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Abstract: Micro-electro-mechanical systems (MEMS) hemispherical resonant gyroscopes are used
in a wide range of applications in defense technology, electronics, aerospace, etc. The surface
roughness of the silicon micro-hemisphere concave molds (CMs) inside the MEMS hemispherical
resonant gyroscope is the main factor affecting the performance of the gyroscope. Therefore, a
new method for reducing the surface roughness of the micro-CM needs to be developed. Micro-
ultrasonic machining (MUM) has proven to be an excellent method for machining micro-CMs; shear
thickening fluids (STFs) have also been used in the ultra-precision polishing field due to their perfect
processing performance. Ultimately, an STF-MUM polishing method that combines STF with MUM
is proposed to improve the surface roughness of the micro-CM. In order to achieve the excellent
processing performance of the new technology, a Categorical Boosting (CatBoost)-genetic algorithm
(GA) optimization model was developed to optimize the processing parameters. The results of
optimizing the processing parameters via the CatBoost-GA model were verified by five groups of
independent repeated experiments. The maximum absolute error of CatBoost-GA is 7.21%, the
average absolute error is 4.69%, and the minimum surface roughness is reduced by 28.72% compared
to the minimum value of the experimental results without optimization.

Keywords: surface roughness; micro-hemisphere concave mold (CM); micro-ultrasonic machining
(MUM); shear thickening fluid (STF); Categorical Boosting (CatBoost); genetic algorithm (GA)

1. Introduction

Compared to traditional gyroscopes, the MEMS hemispherical resonant gyroscope
has many advantages, such as high precision, low cost, light weight, and small size [1].
Therefore, it is widely used in electronic products, the aerospace industry, defense industry
weapons, industrial robots, etc. [2–4]. The hemispherical resonator is located inside the
gyroscope and its accuracy directly determines the performance of the gyroscope [5]. The
accuracy inside the hemispherical resonator depends mainly on the surface roughness of
the micro-hemispherical CM on the silicon wafer surface. Different machining methods
for different materials may produce entirely different results, resulting in entirely different
surface roughness, machining efficiency, material removal rates, and other parameters [6–9].
Currently, there are many methods to machine micro-hemispherical concave molds, such
as ultrasonic machining and micro-milling. Microelectronic electrical discharge machining
of micro-concave molds is efficient, but the edges of the machined micro-concave molds are
severely broken and the shape accuracy is low [10]. Micro molds machined by micro-milling
have good surface quality but low machining efficiency [11]. Therefore, it is necessary to
choose an efficient and effective machining method to process micro-hemispherical CM so
as to quickly obtain the micro-concave molds with low surface roughness.
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Silicon wafers are hard and brittle materials. Ultrasonic processing has proven to
be an excellent method for processing hard and brittle materials. As a result, ultrasonic
processing is widely used for the processing of microstructures of various hard and brittle
materials with good results. For example, Zhao et al. used ultrasonic processing methods
to process silicon wafer microchannels, and the integrity of silicon wafer microchannels
was improved by more than 60% [12]. Chen et al. combined electrochemical discharge
processing with ultrasonic waves for processing the microstructure of glass plates, resulting
in a gap reduction of more than 20% [13]. Zhao et al. used ultrasonic-assisted machining
when milling and machining the microstructures on the surface of aluminum plates, and
this machining method significantly improved the machining quality of the surface of
aluminum plates [14]. Wang et al. greatly improved the shape accuracy of the workpiece
surface by filing with ultrasonic processing of carbon fiber reinforced silicon carbide
composites [15]. The micro-ultrasonic-assisted grinding process method has proven to be
an effective method for processing hard and brittle materials. During the micro-ultrasonic-
assisted grinding process, the liquid and abrasive particles within the polishing fluid will fill
the space between the tool and the workpiece. Under the vibration of ultrasonic waves, the
free abrasive particles will impact the surface of the material and complete the processing
of the material surface [16]. Good machining results and high machining efficiency can be
obtained by ultrasonic-assisted grinding methods [17].

The composition of the polishing fluid is a key factor in the quality of the hemispherical
CM during micro-ultrasonic machining. Therefore, a suitable polishing fluid needs to be
used in the ultrasonic processing of hemispherical CM. STF has been used in the ultra-
precision polishing field due to its perfect processing performance. Li et al. used the shear-
thickening polishing method to polish the surface of mold steel, and the surface roughness
of the mold steel was significantly reduced [18]. Li et al. developed an integrated surface
roughness model to predict the average surface roughness of shear-thickened polishing
with good results [19]. As a result, the application of STF in the MUM of hemispherical CM
may result in excellent processing.

Although the use of STF in the MUM of hemispherical CM may give good results,
there are still difficulties in predicting and further improving the surface roughness of
micro-CM. Therefore, an objective optimization method is needed to predict and optimize
the surface roughness of micro-CM during machining. Regression models in machine
learning can be trained on a dataset to build a complete mathematical model to achieve
good prediction results [20–23]. Because of the good results of machine learning in model
training, it has been widely used in process parameter optimization with good results.
For example, Mahjoubi et al. used the tree-based pipeline optimization tool to predict the
mechanical properties and economics of strain-hardened cementitious composites, and
the predicted results were in excellent agreement with the actual results [24]. Chaki used
artificial neural networks with non-dominated ranking GA (NSGA-II) in the multi-objective
optimization of the machining quality of laser-cut aluminum alloys, and the accuracy of
the optimization results reached more than 99% [25]. Lu et al. employed machine learning
to improve the performance of a battery removal platform with a prediction error of
less than 10% [26]. Jin et al. applied machine learning to the fabrication of deposited
thin film layers in semiconductors and showed that the uniformity of the thickness of
the deposited thin film layers was well improved [27]. Zhang et al. applied machine
learning methods in the optimization of process parameters for laser-induced plasma micro-
machining, with significant improvements in the machining quality of the material [28].
The genetic algorithm is a very effective method for finding optimal solutions and it is used
to find optimal solutions [29–31]. Zhao et al. employed NSGA-II to the multi-objective
optimization of machining efficiency and energy consumption in CNC milling, which
resulted in a reduction of energy consumption by more than eight percent and a significant
improvement in machining efficiency [32]. Tian et al. used a genetic algorithm to optimize
the deformation of T-joint fillet welds [33]. The results showed that the weld deformation
became smaller and the deformation differed very little from the model predictions after
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optimization by the genetic algorithm. Pashazadeh et al. performed process parameter
optimization for contact spot welding by means of a genetic algorithm to finalize the tip
correction operating range for the welding operation [34]. Alvarado-Iniesta et al. used
genetic algorithms to solve the engine mounting problem. Machine learning models and
genetic algorithms have already yielded many results in the field of process parameter
optimization [35]. CatBoost is a new machine learning model [36–38], which, together with
genetic algorithms, may be useful in optimizing process parameters for the STF-MUM
processing of hemispherical CM for silicon wafers.

In this work, silicon wafer hemispherical CM was processed by STF assisted MUM.
Then, a new hybrid CatBoost-GA prediction model was developed for target prediction and
the optimization of surface roughness for micro-hemispherical CM based on the surface
roughness dataset of hemispherical molds obtained from the processing experiments, in
combination with a CatBoost prediction model and GA. The subsequent structure of this
paper is as follows. In Section 2, the experimental equipment, experimental design, and
experimental results of STF assisted MUM processing of micro-spherical CM are presented.
Section 3 describes the principles and the algorithmic structure and process of the new
hybrid CatBoost-GA multi-objective optimization model. In Section 4, the performance
of CatBoost machine learning and the effect of various process parameters on surface
roughness are discussed. In Section 5, the optimal solution of the CatBoost-GA model
prediction is experimentally verified. In Section 6, the prediction accuracy and optimization
effectiveness of the CatBoost-GA multi-objective optimization model are summarized. The
conclusion section summarizes the results of the study.

2. Processing Experiment
2.1. Experimental Procedure

The overall experimental equipment is shown in Figure 1a. On the left of the experi-
mental equipment, a computer control system and a pressure regulator are included. The
overall machining system is on the right of Figure 1a: the overall motion control of the
equipment using macro motion control and micro motion control. Macro motion control
can achieve rapid positioning of the tool in the XYZ three movement axis, with repeat
positioning accuracy of 5 µm. The Z micro-axis is shown in Figure 1b; the linear motor and
cylinder are above the Z micro-axis with a positioning accuracy of 100 nm. The air pressure
output from the cylinder ensures that the Z micro-axis is balanced prior to machining. The
machining tool head is under the cylinder and the tool head is fitted with a hemispherical
ceramic tool, which is shown in Figure 1c. The computer control system can regulate the
movement of the Z micro-axis with a speed control accuracy of 0.1 µm/s. The ultrasonic
processing system is mounted on the Z micro-axis. The ultrasonic transmitter has a power
of 120 w and a vibration frequency of 30 kHz, and the power percentage can be adjusted.

The schematic diagram for the STF-MUM processing of a hemispherical CM for silicon
wafers is shown in Figure 2a. Prior to processing, the polyhydroxy polymer (PPM) and
abrasive particles are first mixed with water in the prescribed proportions to form an STF
with abrasive particles. The diagram of the microscopic material removal action during
processing is shown in Figure 2b. The abrasive material and STF adhere to the surface of
the hemispherical ceramic tool. When ultrasonic vibration occurs, the STF undergoes a
shear-thickening effect and solid particles will adhere to the abrasive surface, completing
the removal of material from the silicon wafer surface by ultrasonic vibration. It has been
demonstrated that tungsten carbide whole ball ceramic tools and zirconia abrasives achieve
good results in micro-ultrasonic machining processes. Therefore, in this study, a tungsten
carbide spherical ceramic tool and a zirconia abrasive were used; the diameter of the
ceramic ball tool was 0.8 mm and the total depth of descent of the tool was set at 300 µm.
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2.2. Experimental Design

In STF-MUM processing, different concentrations of PPM can result in different vis-
cosity of the solution, which can lead to significant changes in the surface density of the
abrasive particles between the tool and the workpiece. In ultrasonic machining, the impact
of abrasive particles on the workpiece surface, the surface density of abrasive particles
between the tool and the workpiece, and the average particle size of the abrasive particles
all affect the material removal from the workpiece surface [39]. The rate of tool descent
can lead to differences in machining time, which can also lead to changes in the surface
roughness of the workpiece. Therefore, in this study, the concentration of PPM (A), abrasive
concentration (B), ultrasonic energy (C), tool lowering speed (D), and the average particle
size (E) were the main influencing factors in the experiment, and the output of the experi-
ment was the surface roughness of the micro-CM. In this study, the box model was used
for the experimental design, as the box model in the response surface methodology can
obtain better analysis with fewer experiments. The parameter levels of the experimental
design are shown in Table 1. A total of 5 main factors were considered in the experimen-
tal design, while 3 levels and 6 center points were set, and 46 sets of experiments were
eventually required.

Table 1. Process parameters and their levels.

Factors Symbol Levels
−1 0 1

PPM concentration (%) A 5 15 25
Abrasive concentration (%) B 4 8 12

Ultrasonic energy (w) C 72 84 96
Tool lowering speed (µm/s) D 1 2 3
Average particle size (µm) E 1 2 3

2.3. Experimental Results

The surface roughness of the machined miniature hemispherical CM was measured
using a Vecco optical profiler. In measuring the surface roughness of the micro-concave
molds, the further away from the center of the circle, the lower the surface roughness and
the less obvious the display of surface roughness. Therefore, in this study, with the center
of the circle as the central point, the sampling area is 63 µm long and 47 µm wide on the
expansion plane, and the surface roughness is expressed as the arithmetic mean (Ra) of the
surface roughness.

All experimental results are shown in Table 2.

Table 2. Experimental datasets.

Run Order A B C D E Ra (nm)

1 −1 0 0 0 −1 170.26
2 −1 0 −1 0 0 238.42
3 −1 0 0 −1 0 241.77
4 −1 −1 0 0 0 251.76
5 −1 0 0 1 0 263.23
6 −1 0 1 0 0 389.03
7 −1 1 0 0 0 442.12
8 −1 0 0 0 1 532.22
9 0 0 0 0 0 192.44

10 0 0 0 0 0 193.4
11 0 0 0 0 0 195.47
12 0 0 0 0 0 195.85
13 0 0 0 0 0 222.08
14 0 0 0 0 0 230.24
15 0 0 −1 −1 0 224.1
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Table 2. Cont.

Run Order A B C D E Ra (nm)

16 0 0 1 1 0 245.07
17 0 0 −1 1 0 247.36
18 0 0 0 −1 −1 261.08
19 0 1 0 −1 0 276.01
20 0 0 1 −1 0 276.76
21 0 −1 0 −1 0 283.47
22 0 −1 −1 0 0 316.44
23 0 −1 0 1 0 320.75
24 0 1 −1 0 0 321.78
25 0 1 0 1 0 327.8
26 0 0 −1 0 −1 340.35
27 0 1 0 0 −1 348.61
28 0 0 0 1 −1 349.62
29 0 1 1 0 0 350.51
30 0 0 1 0 −1 373.29
31 0 −1 1 0 0 389.13
32 0 0 −1 0 1 399.55
33 0 0 1 0 1 406.95
34 0 −1 0 0 −1 408.46
35 0 −1 0 0 1 409.14
36 0 0 0 −1 1 413.81
37 0 0 0 1 1 435.55
38 0 1 0 0 1 473.43
39 1 0 0 −1 0 288.36
40 1 0 0 1 0 293.97
41 1 0 1 0 0 299.85
42 1 1 0 0 0 323.42
43 1 0 0 0 1 392.4
44 1 0 −1 0 0 425.39
45 1 −1 0 0 0 466.15
46 1 0 0 0 −1 479.83

3. Principles of Integrated Algorithms
3.1. CatBoost Prediction Model

In order to refine the complete mathematical model with experimental data, this study
uses the CatBoost method to train the experimental data. CatBoost is a new gradient boosted
decision tree (GBDT) algorithm [40], and it has made many improvements compared to the
traditional algorithm.

1. CatBoost trains the entire dataset and processes the classification features with mini-
mal information loss by means of target statistics.

2. When CatBoost runs, the various different features are combined into one feature.
The tree structure in CatBoost is split into individual sub-trees, and combinations are
not considered during the first split of the tree. During subsequent splits, CatBoost
combines all combinations with all categorical features in the dataset. All splits
selected by CatBoost in the tree are considered as two different categories and are
used for the combination.

3. A new method to overcome gradient bias is used in CatBoost, which is an ordered
boosting method.

4. The forgotten tree data structure is used as a predictor in CatBoost, and the same
criteria are used in the hierarchical process of the tree. The forgetting tree is a bal-
anced tree that is not prone to overfitting. Better results can be achieved with these
improvements to CatBoost.

In this study, the input vectors and output vectors are shown below:

X = [A, B, C, D, E] Y = [Ra] (1)
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Although CatBoost can train the entire dataset, dividing the training set into a test
set and a training set can better accomplish the validation effect. Therefore, 37 of the
46 X, Y datasets were used as the training set and 9 were used as the test set. To test
the predictive performance of CatBoost, the obtained CatBoost outputs were compared
with the corresponding known experimental outputs and the corresponding results were
obtained according to the corresponding evaluation formulae. In order to test the pre-
dictive performance of CatBoost, the predicted results of CatBoost were compared with
the known experimental output, and the predictive performance of CatBoost was evalu-
ated by the determination coefficient (R2) and mean square error (MSE), as shown in the
following equation:

R2 = 1 −

m
∑

i=1
(Yci − Y)2

m
∑

i=1
(Yci − Yi)

2
(2)

MSE =
1
n

n

∑
i=1

(Yci − Yi)
2 (3)

where n represents the number of samples, Yci represents each actual value, Yi represents
each predicted value, and Y represents the mean of the samples. In evaluating the perfor-
mance of machine learning, the closer R2 is to 1, the better the prediction performance of
the machine learning model. When evaluating the performance of machine learning, the
smaller the MSE, the higher the prediction accuracy of the machine learning model and the
better the fit between the prediction results of the machine learning and the experimental
results. In the Analysis and Discussion section, the prediction results of CatBoost for the
initial experimental dataset are compared with the experimental results to derive the R2

and MSE results and to evaluate the prediction performance of CatBoost.

3.2. Multi-Objective Optimization Process

In the optimization of the process parameters for STF-MUM of hemispherical CM, the
smaller the Ra of the micro-CM, the better the machining effect; therefore, the optimization
equation is defined as follows:

Minimize: ∆R(A)(B)(C)(D)(E).
Based on the accuracy of the experimental apparatus and the analysis of the experi-

mental results, the range of input parameters was determined as follows:

0 ≤ A ≤ 35; 1 ≤ B ≤ 15; 60 ≤ C ≤ 120; 0.1 ≤ D ≤ 3; 1 ≤ E ≤ 3 (4)

where A, B, C, D, and E are the input parameters in the process of process parameter
optimization and Ra is the process parameter output result, where a smaller Ra means
better machining quality.

After the CatBoost model has been trained, a genetic algorithm is used to optimize
the surface roughness of the micro-CM. The genetic algorithm initializes the population,
calculates the fitness value of the population, and eliminates some of the population.
The remaining populations generate new populations by crossover mutation and other
operations. The genetic algorithm repeats the previous process until the algorithm stops
when the termination condition is reached, at which point the optimal solution obtained in
the genetic algorithm is output. The genetic algorithm calculates fitness values with the
help of a CatBoost trained model to generate new populations, and the overall process is
shown in Figure 3.
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The CatBoost-GA model was used to perform the optimization of the process pa-
rameters in this study. The model flow chart is shown in Figure 4. CatBoost builds the
final prediction model by constructing multiple T CART trees and importing them into
the genetic algorithm. The genetic algorithm keeps calculating fitness values from the
prediction model in CatBoost and generates new individuals through crossover variation
and other operations, ending the operation when the genetic algorithm reaches the number
of iterations and produces the optimal solution.
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4. Analysis and Discussion
4.1. Analysis of Variance

In the experiment of STF-MUM hemispherical CM, the surface roughness results of the
micro-concave dies were influenced by the combined effect of several factors, so the effect
of each factor on the surface roughness of the micro-CM can be analyzed using ANOVA
at a significance level of 0.05. The results are shown in Table 3, which indicate that the
content of PPM, abrasive particle size, content of PPM × abrasive concentration, content of
PPM × ultrasonic energy, content of PPM × average abrasive grain size, abrasive con-
centration × average abrasive grain size, content of PPM × content of PPM, abrasive
concentration × abrasive concentration, ultrasonic energy × ultrasonic energy, abrasive
grain size × abrasive grain size were less than 0.05, so these items were the main factors af-
fecting the surface roughness, and, according to the size of the F-value, it can be concluded
that the average particle size × the average particle size is the largest influence term, and at
the same time the content of PPM in these influence terms is also a very important factor,
which shows that the shear thickening fluid plays a great role in the ultrasonic processing.

Table 3. ANOVA for Ra.

Factors Degrees
of Freedom

Sum
of Squares Mean Squares F p

Model 20 350,100 17,505.52 24.65 <0.0001 significant
A (um) 1 12,129.44 12,129.44 17.08 0.0004
B (%) 1 21.09 21.09 0.0297 0.8646
C (w) 1 2948.06 2948.06 4.15 0.0523

D (µm/s) 1 2969.62 2969.62 4.18 0.0515
E (µm) 1 33,447.11 33,447.11 47.09 <0.0001

AB 1 27,738.24 27,738.24 39.06 <0.0001
AC 1 19,064.71 19,064.71 26.84 <0.0001
AD 1 62.75 62.75 0.0884 0.7687
AE 1 50,483.80 50,483.80 71.08 <0.0001
BC 1 483.25 483.25 0.6804 0.4172
BD 1 52.69 52.69 0.0742 0.7876
BE 1 3853.06 3853.06 5.43 0.0282
CD 1 754.79 754.79 1.06 0.3125
CE 1 163.16 163.16 0.2297 0.6359
DE 1 1115.33 1115.33 1.57 0.2217
A2 1 43,217.88 43,217.88 60.85 <0.0001
B2 1 67,482.73 67,482.73 95.02 <0.0001
C2 1 21,110.45 21,110.45 29.72 <0.0001
D2 1 546.14 546.14 0.7690 0.3889
E2 1 143,900 143,900 202.58 <0.0001

Residual 25 17,755.67 710.23
Lack of fit 20 16,360.28 818.01 2.93 0.1182 not significant
Pure Error 5 1395.39 279.08 24.65
Cor Total 45 367,900

4.2. Performance Evaluation of CatBoost

After the training of the model by machine learning is completed, it is necessary to
test the performance of the machine learning model and observe the prediction accuracy
of machine learning through test results. R2 and MSE are used to evaluate the prediction
accuracy of machine learning in this study, and the results of testing the machine learning
model are shown in Table 4. The R2 of Ra in the training and test sets were 0.9908 and
0.9843, respectively; these two results are very close to 1 and not too far apart, indicating no
overfitting or underfitting of CatBoost prediction results. The MSEs of the training and test
sets were low. After evaluating CatBoost by R2 and MSE, it can be concluded that CatBoost
can make accurate predictions for the results derived from the experiments in this study.
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Table 4. Evaluation metrics for CatBoost.

Dataset Performance
Metric

Surface
Roughness (Ra)

Training R2 0.9908
MSE 59.4319

Testing R2 0.9843
MSE 178.9357

In the prediction process of regression models for machine learning, the prediction
accuracy of the training set is usually better than that of the test set [28]. A comparison of
the CatBoost prediction results with the experimental results is shown in Figure 5. Both the
test and training sets of Ra are not far from the standard straight line, indicating that the
predicted values of CatBoost are generally consistent with the experiments.
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Figure 5. CatBoost results comparison chart.

Different machine learning regression models have different predictive performance.
In order to highlight the superiority of CatBoost prediction performance, in this study,
a comparative analysis is performed by two similar machine learning models, eXtreme
Gradient Boosting (XGBoost) and Adaptive Boosting (AdaBoost). The prediction results of
the AdaBoost and XGBoost regression models for the input data of the training and test sets
are shown in Figure 6; the prediction results of AdaBoost and XGBoost differ significantly
from the experimental results.
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The MSE and R2 of the prediction results of the three machine learning models are
shown in Figure 7. The MSE of CatBoost is the smallest and the R2 is the closest to 1. The
results indicate that CatBoost has the best prediction performance in this study.
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5. Experimental Verification

The optimal process parameters for minimizing the surface roughness of the hemi-
spherical CM by STF-MUM processing were solved by genetic algorithm and are shown in
Table 5.

Table 5. Table of optimum process parameters.

Run Order A B C D E Ra (nm)

1 10.542 6.541 81.478 0.503 0.11 130.787

Five sets of repeated experiments were carried out according to the optimum process
parameters, and the experimental results are shown in Figure 8. The surface roughness
results obtained from the five sets of repeated experiments were 121.36, 123.75, 129.86,
134.89, and 139.96 nm.
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Figure 8. Surface roughness results obtained from five sets of repeated experiments.

A comparison of the experimental results and the optimal solution solved by the
algorithm is shown in Figure 9. The values of all five sets of repeated experiments are
slightly larger than the optimal solution, which indicates that the CatBoost-GA model has
a high prediction accuracy.
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Figure 9. Comparison of experimental results with predicted results.

The comparison between the experimental results and the optimal solution shows
that the maximum absolute error between the five sets of repeated experiments and the
optimal solution solved by CatBoost-GA is 7.21%, the average absolute error is 4.69%, and
the minimum surface roughness is reduced by 28.72% compared to the minimum value of
the experimental results without optimization. These results indicate that CatBoost-GA
optimization is effective, and the surface roughness of the micro-hemispheric CM machined
by STF-MUM is significantly reduced by CatBoost-GA optimization. Among the optimal
process parameters solved by the genetic algorithm, the concentration of PPM is 10.542%,
indicating that the STF plays a role in the ultrasonic processing.

6. Conclusions

A STF assisted MUM method was used to process hemispherical CM on silicon
wafer surfaces. The box design in the response surface methodology was used for the
design of experiments, and 46 experiments were carried out. The experimental results
were analyzed by ANOVA to obtain the main factors affecting the surface roughness of
the hemispherical CM. The ANOVA results showed that the significant influence terms
included PPM concentration, abrasive concentration, ultrasonic energy, and mean particle
size. The average particle size × the average particle size was the largest influence term.

In this study, CatBoost-GA model was developed for process parameter optimization,
and the performance of CatBoost was evaluated by MSE and R2. The results show that
CatBoost has better prediction performance relative to XGBoost and AdaBoost.
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The optimal solution was verified by five sets of repeated experiments. The compari-
son between the experimental results and the optimal solution shows that the maximum
absolute error between the five sets of repeated experiments and the optimal solution
solved by CatBoost-GA is 7.21%, the average absolute error is 4.69%, and the minimum
surface roughness is reduced by 28.72% compared to the experimental results without opti-
mization. The results show CatBoost-GA optimization is effective. The surface roughness
of micro-CM can be significantly reduced by CatBoost-GA optimization.
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