique’s
research, the arrangement of fibers in the yarn is a square array. Therefore, in Figure 7, the
results of S-RVE2 are closer to those of Rique-MSG, and the consequences of S-RVE2 and
H-RVE2 have noticeable differences only in the in-plane tensile moduli. In contrast, the
differences in other moduli are slight.
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Figure 6. The effective relaxation stiffness of the yarn with no coating and twist angle.
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Figure 7. Equivalent viscoelasticity of 2D woven composite.

5. Numerical Investigations

Based on the multiscale homogenization, this section investigates the effect of the
temperature and several other microstructural parameters, such as the twist angle of
fibers, interfacial parameters, and fiber arrangements, on the relaxation modulus of two-
dimensional woven composites.

5.1. The Effect of Temperature

The relaxation modulus curve of PMT-F4 is obtained by creep experiment [20]. The
material-dependent constants cj, cp are found by fitting data of the conversion factor
vs. temperature data to the WLF equation (Equation (11)) and then we can infer that
c1 = 28.3816, c; = 93.291 at the reference temperature Ty = 40 °C. This section assumes
that the elastic properties of fibers are independent of the temperature and the fiber volume
fraction v; and the twist angle 6 in each yarn are chosen to be 0.64 and 0°, taking no
account of the coating’s influence, in order to investigate the effect of the temperature
on the viscoelastic properties of 2D woven composites. In Abaqus 6.14, the relationship
between the viscoelasticity of the matrix and the temperature is defined in the form of the
WLF equation and the temperature field is applied to the matrix.

Figures 8 and 9 illustrate the relaxation response of yarns and 2D woven composites
to different temperatures. With the temperature increasing, the relaxation time of yarn and
woven composites gradually shortens, so the effect of temperature on the viscoelasticity of
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the yarn and the woven composite conforms to TTSP. Moreover, the RVE1’s (yarn) relax-

ation tensor (Nle}VEl and the RVE2's (woven composite) relaxation modulus

RVE2 RVE2
Eij (Gij )

decrease sharply in the time domain with the temperature increasing, and the higher the
temperature leads to the faster relaxation. The phenomenon is due to the molecular move-
ment stimulated by the temperature. When the temperature rises, the viscous frictional
resistance between molecules becomes smaller and the relaxation reaction of molecules is
easier. In addition, there is no significant distinction between H-RVE1 and S-RVEL in the
trend of stiffness vs. time curve and the relaxation time. Figure 8a—c,f show that tensors

~RVE1 ~RVE1 ~RVE1
1 C12 4 C22

,and 6§5VE1 in the H-RVE] are significantly lower than that of S-RVEL,

while the tensors 653‘/51 and @ﬁVEl of H-RVEL are significantly higher than that of S-RVE1
in Figure 8d,e. At the mesoscale, as illustrated in Figure 9, the impact of RVE1’s structure

on RVE2’s homogenized viscoelastic moduli Eg]{-VEZ(G};VD)
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Figure 9. Effect of temperature on the effective relaxation modulus of 2D woven composites.
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5.2. The Effect of the Fiber Twist Angle

After studying the effect of the temperature on the viscoelasticity of RVEs of different
scales, the influence of the twist angle is investigated considering 6 = 0°, 30°, and 60° at
the temperature fixed at 60 °C in this section. The effective stiffness matrix of the twist fiber
calculated by Equation (15) in Section 3.2 is shown in Table 3. In spite of the twist angle, the
transverse elastic moduli Ef, equals to E3 as well as the shear moduli Gy, equals to Gyy3,
so the twist fiber can be considered transverse isotropic. Table 3 shows that the twist angle
of the fiber is increasing, and the effective elastic properties of the fiber change dramatically
where these radial properties are effectively improved.

Table 3. Effective elastic properties of fiber calculated from Equation (15).

Parameter Twist Iosmgle Young’s Modulus (GPa) Shear Modulus (GPa) Poisson’s Ratio
o ( ) Efl Eﬂ = EfB Gle = GflS Gf’Z3 vﬂz = Uf13 UﬂS
0° 233 15 8.963 5.639 0.2 0.33
Value 30° 179.9583 17.67307 22.116 6.8 0.65 0.299
60° 53.07674 37.777 33.202 17.056 0.47 0.107

Figure 10 shows the variation of the relaxation stiffness of the yarn affected by a wide

. . . ~RVE1 .
range of the twist angle. The relaxation stiffness tensor C;;  decreases sharply with
the increase of the twist angle, but the other relaxation stiffness components increase. In

. . . ~RVE1 : .
Figure 10a, the effective normal stiffness tensor C;;  of the yarn with the twist angle

of 30° is only about 84% of the twist less yarn, while the ratio decrease to 30% when the

~RVE1
twist angle is 60°. In Figure 10b f, the twist angle promotes a large improvement on C,

and é?;/ M Surprisingly, the value of éfzv "1 on the twist angle 60° gradually decreases

with the time increasing and finally is lower than that on the twist angle 30°. The effect

. . . . ~RVE1 ~RVE1 ~RVE1 .
of the high twist angle is more prominenton C,, , Cp; ,and Cy , but this effect

will diminish after a period of time. Additionally, curve trends of the two microstructures
H-RVE1 and S-RVE1 are almost the same, but their values are different.

Figure 11 shows the effect of the fiber twist angle on the relaxation moduli of a two-
dimensional woven composite. It can be seen that with the increase of the fiber twist angle,
the in-plane relaxation moduli EXY2 and Eﬁyv E2 of the woven composite decrease sharply,
but the variation of the out-plane relaxation modulus EXVF? and the shear moduli nyv k2,
GRVE2 ‘and GRVE? induced by the fiber twist angle is not obvious. Therefore, the fiber
twist angle can be realized as a non-main parameter in the optimal design of 2D woven
composites. In addition, there is no significant difference in ERVE?, E%V E2 GRVE2 and

GRVE2 whenever fibers are distributed in square array or hexagonal array, but the value of

ERVE2 and foyv E2 of S-RVE2 are higher than that of H-RVE2.
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Figure 10. Effect of the twist angle on the effective relaxation stiffness tensors of the yarn.
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Figure 11. Effect of the twist angle on the effective relaxation moduli of 2D woven composite.

5.3. The Effect of the Coating Thickness

The physical coating between the fiber and matrix is accepted as a kind of component
existing in the yarn [21]. To demonstrate the effect of the coating thickness which is
represented by the ratio b/a, b is the coating diameter and a is fiber diameter, respectively,
shown in Figure 4, b/a = 1 indicates that there is no coating between the fiber and the
matrix, while b/a > 1 means the coating is surrounding the fiber. The field temperature
is fixed at 60 °C and the volume fraction v of the untwist fiber in each yarn is 0.64. The
mechanical properties of Pyrolytic carbon used for the coating are given in Table 4.

Table 4. Mechanical properties of the coating [30] (Reprinted /adapted with permission from Ref. [30].

2009, Elsevier).
Young'’s Modulus (GPa) Shear Modulus (GPa) Poisson’s Ratio
Parameter int int _ pint int int int int _ int int
Ey Ey" =E3 Gy12=Gy13 Gy23 U1y =013 Uz3
Pyrolytic 30 12 2 43 0.12 0.4
carbon

The coating thickness significantly improves the viscoelastic properties of the yarn
and affects the axial and radial relaxation components in varying degrees, just as shown in
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Figure 12. The normal stiffness tensor C ﬁv ot b /a =1.05is greatly improved compared
with that of b/a = 1,and the microstructure of the hexagonal array has greater impact on

Cvfl‘/ ™ than that of the square array. However, the effect of the coating on Cvf; is very
insignificant. At the initial momentt=1s, Eﬁv ! at the ratio b /a =1.05is lower than that
at b/a = 1; with the increase of the time, d{zv H gradually decreases and becomes higher
than the value of b/a = 1. The coating thickness also improves the radial relaxation stiffness
tensor 652‘/ M and 6§3V ™ to an extent as illustrated in Figure 12¢,d. In Figure 12e,f, the
coating has a greater effect on the axial shear tensor 6§5V *! than the radial shear tensor

éﬁ/ El, which depends on the property of the coating, whose axial mechanical stiffness is
much higher than the radial one.

In Figure 13, the coating thickness significantly improves the in-plane relaxation
moduli ERVE? and Eﬁv E2 of the 2D woven composite, but the out-plane relaxation modulus
ERVE2 and the shear moduli G,Ifyv E2) szv E2 are slightly promoted. In general, excellent
coating properties are necessary to improve the overall mechanical properties of the 2D
woven composite. In Figure 13a—c, S-RVE2’s curves are slightly higher than H-RVE2,
while both curves (GRVE? and Gﬁzv E2) of the two arrays have no apparent distinction in

Figure 13d.
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Figure 13. Effect of the coating thinkness on effective relaxation moduli of 2D woven composites.
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6. Conclusions

This paper investigates the viscoelastic properties of 2D woven composite employing
elastic-based homogenization theory to establish a multiscale model considering the coating
and the fiber twist angle. According to TTSP, the influence of temperature on the relaxation
time of the 2D woven composites is studied. The effects of the fiber twist angle and the
coating on the viscoelasticity are discussed in detail. The conclusions are summarized
as below:

(1) The results using the multiscale method show that the fiber array considerably affects

stiffness relaxation of the yarn. EﬁVEl, Gﬁwﬂ, and 6§2VE1 of the square array are

higher than H-RVE1, while the H-RVE1’s tensors 5§3VE1 and C. RVEL are higher than
that of S-RVE1. At the same temperature, the relaxation time and variation trend of
S5-RVE1 and H-RVE1 are almost identical.

(2) The multiscale solutions show that the yarn surface twist angle has significant affection
to the viscoelastic properties of the composites. The negative effect of high twist angle
on moduli ERVE? and ERVE? are more important, while the improvement on other
modulus is minor, and gradually disappears with the time. In addition, the lower
twist angle has a more significant effect on the axial stiffness of the yarn, while the
radial stiffness is more sensitive to the higher angle.

(3) The coating, the material property, and the thickness can effectively improve the
overall viscoelasticity of 2D woven composites, especially the in-plane relaxation
moduli. When the stiffness of the coating is higher than that of the matrix, the coating
will effectively improve the overall mechanical properties of the composite. Designing
the coating is significant in exploiting the potentiality of 2D woven composites.

(4) The multiscale method facilitates the calculation of the viscoelasticity of woven com-
posites. Combining with the discrete theory and FEM, this paper provides an appro-
priate approach for analyzing non-isotropic composites. In addition, the effect of more
microscopic parameters on the mesoscopic properties is considered and calculated.
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Appendix A

Each fiber is assumed to be transverse isotropic and their stiffness matrix is given as
follows [39]:
cgl ng c§2 0
Ch Cp G 0
Chp G Cp O
0 0 0 C
0o o 0 0 C
0o 0 0 ©

o O o o

[C] = (AD)

Sud
(93]
g@:OOOOO



Materials 2023, 16, 2689

21 0f 23

[Twurp] -

0 _ l-upu3p
Cll -

EEA
0 _ 0 _ ~0 _ U1ptu3U3
Ch=C3=GCG; = EE,A
0 _ 0 _ l-v1303
Cp=C = EE3A
0 _ 0 _ U3tUrU3
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A coordinate transformation matrix is defined as [40]:
l% l% l% 2015 21314 2l1,
2 2 2
my my ms 2mpms 2mszmy 2mqmy
M) — n% n% n% 2nym3 2nsznq 2n1ny (A3)
miny  Mpny M3Nngz  MpN3 + M3ny  MN3 +m3ng  Mming + mang
nlq nal,  nzls nols + nzly nils + n3ly nily + nyly
Ilimy  lhmy Izms loms + Izmy lyms + Izmy Iymy + lhymy
where I} = cosf, I = 0,3 = —sinf, my = sinfsing, my = cos @, m; = cosBcos @;
ny = sinfcos @, ny = —sin @, n3 = cos 6 cos .

The coordinate transformation matrix [Tuarp] of the warp yarn and [T ;] of the fill
yarn are defined as:

m2 0 n?
0 1 0

n? 0 m?
0 0 0

—mn 0 mn
0 0 O

where m = cosag, n = sinag,u = cos ag, v = sin g and &g is undulation angle.

S oI coco

2mn
0
—2mn

0

m? — n?

0

0
0
0

—n

0

[Trin] =

m

0 1 0 O 0 0
w2 0 v 0 2uv 0
v 0 ur 0 —2uv 0

—uv 0 wv 0 u?>—v* 0

0 0 0 u 0 -0

0 0 0 v 0 u

(A4)

The relaxation stiffness [CRVE2] of RVE2 to calculate relaxation moduli is as follows:
~ ~ ~ - Tl Oy U T
Coo Gy G 0 0 071 |Ex "B —E 0 00
G I
Coy Cy Cxz 0 0 0 Ee Ey {5
Cxz Cxz Ci ~O 0 0 _ | TZ - f;y E.. 0 0 0 (A5)
0 0 0 Cz 0 O 0 0 0 & 0 o0
0 0 0 0 Cw O 0 0 0 0 L o
o o o o o0 C S
xy 0 0 0 0 0 g
Table A1. The effective viscoelasticity of S-RVE1 at microscale.
s 0 1 2 3 4 5 6 7
As (s) - 102 103 104 10° 100 107 108
CRVE! (MPa) 150,185 152,861 152,790.3 152,719.9  152,5585  152,310.8  152,0685  151,699.5
CRVE! (MPa) 1477 4049.66 4000.2 3951.22 3835.21 3648.91 3457.23 3149.23
CRVEL (MPa) 4839.2 12,127.8 11,991. 11,849.81 11,525.29 10,999.1 10,451.4 9559.33
CRVE! (MPa) 1392.6 4582 4519.5 4454.74 4305.73 4063.47 3811.25 3401.7
CRVE! (MPa) 1046 4634.2 4571.99 4507.85 4360.73 4123.69 3879.07 3485
CRVEL (MPa) 1581 3335.45 3285.56 3234.27 3116.83 2928.93 2736.78 2430.8
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Table A2. The effective viscoelasticity of H-RVE1 at microscale.

S ) 1 2 3 4 5 6 7
As (s) - 10? 103 10* 10° 10° 107 108
CRVE! (MPa) 152,780.2 152,708.9 152,636.8 152,473.6 1522225  151,975.7 151,598
CRVE! (MPa) 4035.73 3984.31 3931.25 3809.39 3612.2 3407.64 3076.14
CRVE! (MPa) 11,860.1 11,713.22 11,561.45 11,212.65  10,646.66  10,057.74 9100.42
CRVE! (MPa) 4772.60 4714.71 4654.69 4516.45 4290.5 4053.69 3666.18
CRVE! (MPa) 4531.39 4466.61 4399.91 4247.02 4001.31 3748.72 3343.95
555‘/ E1 (MPa) 3615.55 3573.31 3529.74 3429.71 3267.89 3099.82 2826.58
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