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Abstract: The present study is focused on assessing the interrelation of variables involved in the
synthesis of natural-inspired copolymers by electron beam grafting while taking the functionality
of the resulting materials into account. In this respect, copolymers of starch-graft-polyacrylamide
(St-g-PAM) were synthesized by irradiation, and their flocculation efficiency regarding the total
suspended solids (TSS), chemical oxygen demand (COD), and fatty matters (FM) was tested in
coagulation–flocculation experiments at laboratory scale on wastewater from the oil industry. Data
mining involved approaches related to the association (correlation and dimensionality reduction with
principal component analysis (PCA)), clustering by agglomerative hierarchical clustering (AHC),
classifying by classification and regression tree (CART), and prediction (decision tree prediction,
multiple linear regression (MLR), and principal component regression (PCR)) of treatments applied
with the variation of the monomer concentration, irradiation dose, and dose rate. The relationship
mining proved that the level of COD was significantly affected by the irradiation dose and monomer
concentration, and FM was mainly affected by the dose rate (significance level = 0.05). TSS showed
the highest negative correlation with the tested variables. Moreover, the consequences of MLR
demonstrated an acceptable accuracy (mean absolute percentage error < 5%) for COD and FM;
meanwhile, linear modeling together with the consequences of PCA in the structure of PCR could
help to simplify and improve the prediction accuracy of equations.

Keywords: biopolymer; copolymerization; flocculant; functionality; feature selection; correlation;
principal components; prediction; statistical techniques

1. Introduction

Natural materials are abundant, renewable, and biodegradable, making them attrac-
tive options for a variety of applications in different areas of modern life. An important
sector of life today is ensuring the ecological balance of water for human consumption.
Wastewater is usually generated from residual water that is discharged from industries,
households, or different places and generally includes components that can be unsafe
to human health, affecting the activities of different living things and finally resulting in
environmental damage or at least the potential to cause serious pollution problems and
the deterioration of the ecological balance [1]. As this issue is turning into a top concern,
advantageous treatment needs to be carefully explored to understand the most environ-
mentally friendly approaches to wastewater treatment. Thus, wastewater treatment aims
to exclude hazardous components from it and reduce/eliminate toxic compounds [2].

Coagulation and flocculation are processes commonly used in the treatment of wastew-
ater. The coagulation–flocculation procedure is simple to operate and design, cost-effective,
and reliable with low energy consumption [3]. Coagulation can produce the removal of
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components larger than colloidal particles due to the entrapment of such particles in the
flocs formed by coagulation [4], while flocculation refers to the procedure used to trans-
port coagulated particles collectively so that they can mix to create larger, filterable, and
settleable masses of particles called floc. Therefore, coagulants and flocculating agents are
used in effluent wastewater treatment methods for solids removal, water clarification, lime
softening, sludge thickening, mineral processing, solids dewatering, and sample processing
for monitoring applications [5].

Polymeric materials with flocculating properties can aggregate particles into larger
clusters (flocs). Thus, polymers can be used as a “coagulant aid” to enhance the overall
performance of coagulants with the aid of building and constructing the bridges between
particles resulting from coagulants’ activities, creating large, massive, and heavy clots
and accelerating the sedimentation process [6]. Based on this, they are widely used in the
processes of potable water and wastewater treatment [7–9], having the major advantage
of decreasing coagulant consumption [10]. Natural polymers such as cellulose, starch, or
chitosan can be used as the base materials of biopolymer-based flocculants in wastewater
treatment due to their characteristics, concentration, molecular weight, nature, and chemical
composition in water treatment efficiency [8,11,12]. Starch-based materials are often chosen
for wastewater treatment as a coagulant or flocculant due to their renewable and less
expensive raw materials, as well their availability and biodegradability in comparison with
synthetic materials [13–15].

The synthesis of starch-based materials involves the modification of starch through differ-
ent chemical, physical, and enzymatic methods, or dual combinations of these methods [16].
One of the most used methods for the synthesis of such materials as flocculating agents is the
graft copolymerization of starch with vinyl monomers, which results in the production of
copolymers with flocculating features. The radiation-induced synthesis of polymeric-based
materials in general, and starch graft copolymers in particular, offers several advantages
over other synthesis methods, including high efficiency and specificity, improved molecular
control, and reduced environmental impact [17–19]. However, the specific parameters, such
as the monomer concentration, irradiation dose, and irradiation dose rate, used in this kind
of synthesis can affect the functional properties of the resulting copolymers and should be
carefully controlled and optimized to ensure optimal performance.

It is well known that, nowadays, analysis, inter-correlation, modeling, and optimiza-
tion methods are widely used in various fields such as materials science and engineering,
manufacturing and production, chemical and biomedical engineering, and environmental
science to improve the efficiency, quality, and performance of products and processes while
reducing costs as well. In materials science, these methods help to identify and understand
the relationships between input variables (i.e., processing parameters, raw material parame-
ters) and the target variables (resulting material properties), which can be used to optimize
the processing conditions for specific applications. Several types of statistical methods
such as linear or nonlinear regressions, principal component analysis (PCA), partial least
squares regression (PLS), response surface methodology (RSM), artificial neural networks
(ANN), and support vector machines (SVM) have been reported in recent years to be used
for the analysis, correlation, modeling, optimization, and data mining of experimental
observations in various fields [20–24].

In our previous reports on the synthesis and optimization of the production process of
starch-based copolymers [25–28], the optimization of this process was carried out concern-
ing some of the physicochemical characteristics of the synthesized copolymers, such as the
residual monomer concentration, monomer conversion coefficient, and intrinsic and appar-
ent viscosities. In these cases, the implementation of different multicriteria optimization
strategies was generally pursued mainly by unifying requirements for economic efficiency
and ensuring low toxicity and high copolymer efficiency in the flocculation process. The
optimization methodologies successfully involved regressions and neural network-based
models, an overall robust desirability function, scanning and genetic algorithms, and
graphical optimization.
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However, the current work proposes another way to investigate the interrelation
with data mining in the synthesis of starch-based copolymers by electron beam grafting—
more precisely, from the perspective of the functionality of the resulting materials. This
approach of the process of refining the performance of the radiation-synthesized starch-
based copolymers to enhance their flocculating abilities by correlating input variables
(i.e., mixture composition, processing parameters) with functional outputs (flocculation
efficiencies) and further optimizing processing conditions has not been reported to date,
according to our knowledge. This is also supported by Jiang and collaborators [11], who, in
a recent review, stated that future studies related to biopolymer-based flocculants should be
mainly focused on the optimization of modification processes to improve the flocculation
performance of such materials and their multi-functionality.

Therefore, the main objective of the current study was to evaluate the relationships
among the input processing parameters, namely, the monomer concentration, irradiation
dose, and dose rate, for starch-graft acrylamide copolymer radiation synthesis by using
data mining techniques to obtain desired flocculation abilities concerning the total sus-
pended solids, chemical oxygen demand, and fatty matters of real wastewater. To achieve
this goal, the following were pursued: (1) a dimensionality reduction using the Principal
Component Analysis technique; (2) developing a classification model of observations based
on the degree of correlation to principal components with the Agglomerative Hierarchical
Clustering method; (3) creating a regression decision tree to evaluate the reduction in
features, which could help in providing the best-related variables in optimizations, future
research, and modeling to enhance accuracy; (4) finally, performing Multiple Linear Re-
gression on the original data (original features) and then performing Principal Component
Regression on the principal component outputs (reduced features) to compare the predic-
tion power of reduced dimension data. This novel path of using data mining methods to
refine the performance of radiation-synthesized materials by correlating input variables
with functional outputs and optimizing processing conditions can minimize the number of
experiments and save time. Additionally, data mining, which is also known as Knowledge
Discovery of Data (KDD), can assist in predicting the potential effects in the application of
new treatments, determining the strategies of the irradiation process, and improving or
developing the decision-making systems.

2. Materials and Methods
2.1. Materials

Starch from potato (S4251; powder) was purchased from Sigma-Aldrich (St. Louis,
MO, USA), and acrylamide (A17157; 98+%; white; crystalline) was purchased from Alfa
Aesar (Karlsruhe, Germany). Other chemicals were of analytical grade and purchased from
SC Chimreactiv SRL (Bucuresti, Romania). The materials used to prepare the copolymers
and their characteristics are presented in Table 1.

2.2. Radiation-Induced Synthesis of Copolymers

The synthesis of copolymers was carried out according to the methodology described
by Nemţanu et al. [19], with some slight modifications. Thus, starch samples (1.7% w/v)
were prepared by gelatinizing powder starch in distilled water in a water bath at 85 ◦C
with continuous magnetic stirring for 30 min. After cooling the starch samples to room
temperature (23 ± 1 ◦C), acrylamide and sodium chloride were added with further stirring,
obtaining homogeneous mixtures of potato starch:acrylamide (PS:AMD) with weight ratios
of 1:6 and 1:12, respectively. The resulting mixtures were divided into two different batches
depending on the PS:AMD ratio and marked accordingly: batch 1 for PS:AMD = 1:6 and
batch 2 for PS:AMD = 1:12, respectively. Each batch contained nine samples, which were
further subjected to electron beam irradiation with different input parameters in a static
mode. Sample irradiation was performed with a linear accelerator of a mean energy of
6 MeV (ALIN-10, NILPRP, Bucharest-Măgurele, Romania) using different irradiation doses
(D = 0.6–2.7 kGy) and dose rates (

.
D = 0.7–1.9 kGy/min) at room temperature (23 ± 1 ◦C)
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and ambient pressure under air. The recipe and process variables were selected based on
our previous investigations related to the grafting of starch in the radiation field for the
synthesis of water-soluble copolymers [19,20,29].

Table 1. Substances used for radiation-induced graft copolymer synthesis.

Raw Material Chemical Formula Chemical Properties

Potato Starch (PS) (C6H10O5)n

pH-test: 7.3 (2% suspension)
Loss on drying: 18%
Residue on ignition: 0.3%

Acrylamide (AMD)
CH2=CHCONH2

or
C3H5NO

Molecular weight: 71.08 g/mol
Density: 1.322 g/cm3

Boiling point: 125 ◦C/25 mm
Melting point: 82–85 ◦C
Flash point: 138 ◦C

Sodium chloride NaCl

Molecular weight: 58.44 g/mol
Density: 2.165 g/cm3

Boiling point: 1413 ◦C
Melting point: 801 ◦C

For each batch, the marking of the PS-g-6AMD- and PS-g-12AMD-type samples was
carried out following the increasing order of the irradiation dose: PS-g-6AMD_1 . . . PS-g-
6AMD_9 and PS-g-12AMD_1 . . . PS-g-12AMD_9.

2.3. Flocculation Investigation

The copolymer functional parameters were evaluated according to standardized
methods [30–32] in coagulation–flocculation experiments on wastewater collected from
an oil processing plant. The coagulation–flocculation experiments were performed at
the laboratory level, using classic inorganic coagulants (200 mg/L CaCO3 and 200 mg/L
Al2(SO4)3) and a dosage of 2 mg/L of a 0.2% aqueous solution copolymer (flocculant).
The quality parameters investigated in this study were pH, total suspended solids (TSS),
chemical oxygen demand (COD), and fatty matters (FM). The flocculation efficiency (FE%)
for each parameter was determined with Equation (1):

FE% =
C0 − C

C0
× 100 (1)

where C0 and C are the concentrations (in mg/L) of the investigated parameter before and
after the tested water treatment.

2.4. Data Mining

The statistical analysis dedicated to the correlation of the variables, the dimensionality
reduction, the classification of the treatments applied with the variation of the PS:AMD
ratio, the irradiation dose, and the dose rate, as well as the linear modeling, was carried out
based on the methods described further in this section. Table 2 briefly shows the coding of
the treatments for the resulting copolymers involved in coagulation–flocculation tests.

2.4.1. Correlation Matrix

The linear correlation between independent (PS:AMD ratio, D, and
.

D) and dependent
(TSS, COD, and FM) variables was studied using both Pearson’s correlation coefficient and
Spearman’s rank correlation coefficient with the software of IBM SPSS Statistics V22.0.

Pearson’s correlation coefficient r was calculated using Equation (2):

r =
n(∑ xy)− (∑ x)(∑ y)√[

n ∑ x2 − (∑ x)2
][

n ∑ y2 − (∑ y)2
] (2)
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where x and y are the values of the x-variable and the y-variable, respectively, and n is the
number of the pairs of values [33].

Spearman’s rank correlation coefficient rs was calculated using Equation (3):

rs = rR(x),R(y) = 1− 6 ∑ di
2

n(n2 − 1)
(3)

where rR(x),R(y) denotes the usual Pearson’s correlation coefficient, but applied to the rank
R variables, di = R(xi) − R(yi) is the difference between the two ranks R of each observation,
and n is the number of observations [34].

Table 2. Treatment marking details.

Treatment Code Batch 1 Treatment Code Batch 2

T1 PS-g-6AMD_1 T10 PS-g-12AMD_1
T2 PS-g-6AMD_2 T11 PS-g-12AMD_2
T3 PS-g-6AMD_3 T12 PS-g-12AMD_3
T4 PS-g-6AMD_4 T13 PS-g-12AMD_4
T5 PS-g-6AMD_5 T14 PS-g-12AMD_5
T6 PS-g-6AMD_6 T15 PS-g-12AMD_6
T7 PS-g-6AMD_7 T16 PS-g-12AMD_7
T8 PS-g-6AMD_8 T17 PS-g-12AMD_8
T9 PS-g-6AMD_9 T18 PS-g-12AMD_9

2.4.2. Bartlett’s Sphericity Test

Bartlett’s test of sphericity examined the hypothesis that the correlation matrix is an
identity matrix, which would point out that variables are unrelated and therefore unsuitable
for structure detection [35,36]. Equation (4) was indicated for the Chi-square (χ2) value,
where n is the number of observations, p is the number of variables, and R is the correlation
matrix. The χ2 test was then performed on “(p2 − p)/2” and “the total number of variable
pairs minus one or ([p + (p − 1) + (p − 2)+ . . . +(p − p)] − 1)” degrees of freedom (DF)
based on Pearson’s correlation coefficient r and Spearman’s rank correlation coefficient rs,
respectively. It was considered that the determinant of the correlation matrix will be equal
to 1.0 only if all correlations are equal to 0; otherwise, the determinant will be less than 1.
Furthermore, the test interpretation was: H0: There is no correlation significantly different
from 0 between variables; Ha: At least one of the correlations between the variables is
significantly different from 0. Thus, if the computed p-value is lower than the significance
level alpha = 0.05, then the null hypothesis H0 should be rejected and the alternative
hypothesis Ha accepted [37]. The IBM SPSS Statistics V22.0 software was also used to
perform Bartlett’s test.

χ2 = −
(

n− 1
6
(2p + 5)

)
loge|R| (4)

2.4.3. Principal Component Analysis (PCA)

In order to reduce the dimensions of the study, principal component analysis was
performed among the studied components by XLSTAT statistical software V21.5. To obtain
the principal components, first, the data have been standardized using Equation (5) such
that any point xi from a normal distribution can be converted to the standard normal
distribution Z:

zi =
xi − xm

si
(5)

where Zi is the standardized variable, and xm and si are the mean and standard deviation
of each variable, respectively [38].

Principal component analysis generally transforms the original dataset of n variables,
which are correlated among themselves to various degrees, into a new dataset containing n
number of uncorrelated principal components (PCs). The PCs are linear functions or linear
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features (F) of the original variables in such a way that the sums of the variances are equal
for both the original and new variables. The PCs are sequenced from highest to lowest
variance. The first PC explains the largest amount of variance in the data. The subsequent
highest variance is explained by the second PC, and so on for all n PCs. The values of all
PCs can be obtained by the same equation as Equations (6) and (7) for PC1 (F1) and PC2
(F2), respectively, where x1, x2, . . . xn are the original variables in the dataset and ajj are the
eigenvectors. Although the numbers of PCs and the original variables are equal, normally,
most of the variance in the dataset can be defined by the first few PCs that can be used to
represent the original observations. Finally, PCA helps in decreasing the dimensionality of
the original dataset [39,40].

PC1 = F1 = a11x1 + a12x2 + ... + a1nxn = ∑n
j=1 a1jxj (6)

PC2 = F2 = a21x1 + a22x2 + ... + a2nxn = ∑n
j=1 a2jxj (7)

The eigenvalues are the variances of the PCs, and the coefficients ajj are the eigenvec-
tors extracted from the covariance or correlation matrix of the dataset. The eigenvalues of
the data matrix can be calculated using Equation (8), where C is the correlation/covariance
matrix, λ is the eigenvalue associated with the eigenvector, and I is the identity ma-
trix [41,42].

|C− λI| = 0 (8)

The PC coefficients, or the weights of the variables in the PC, are then calculated by
using Equation (9).

|C− λI|ajj = 0 (9)

In our study, a correlation matrix of the variables was used to gain eigenvalues and
eigenvectors. The eigenvectors multiplied through the square root of the eigenvalues
produce an n × n matrix of coefficients, which are referred to as variable loadings. The
importance of each original variable to a specific PC is represented by means of these
loadings. Furthermore, the sum of the products of the variable loadings and the values of
the original variables produces a new set of data values, which are known as component
scores or factor scores. These scores can be used in multiple linear equations as new
variables to predict outputs as future variables [42].

2.4.4. Agglomerative Hierarchical Clustering (AHC)

The classification of the tested treatments by varying the PS:AMD ratio (1:6 and 1:12,
respectively), irradiation dose (D = 0.6–2.7 kGy), and dose rate (

.
D = 0.7–1.9 kGy/min) was

performed using agglomerative hierarchical clustering in a bottom-up approach using the
software of MATLAB 2022a (R2022a), based totally on the squared cosine values from the
PCA. Thus, the treatments were divided into several clusters such that the data points
from the same cluster were more similar (more comparable) and the data points from
different clusters were dissimilar. In general, the basis of many measures of similarity and
dissimilarity is Euclidean distance. The distance between the vectors X and Y is described as
the square root of the sum of the squared differences between the corresponding elements
of the two vectors. Ward’s method was applied as a general AHC procedure, where the
criterion for choosing the pair of clusters to be merged at each step is based on the optimum
value of an objective function [43].

2.4.5. Decision Tree Prediction

The regression tree algorithm as the classification and regression tree (CART) was
used to find one learning model that results in good predictions for the new data of TSS,
COD, and FM and to discover the best probability conditions in simultaneous data mining
that ensure the fitting of the dependent investigated within limits allowed by the regulation
(TSS ≥ 70%, COD ≥ 85%, and FM ≥ 85%). The decision tree was made with the CHAID
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method using the software of XLSTAT statistical V21.5 under the following conditions [44]:
significance level of 5%, Split threshold of 5%, and authorized redivision: Bonferroni
correction/Merge threshold of 5%. Finally, optimization rules were obtained for inputs
(PS:AMD ratio, D, and

.
D) and outputs (TSS, COD, and FM).

2.4.6. Multiple Linear Regression (MLR)

Multiple linear regression analysis attempted to model the relationship between two
or more independent variables and a dependent variable with XLSTAT statistical software
V21.5 by fitting a linear equation to the observed data. The conventional equation of an
MLR model can be expressed as Equation (10) [42,45]:

Y = a0 + a1x1 + a2x2 + . . . + anxn (10)

where Y is the dependent variable (TSS, COD, or FM), ai (i = 0, . . . n) are the parameters
generally estimated by the least squares method, and xi (i = 0, . . . n) are the independent
variables (PS:AMD ratio, D, and

.
D).

2.4.7. Principal Component Regression (PCR)

In principal component regression, MLR and PCA are usually combined to set up a
relation between the dependent variable Y and the selected PCs (Fs) of the input variables.
Thus, the principal component scores (factor scores) obtained from the PCA were taken
as the independent variable in the multiple linear regression equation to operate the PCR
analysis with XLSTAT statistical software V21.5. The general function of a PCR model is
according to Equation (11) [42,45].

Y = a0 + a1F1 + a2F2 + . . . + anFn (11)

2.4.8. Models’ Evaluation

The performances of the developed MLR and PCR models were measured and com-
pared using the mean absolute percentage error (MAPE) according to Equation (12):

MAPE =
1
n ∑n

i=1

∣∣∣∣P−O
O

∣∣∣∣× 100 (12)

where O indicates the observed data, P shows the predicted value of the model, and n is
the number of observations [46].

3. Results
3.1. Flocculation Performances

The synthesized copolymers had generally good performances in the coagulation–
flocculation process. The pH value of raw water decreased from 8.6 to 7.7 by adding
inorganic coagulants. No significant alteration of the pH value was recorded after flocculant
addition, the tested water having a pH value of 7.7 ± 0.2. Therefore, the water treated
by the coagulation–flocculation process fell within the limits allowed by the regulation,
and the dosage of copolymers used in this study did not affect the pH resulting from the
coagulation process of the residual water.

The copolymer presence increased the TSS yield by up to approximately 18% in
addition to the efficiency of the inorganic coagulants. In general, copolymer efficiencies
of more than 10%, which practically brought the TSS within the limits allowed by the
regulation, were observed for both batches at irradiation doses of 0.6–1.4 kGy for PS-
g-6AMD samples and 0.6–0.8 kGy for PS-g-12AMD samples, with dose rate ranges of
0.7–1.2 kGy/min and 0.9–1.2 kGy/min, respectively. These findings show that the increase
in the AMD concentration contributed to the reduction in the irradiation dose range with
the narrowing of the dose rate range.
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The COD yield was only slightly increased up to about 5% by adding copolymers to
inorganic coagulants in the water treatment. However, the classic treatment with coagulants
selected for this study generally managed, by itself, to ensure the maximum level allowed
by the regulation. Therefore, the application of the synthesized copolymers made an
additional contribution to the decrease in the COD level in the treated water. Efficiencies of
4–5% after the application of the coagulation process were obtained for the PS-g-6AMD
sample exposed to 0.9 kGy with 2.1 kGy/min and for the PS-g-12AMD samples irradiated
with doses of 0.9–1.2 kGy at a dose rate of 0.7–1.0 kGy/min. This result indicates that the
range of irradiation doses was extended along with the dramatic reduction in the dose rate
by increasing the starch-to-monomer ratio.

The FM yield was also increased by using the synthesized copolymers in water treat-
ment after the coagulation process. An efficiency of over 15% of the added flocculant
ensured that the water fell within the maximum level allowed according to the regu-
lation. Thus, efficiencies > 15% were observed for PS-g-6AMD samples irradiated at
0.9–2.7 kGy with 1.4–1.9 kGy/min and for PS-g-12AMD samples irradiated at 1.2–1.4 kGy
with 0.7–0.9 kGy/min, respectively. Based on these results, it was understood that, for a
good copolymer efficiency for FM, the range of irradiation doses required for copolymer
synthesis, regardless of the AMD concentration, was higher than that for the other quality
parameters. At the same time, the dose rate decreased significantly with an increase in the
starch-to-monomer ratio.

This investigation showed that the copolymers synthesized in this work had floccu-
lation capabilities and were effective in reducing the quality parameters (TSS, COD, and
FM) of the wastewater collected from an oil factory. Copolymers with a lower acrylamide
content (PS-g-6AMD) showed better results for TSS and FM parameters compared to those
with a high acrylamide content (PS-g-12AMD), which instead showed better results for
COD. However, it should be noted that the copolymers of batch 2 (with a high AMD content)
with a satisfactory efficiency in reducing all quality parameters required lower irradiation
parameters compared to efficient copolymers from batch 1, namely, irradiation doses of
0.6–1.4 kGy with dose rates of 0.7–1.2 kGy. The obtained result is consistent with previous
studies [47], which reported that samples with a higher AMD content require lower irradia-
tion doses, thus leading to the formation of longer grafted polyacrylamide chains that can
ensure better efficiency in reducing wastewater quality parameters as a result of a higher
molecular weight and intrinsic viscosity.

3.2. Correlation Investigation

The correlation matrices for the tested variables, based primarily on Pearson’s r and
Spearman’s rank rs correlation coefficients, are given in Tables 3 and 4, respectively. Gener-
ally, only very weak to moderate correlations were found between the tested treatments
(processing parameters) and the output variables (functional properties). However, the
highest significant correlations based totally on the Pearson’s coefficient r were found
between (PS:AMD ratio and COD) and (D and COD), with values of 0.541 and 0.515, re-
spectively (Table 3). These results indicate that COD is positively correlated with both the
monomer concentration and irradiation dose, but without a significant influence of the
dose rate. Conversely, a correlation between the PS:AMD ratio and COD was not observed
according to the Spearman’s rank correlation coefficient (Table 4), while it was found that
rs > r for the correlation of COD with D.

On the other hand, the lowest correlation (negative correlation) was found based
on both Pearson’s and Spearman’s rank correlation coefficients for (COD and TSS). This
observation shows that these two functionalities vary inversely proportionally depending
on the number and nature of the inorganic solids present, the nature of organic solids, and
the quantity of dissolved organic matter. Therefore, a constant low variance correlation
between COD and TSS could not be observed. Moreover, COD and TSS are totally different
parameters, and thus, no positive correlation between them is expected [48].
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Table 3. Correlation matrix (Pearson = r) of the studied variables.

Variable PS:AMD D
.

D TSS COD FM

PS:AMD 1 0.000 0.000 −0.435 0.541 −0.130
D 0.000 1 0.416 −0.312 0.515 0.249
.

D 0.000 0.416 1 −0.208 0.385 0.300
TSS −0.435 −0.312 −0.208 1 −0.608 −0.275
COD 0.541 0.515 0.385 −0.608 1 0.439
FM −0.130 0.249 0.300 −0.275 0.439 1

Values in bold are different from 0 with a significance level alpha = 0.05.

Table 4. Correlation matrix (Spearman = rs) of the investigated variables.

Variable PS:AMD D
.

D TSS COD FM

PS:AMD 1 0.000 0.000 −0.471 0.461 −0.225
D 0.000 1 0.395 −0.308 0.581 0.156
.

D 0.000 0.395 1 −0.184 0.296 0.313
TSS −0.471 −0.308 −0.184 1 −0.617 −0.228
COD 0.461 0.581 0.296 −0.617 1 0.360
FM −0.225 0.156 0.313 −0.228 0.360 1

Values in bold are different from 0 with a significance level alpha = 0.05.

To select the appropriate correlation coefficient for the subsequent operation of the PCA
test, we ought to pay attention to the consequences of Bartlett’s sphericity test, which are
displayed in Table 5 for our study. The p-value indicates that the risk of rejecting hypothesis
H0 while it is true (type I error) [49] by using Spearman’s rank correlation coefficient is
less than 0.82%, which will provide a more dependable and reliable result compared to
the Pearson correlation coefficient (type I error < 1.17%). Therefore, Spearman’s rank
correlation coefficient was used in our study for PCA.

Table 5. Bartlett’s sphericity test results based on Pearson r and Spearman rs correlation coefficients.

r rs

χ2 = Chi-square (Observed value) 30.064 38.273
χ2 = Chi-square (Critical value) 24.996 31.410
DF 15 20
p-value 0.012 0.008
Alpha 0.05 0.05
Risk to reject H0 while it is true (type I error) <1.17% <0.82%

3.3. Dimensionality Reduction Study

A scree plot in accordance with Figure 1 indicates the eigenvalues on the y-axis and the
number of factors on the x-axis. Eigenvalues represent and characterize the magnitude or
importance of the eigenvectors. The point where the slope of the curve certainly levels off
(the “elbow”) suggests the number of factors to be generated with the analysis. Thus, in our
analysis, the cumulative variability (red curve in Figure 1) was equal to 79.931% (~80%) and
90.866% (~91%) after the third (F3) and fourth (F4) principal components (PCs), respectively.
Therefore, the number of three or, strictly speaking, four factors seems appropriate for
reducing the dimensions, considering that the optimal minimum cumulative variability to
decide on the number of factors is equal to 80% [50].
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Figure 1. Scree plot for explained eigenvalues and cumulative variability (%) from PCA analysis.

In the next step, the matrix of eigenvectors (ajj) was generated (Table 6). The eigenvalue
indicates the quantity of variability in the direction of its corresponding eigenvector. There-
fore, the eigenvector with the largest eigenvalue is the direction with the most variability,
and this eigenvector is the first principal component (F1).

Table 6. Eigenvectors matrix between the study variables and principal components.

Variable F1 F2 F3 F4 F5 F6

PS:AMD 0.278 −0.670 0.010 0.334 0.383 −0.465
D 0.426 0.230 −0.582 −0.482 −0.006 −0.441
.

D 0.334 0.401 −0.323 0.778 −0.084 0.106
TSS −0.481 0.270 −0.278 0.038 0.785 −0.009
COD 0.568 −0.096 0.050 −0.219 0.417 0.666
FM 0.276 0.506 0.691 −0.017 0.236 −0.367

Furthermore, the matrix of factor loadings was provided according to Table 7. The
weights are the correlation between the standardized scores of the variables and the prin-
cipal components, also recognized as factor loadings. The factor loading is the level of
correlation existing between each variable and the corresponding factor [51]. A factor load-
ing of greater than 0.30 commonly suggests a moderate correlation between the variable
and the factor, while a higher factor loading represents that the factor extracts sufficient
variance from that variable [52]. Thus, it was observed that the factor loading values for all
variables, except TSS, indicate an increase in their contribution, especially for D and COD,
to the increase in F1. It should also be mentioned that although the factor loading values
for some variables, such as

.
D and FM, showed contributions to the factor increase in three

of the four factors that cover ~90% of the variability, the greater contribution was observed
within a single factor (principal component), namely, F4 and F3, respectively.

Table 7. Factor loadings based on PCA results.

Variable F1 F2 F3 F4 F5 F6

PS:AMD 0.443 −0.800 0.009 0.271 0.241 −0.181
D 0.678 0.274 −0.532 −0.391 −0.004 −0.172
.

D 0.531 0.479 −0.295 0.630 −0.053 0.041
TSS −0.765 0.323 −0.254 0.030 0.494 −0.004
COD 0.904 −0.115 0.045 −0.177 0.262 0.260
FM 0.439 0.604 0.632 −0.014 0.149 −0.143
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Additionally, a negative loading simply means that a certain attribute (variable) is a
lack of correlation as a variable associated with the given principal component [53]. For
example, such variables with higher factor loading values were TSS in the case of F1 and
PS:AMD for F2.

The correlation circle between the features of the original dataset and the first two prin-
cipal components (F1 and F2 ~66% of the cumulative variability) is displayed in Figure 2. It
can be easily observed that FM and COD are the variables that are positively correlated with
D and

.
D, all being grouped. Instead, TSS correlates negatively with all processing variables,

being located on the opposite facet of the plot origin (opposed quadrant). Moreover, it
can be observed that COD shows a higher positive correlation with D and PS:AMD, as
indicated by the small angle formed with these variables. These consequences are also
consistent with the results in Table 4.

The percentage contribution of each studied variable to each principal component is
given in Table 8. This is basically a scaled version of the squared correlation between vari-
ables and component axes (or cosine, from a geometrical point of view), which is generally
used to investigate the quality of the illustration of the variables of the principal component.

The squared cosines of the study variables for the quality of representation on the
factor map are shown in Table 9. As can be observed, for each variable, the largest of the
squared cosines up to the fourth factor was obtained as follows: F1: D, TSS, and COD;
F2: PS:AMD ratio; F3: FM, and F4:

.
D, which represents the correlation of these variables

with the respective principal component (or axis).
The PCA biplot for the treatments tested in our study is shown in Figure 3. The plot

shows the treatments (T1 . . . T18) as points primarily based on factor scores and the original
variables (PS:AMD ratio, D,

.
D, and TSS, COD, FM) as vectors in the plane formed through

the first two principal components (F1 and F2). It was thus noticed that the treatments with
higher TSS, COD, or FM efficiencies are displayed under the influence of their respective
vectors. Moreover, the treatments that led to higher TSS efficiencies are located on the left
face of the coordinates (T1 . . . T6, T10, T12), while the treatments that led to high COD
efficiencies are marked on the right side of the coordinates (T7 . . . T9, T11, T13 . . . T18).
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Table 8. Contribution of the studied variables (%) to each principal component.

Variable F1 F2 F3 F4 F5 F6

PS:AMD 7.740 44.840 0.010 11.165 14.664 21.581
D 18.140 5.276 33.832 23.280 0.004 19.467
.

D 11.132 16.051 10.407 60.584 0.702 1.123
TSS 23.127 7.306 7.738 0.141 61.679 0.009
COD 32.257 0.929 0.246 4.801 17.381 44.386
FM 7.604 25.598 47.766 0.028 5.569 13.434

Table 9. Squared cosines of the studied variables for the quality of representation on the factors map.

Variable F1 F2 F3 F4 F5 F6

PS:AMD 0.196 0.640 0.000 0.073 0.058 0.033
D 0.459 0.075 0.283 0.153 0.000 0.030
.

D 0.282 0.229 0.087 0.398 0.003 0.002
TSS 0.586 0.104 0.065 0.001 0.244 0.000

COD 0.817 0.013 0.002 0.032 0.069 0.067
FM 0.193 0.365 0.400 0.000 0.022 0.020

Values in bold correspond for each variable to the factor for which the squared cosine is the largest.
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Figure 3. Factor scores in PCA Biplot (treatments T1 . . . T18).

Table 10 shows the factor scores for all tested treatments, pointing out their placement
in the coordinate system made of the desired principal component. For example, in the
case of F1 and F2, the factor score values in Table 10 are consistent with the PCA Biplot
(Figure 3).

Table 11 shows the squared cosines of the observations (T1 . . . T18) for output variables
versus principal components. The excessive squared cosine suggests a proper representa-
tion of the variable on the principal component as follows: F1: T1, T2, T4 . . . T6, T12, T17,
T18; F2: T7 . . . T10, T13, T14; F3: T11; F4: T16; F5: T3, T15. These results were further used
for the treatment classification by AHC clustering.
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Table 10. Factor scores of the observations (T1 . . . T18) for TSS, COD, and FM versus PCs (F1 . . . F6).

Observations F1 F2 F3 F4 F5 F6

T1 −1.832 0.875 1.128 0.051 0.029 −0.120
T2 −1.872 0.914 −0.188 0.511 0.438 0.440
T3 −0.892 0.017 0.659 0.011 −1.890 0.059
T4 −1.751 0.806 0.584 −0.803 0.300 −0.375
T5 −1.576 0.067 −0.228 −0.971 −0.463 0.027
T6 −2.809 −0.227 −1.822 −0.277 −0.642 0.028
T7 1.561 1.971 0.474 1.071 −0.174 0.883
T8 1.425 1.799 −0.269 −0.673 −0.314 −0.337
T9 0.920 1.922 −0.952 −0.734 0.589 −0.130

T10 −1.167 −1.608 −0.286 0.462 1.015 0.629
T11 0.972 −0.209 1.863 0.818 0.247 −0.436
T12 −1.585 −1.161 −0.425 0.794 0.224 −0.682
T13 0.703 −1.373 1.007 −0.619 0.333 0.100
T14 1.235 −2.063 0.530 −0.841 −0.579 0.491
T15 0.569 −0.732 0.506 −0.302 1.117 −0.042
T16 1.087 −0.487 −1.181 1.918 −0.185 0.401
T17 2.662 −0.504 −0.627 −0.179 −0.523 −0.407
T18 2.351 −0.007 −0.774 −0.238 0.477 −0.529

Table 11. Squared cosines of the observations (T1 . . . T18) for TSS, COD, and FM versus PCs (F1 . . . F6).

Observations F1 F2 F3 F4 F5 F6

T1 0.620 0.141 0.235 0.000 0.000 0.003
T2 0.698 0.166 0.007 0.052 0.038 0.038
T3 0.165 0.000 0.090 0.000 0.743 0.001
T4 0.622 0.132 0.069 0.131 0.018 0.029
T5 0.672 0.001 0.014 0.255 0.058 0.000
T6 0.672 0.004 0.282 0.007 0.035 0.000
T7 0.286 0.457 0.026 0.135 0.004 0.092
T8 0.338 0.539 0.012 0.075 0.016 0.019
T9 0.133 0.582 0.143 0.085 0.055 0.003

T10 0.240 0.456 0.014 0.038 0.182 0.070
T11 0.176 0.008 0.645 0.125 0.011 0.035
T12 0.484 0.260 0.035 0.122 0.010 0.090
T13 0.127 0.484 0.260 0.098 0.028 0.003
T14 0.208 0.580 0.038 0.096 0.046 0.033
T15 0.132 0.218 0.104 0.037 0.508 0.001
T16 0.177 0.035 0.208 0.550 0.005 0.024
T17 0.864 0.031 0.048 0.004 0.033 0.020
T18 0.826 0.000 0.089 0.008 0.034 0.042

Values in bold correspond for each observation to the factor for which the squared cosine is the largest.

3.4. Treatment Classification

The dendrogram generated based totally on PCA squared cosines (Figure 4) indicates
the possibility of grouping all investigated treatments into three major clusters at a cut-off
of about 0.680. Cluster 1 included eight treatments; cluster 2 included four treatments;
and cluster 3 consisted of six treatments (Table 12). It has also been observed that cluster
1 mainly included treatments corresponding to batch 1, while cluster 2 grouped mainly
treatments corresponding to batch 2, and treatments corresponding to both batches were
equally found in cluster 3.
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Table 12. AHC analysis results through class.

Class 1 2 3

Objects 8 4 6
Sum of weights 8 4 6
Within-class variance 0.044 0.280 0.027
Minimum distance to centroid 0.098 0.325 0.080
Average distance to centroid 0.189 0.452 0.145
Maximum distance to centroid 0.279 0.497 0.209

T1 T3 T7
T2 T11 T8
T4 T15 T9
T5 T16 T10
T6 T13

T12 T14
T17
T18

Furthermore, for the regression tree achievement, the investigated functional variables
within the limits allowed by the regulation (TSS ≥ 70%, COD ≥ 85%, and FM ≥ 85%)
were considered to ensure the best possible fitting. Figure 5 shows the consequences of the
regression tree for TSS, indicating that the predicted value was equal to 80.88%, including
100% of cases with a node size of 17, which means that TSS≥ 70% under the test conditions.

Materials 2023, 16, x FOR PEER REVIEW 15 of 20 
 

 

 

Figure 5. Regression tree: decision making for TSS. 

The results of the regression tree for COD are presented in Figure 6, and the rules of 

its decision tree are additionally shown in Table 13. As observed previously (Figure 2), the 

COD value was affected by both the irradiation dose and monomer concentration. Under 

test conditions, the predicted value for COD was 85.2%. It has been found, however, that 

the impact of D on the amount of COD has priority over PS:AMD, and if D is in [2, 2.7], 

then COD = 87.450%. The highest value of COD equal to 88.25% is expected if the value of 

PS:AMD is between 1:9 and 1:12 (PS:AMD = [9, 12]) and, at the same time, D is between 2 

and 2.7 kGy (D = [2, 2.7]) so that, subsequently, COD ≥85% under the conditions described. 

 

Figure 6. Regression tree: decision making for COD. 

Table 13. Rules in decision tree for COD. 

Node Pred (COD%) Frequency Rules 

Node1 85.200 17 - 

Node2 84.508 13 If D in [0.6, 2], then COD = 84.508 in 76.5% of cases 

Node3 87.450 4 If D in [2, 2.7], then COD = 87.450 in 23.5% of cases 

Node4 83.186 7 If PS:AMD in [6, 9] and D in [0.6, 2], then COD = 83.186 in 41.2% of cases 

Node5 86.050 6 If PS:AMD in [9, 12] and D in [0.6, 2], then COD = 86.050 in 35.3% of cases 

Node6 86.650 2 If PS:AMD in [6, 9] and D in [2, 2.7], then COD = 86.650 in 11.8% of cases 

Node7 88.250 2 If PS:AMD in [9, 12] and D in [2, 2.7], then COD = 88.250 in 11.8% of cases 

The regression tree results for FM are displayed in Figure 7, while the rules of the 

decision tree are shown in Table 14. As was shown, the value of FM was mainly affected 

by the change in �̇�. Therefore, the analysis suggested that, if �̇� in [1.1, 1.9], then FM = 

85.7% in 47.1% of cases, fulfilling FM ≥85% under these conditions. 

Figure 5. Regression tree: decision making for TSS.



Materials 2023, 16, 2686 15 of 20

The results of the regression tree for COD are presented in Figure 6, and the rules of
its decision tree are additionally shown in Table 13. As observed previously (Figure 2),
the COD value was affected by both the irradiation dose and monomer concentration.
Under test conditions, the predicted value for COD was 85.2%. It has been found, however,
that the impact of D on the amount of COD has priority over PS:AMD, and if D is in
[2, 2.7], then COD = 87.450%. The highest value of COD equal to 88.25% is expected if
the value of PS:AMD is between 1:9 and 1:12 (PS:AMD = [9, 12]) and, at the same time,
D is between 2 and 2.7 kGy (D = [2, 2.7]) so that, subsequently, COD ≥ 85% under the
conditions described.

The regression tree results for FM are displayed in Figure 7, while the rules of the
decision tree are shown in Table 14. As was shown, the value of FM was mainly affected by
the change in

.
D. Therefore, the analysis suggested that, if

.
D in [1.1, 1.9], then FM = 85.7%

in 47.1% of cases, fulfilling FM ≥ 85% under these conditions.
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Figure 6. Regression tree: decision making for COD.

Table 13. Rules in decision tree for COD.

Node Pred (COD%) Frequency Rules

Node1 85.200 17 -
Node2 84.508 13 If D in [0.6, 2], then COD = 84.508 in 76.5% of cases
Node3 87.450 4 If D in [2, 2.7], then COD = 87.450 in 23.5% of cases
Node4 83.186 7 If PS:AMD in [6, 9] and D in [0.6, 2], then COD = 83.186 in 41.2% of cases
Node5 86.050 6 If PS:AMD in [9, 12] and D in [0.6, 2], then COD = 86.050 in 35.3% of cases
Node6 86.650 2 If PS:AMD in [6, 9] and D in [2, 2.7], then COD = 86.650 in 11.8% of cases
Node7 88.250 2 If PS:AMD in [9, 12] and D in [2, 2.7], then COD = 88.250 in 11.8% of cases

3.5. Linear Modeling

The regression models based totally on MLR and PCR are provided in Table 15. The
equations primarily based on the main variables (PS:AMD, D, and

.
D) confirmed the highest

accuracy in COD and FM prediction, with MAPE equal to 1.412% and 4.167%, respectively.
For example, Figure 8 shows the learning set for MLR in COD prediction. In the case of
TSS, even though the MAPE was larger and equal to 8.842%, it nevertheless confirmed
acceptable accuracy.
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Table 14. Rules in decision tree for FM.

Node Pred (FM%) Frequency Rules
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Node2 80.867 9 If

.
D in [0.7, 1.1], then FM = 80.867 in 52.9% of cases

Node3 85.700 8 If
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D in [1.1, 1.9], then FM = 85.700 in 47.1% of cases

Table 15. Comparison between MLR and PCR models’ accuracy in the prediction of TSS, COD, and FM.

Regression Models MAPE%

MLR TSS = 101.991 − (1.411 × PS:AMD) − (3.787 × D) − (2.494 ×
.

D) 8.842

COD = 77.320 + (0.461 × PS:AMD) + (1.569 × D) + (1.427 ×
.

D) 1.412

FM = 80.297 − (0.199 × PS:AMD) + (0.993 × D) + (2.961 ×
.

D) 4.167

PCR TSS = 81.022 − (4.580 × F1) + (2.521 × F2) 5.521
COD = 85.338 + (1.444 × F1) − (0.295 × F2) 0.991
FM = 83.255 + (1.412 × F1) + (2.187 × F2) 2.710

TSS = 81.022 − (4.507 × F1) + (2.407 × F2) − (2.518 × F3) 5.172
COD = 85.338 + (1.439 × F1) − (0.287 × F2) + (0.178 × F3) 0.957
FM = 83.255 + (1.319 × F1) + (2.333 × F2) + (3.225 × F3) 1.021

TSS = 81.022 − (4.526 × F1) + (2.425 × F2) − (2.487 × F3) + (0.771 × F4) 5.159
COD = 85.338 + (1.444 × F1) − (0.293 × F2) + (0.169 × F3) − (0.231 × F4) 0.917
FM = 83.255 + (1.326 × F1) + (2.326 × F2) + (3.214 × F3) − (0.286 × F4) 0.978

A MAPE of less than 5% is considered an indication that the prediction is acceptably accurate. A MAPE larger
than 10% but less than 25% suggests low but acceptable accuracy, and a MAPE greater than 25% shows very low
accuracy, so low that the prediction is not acceptable in terms of its accuracy [54].

Regression equations for PCR based on two, three, and four components are also
shown (Table 15). The accuracy of PCR was better than that of MLR in all cases. In general,
the use of the equation with two principal components (F1 and F2) can easily predict
TSS, COD, and FM variables, with MAPE equal to 5.521, 0.991, and 2.710, respectively.
The accuracy of PCR prediction always improved as the number of principal components
increased, and these changes were much greater for FM, especially with the addition of
F3, which could be because the squared cosines for FM were higher in the third principal
component (Table 9). Therefore, PCR was successful in simplifying the prerequisites for
predicting variables (TSS, COD, and FM) based on principal components (MAPE ≤ 5%).
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4. Conclusions

The main findings of this work are summarized as follows:

1. The starch-based copolymers synthesized in this work using different monomer
concentrations, irradiation doses, and dose rates proved to have effective flocculation
properties by reducing the quality parameters (TSS, COD, and FM) of the wastewater
of an oil factory.

2. The correlation between the input processing variables such as the PS:AMD ratio, D,

and
.

D and the flocculation efficiency of the synthesized copolymers regarding TSS,
COD, and FM showed that TSS has an excessively negative correlation with other
variables, COD is positively correlated with both the monomer concentration and
irradiation dose, and FM demonstrated a moderately positive correlation with the
dose rate.

3. The principal component analysis was able to correctly classify the correlation between
the input processing variables and the target variables (copolymer functionalities) and
determined the clustering of the treatments that had similar behavior as the principal
components. High cumulative variability of ~80% and even ~91% could be explained
after F3 and F4 PCs, respectively, with a majority contribution (~66%) of the first
two PCs. All investigated treatments were segregated into three major clusters, of
which cluster 1 included the largest number of treatments.

4. The analysis for meeting the allowed regulatory limits for the functional variables
studied (TSS ≥ 70%, COD ≥ 85%, and FM ≥ 85%) of the copolymers synthesized in
this work revealed that (i) TSS always had the desired level within the range of input
processing variables; (ii) COD was influenced by the monomer concentration, but
mostly by the irradiation dose, so the result was that an optimal COD value of 88.3%
could be expected for a PS:AMD between 1:9 and 1:12 and an irradiation dose range
of 2–2.7 kGy; (iii) FM was mainly affected by the dose rate, which, for the interval
1.1–1.9 kGy/min, could favor obtaining permissive conditions at 85.7%.

5. The consequences of linear modeling confirmed an acceptable accuracy for COD and
FM, and the linear modeling along with the consequences of PCA in the structure of
PCR could assist in simplifying the prediction equations.
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Therefore, the functional efficiency of the starch-based flocculants synthesized by
radiation-induced copolymerization depends on the processing parameters, which include
both material parameters, such as the monomer concentration, and irradiation parame-
ters, namely, the irradiation dose and dose rate. Using data mining methods related to
association, clustering, classification, and prediction can considerably reduce the volume
of experiments and save time regarding the appropriate parameter selection while also
providing a major contribution to the design of machine learning algorithms, which can
give substantial assistance, especially in industrial design and artificial intelligence, in the
field of the synthesis of new natural-inspired materials involving radiation-based methods.
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8. Maćczak, P.; Kaczmarek, H.; Ziegler-Borowska, M. Recent Achievements in Polymer Bio-Based Flocculants for Water Treatment.
Materials 2020, 13, 3951. [CrossRef]

9. Zhao, C.; Zhou, J.; Yan, Y.; Yang, L.; Xing, G.; Li, H.; Wu, P.; Wang, M.; Zheng, H. Application of coagulation/flocculation in oily
wastewater treatment: A review. Sci. Total Environ. 2021, 765, 142795. [CrossRef]

10. Zarei Mahmudabadi, T.; Ebrahimi, A.A.; Eslami, H.; Mokhtari, M.; Salmani, M.H.; Ghaneian, M.T.; Mohamadzadeh, M.;
Pakdaman, M. Optimization and economic evaluation of modified coagulation–flocculation process for enhanced treatment of
ceramic-tile industry wastewater. AMB Express 2018, 8, 172. [CrossRef]

11. Jiang, X.; Li, Y.; Tang, X.; Jiang, J.; He, Q.; Xiong, Z.; Zheng, H. Biopolymer-based flocculants: A review of recent technologies.
Environ. Sci. Pollut. Res. 2021, 28, 46934–46963. [CrossRef]

12. Sabbaghi, H. Perspective Chapter: Cellulose in Food Production—Principles and Innovations. In Cellulose—Fundamentals and
Conversion into Biofuel and Useful Chemicals; Jeyakumar, R.B., Ed.; IntechOpen: London, UK, 2023. [CrossRef]

13. Sibiya, N.P.; Amo-Duodu, G.; Tetteh, E.K.; Rathilal, S. Model prediction of coagulation by magnetised rice starch for wastewater
treatment using response surface methodology (RSM) with artificial neural network (ANN). Sci. Afr. 2022, 17, e01282. [CrossRef]

http://doi.org/10.3390/ijerph15050895
http://www.ncbi.nlm.nih.gov/pubmed/29724015
http://doi.org/10.1016/j.envpol.2021.118564
http://www.ncbi.nlm.nih.gov/pubmed/34838711
http://doi.org/10.1021/acs.iecr.5b04703
http://doi.org/10.3390/molecules26030698
http://doi.org/10.1016/j.cej.2011.04.060
http://doi.org/10.17576/jsm-2019-4801-18
http://doi.org/10.1016/j.biotechadv.2017.10.002
http://doi.org/10.3390/ma13183951
http://doi.org/10.1016/j.scitotenv.2020.142795
http://doi.org/10.1186/s13568-018-0702-4
http://doi.org/10.1007/s11356-021-15299-y
http://doi.org/10.5772/intechopen.109204
http://doi.org/10.1016/j.sciaf.2022.e01282


Materials 2023, 16, 2686 19 of 20

14. Wang, K.; Ran, T.; Yu, P.; Chen, L.; Zhao, J.; Ahmad, A.; Ramzan, N.; Xu, X.; Xu, Y.; Shi, Y. Evaluation of renewable pH-responsive
starch-based flocculant on treating and recycling of highly saline textile effluents. Environ. Res. 2021, 201, 111489. [CrossRef]
[PubMed]

15. Qi, X.; Tong, X.; Pan, W.; Zeng, Q.; You, S.; Shen, J. Recent advances in polysaccharide-based adsorbents for wastewater treatment.
J. Clean. Prod. 2021, 315, 128221. [CrossRef]

16. Amaraweera, S.M.; Gunathilake, C.; Gunawardene, O.H.P.; Fernando, N.M.L.; Wanninayaka, D.B.; Dassanayake, R.S.; Rajapaksha,
S.M.; Manamperi, A.; Fernando, C.A.N.; Kulatunga, A.K.; et al. Development of starch-based materials using current modification
techniques and their applications: A review. Molecules 2021, 26, 6880. [CrossRef] [PubMed]

17. Pino-Ramos, V.H.; Ramos-Ballesteros, A.; López-Saucedo, F.; López-Barriguete, J.E.; Varca, G.H.C.; Bucio, E. Radiation grafting
for the functionalization and development of smart polymeric materials. Top. Curr. Chem. (Z) 2016, 374, 63. [CrossRef] [PubMed]

18. Lertsarawut, P.; Rattanawongwiboon, T.; Tangthong, T.; Laksee, S.; Kwamman, T.; Phuttharak, B.; Romruensukharom, P.;
Suwanmala, P.; Hemvichian, K. Starch-based super water absorbent: A promising and sustainable way to increase survival rate
of trees planted in arid areas. Polymers 2021, 13, 1314. [CrossRef]
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