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Abstract: Ameliorating the high-temperature performance of cast Al-Si alloys used as engine com-
ponents is essential. The effects of different T6 heat-treatment processes on the microstructure and
mechanical properties of cast Al-Si-Cu-Mg-Ni-Cr alloys were investigated in the present study. The
results demonstrate that, under the optimal solution treatment conditions of 500 ◦C for 2 h and
540 ◦C for 4 h, the T-Al9FeNi phase was present in the alloy, and the roundness of primary Si and
the aspect ratio of eutectic Si in the alloy reached valley values of 1.46 and 2.56, respectively. With
increasing ageing time at 180 ◦C, the tensile strength significantly improved, while the microhardness
first increased and then decreased. When the ageing time was 4 h, microhardness reached a peak
value of 155.82 HV. The fracture characteristics changed from quasi-cleavage to the coexistence of
quasi-cleavage and dimples. After heat treatment, the high-temperature tensile properties of the
alloy improved, which is a significant advantage compared to the as-cast alloy. The stable Al3Ni and
Al9FeNi phases inhibited the cracking of the alloy at 350 ◦C.

Keywords: Al-Si alloys; microhardness; solution treatment; ageing treatment; mechanical properties

1. Introduction

Al-Si alloys have become attractive lightweight materials owing to their low density,
high specific strength, good casting properties, and corrosion resistance. Cast heat-resistant
Al-Si-Cu-Mg-Ni alloy has been widely used in the armament, marine, aviation, aerospace,
and automotive industries, especially in pistons, brake discs, and even cylinder heads for
automotive engines [1–3]. However, the complex operating environment of engines requires
that the materials used for pistons retain good mechanical properties in the temperature
range of 200–400 ◦C. The mechanical properties of Al-Si alloys tend to deteriorate abruptly
at temperatures above 250 ◦C owing to the rapid coarsening of the second phase at high
temperatures. Moreover, the needle-like Al5FeSi brittle phase formed in the alloy tends
to cause stress concentration and reduce the mechanical properties of the Al-Si alloy.
Consequently, this remains a challenge for Al-Si alloys [4–8].

Considerable attention has been paid to the exploration of more thermally stable
phases of cast Al-Si-Cu-Mg-Ni alloys to improve their mechanical properties [9–15]. The
addition of alloying elements is an effective method owing to the formation of resistant
phases, such as ε-Al3Ni, M-Mg2Si, δ-Al3CuNi, γ-Al7Cu4Ni, θ-Al2Cu, Q-Al5Cu2Mg8Si6,
T-Al9FeNi, and π-Al8Si6FeMg3 [16,17]. Sha et al. [18] reported that Cr-, Zr-, Ti-, and V-
containing dispersoid phases improved the strength of alloys at high temperatures. Feng
et al. [19] studied the ultimate tensile strength and yield strength of an alloy with an
Al3Ni phase at higher temperatures. Li et al. [20] reported that the tensile strength of
Al-Si alloys at 250 ◦C increased from 157 to 199 MPa owing to the presence of the 3.2–6.4%
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Q-Al5Cu2Mg8Si6 phase. The addition of Cr could transform the needle-like β-Al5FeSi
phase to the fishbone α-Al (Fe, Cr) Si phase, which could neutralise the negative effect of Fe
as an impurity. Further, Yang et al. [21] observed that the addition of Cr can also increase
the elongation of the alloy. Zhan et al. [22] reported that the microhardness of an Al-Si-Mg
alloy after quenching can be increased by more than 10 HV by adding Cr. Li et al. [23]
showed that the HT tensile strength of an Al-13Si-4Cu-1Mg-3Ni alloy with 0.8% Fe and
0.5% Cr increased from 78 to 98 MPa at 350 ◦C.

In addition, heat treatment influences the size, morphology, and distribution of the
second phases and the precipitation strengthening, thus leading to an improvement in
the mechanical properties of the alloy. Khisheh et al. [24] reported that T6 treatment
significantly improves the fatigue life of unaged alloys under thermo-mechanical fatigue
(TMF) loading. Luna et al. [25] proved that a two-stage solution cycle treatment is more
effective than a conventional single-stage solution treatment in improving the mechanical
properties of the alloy. Sun et al. [26] reported that the solid solution temperature of the
Al-15% Mg2Si (−1% Cu) alloy significantly affected the formation of precipitated phases
and age-hardening behaviour. Although the evolution of a second phase in the heat
treatment of Al-Si-Cu-Mg-Ni alloys has been extensively studied, studies on the influence
of heat treatment parameters on the morphology distribution of the second phase in cast
alloys with transition elements are limited. In addition, conventional single-step solution
treatment at a temperature lower than the melting point of the Cu-rich phase results in
insufficient solution strengthening of the alloy.

Therefore, Al-Si-Cu-Mg-Ni alloys containing 0.2% trace Cr were prepared in this study.
The effects of the time and temperature of the two-stage solution treatment and ageing on
the microstructure and mechanical properties of the alloys were investigated. The role of
intermetallic phases in the improved strength of alloys at room and higher temperatures
was analysed and the appropriate conditions for the heat treatment of alloys were deter-
mined. The research in this paper focused on reducing the weight of heavy truck engines.
Making Al-Si-Cu-Mg-Ni-Cr alloys for pistons played a better role in practical applications.

2. Experimental Procedures
Preparation of Materials

The alloys were prepared using 99.8% commercially pure Al, 99.9% pure Mg, Al-20%
Si, Al-50% Cu, Al-10% Ni, Al-10% Cr, Al-3% Ti, and Al-10% Zr intermediate alloys (wt.%).
All metal materials were purchased from the Hunan Rare Earth Metal Materials Research
Institute, Hunan, China. First, pure Al ingots were placed in a graphite crucible in an electric
resistance furnace at 750 ◦C. The master alloys were then added to the melt. The melt
refining process was degassed using C2Cl6 and dreg-removing flux. Finally, the cast alloys
were obtained after pouring the molten alloy into a preheated metal die and air-cooling it
to room temperature. The specific experimental process was shown in Figure 1. Table 1 lists
the chemical compositions of the cast alloys measured using inductively coupled plasma
(ICP) atomic emission spectrometry.
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D/Max 2500, Rigaku, Tokyo, Japan) with Cu Kα radiation at 30 kV and 100 mA. The 
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Table 1. Chemical composition of the alloy (wt.%).

Si Cu Mg Ni Fe Ti Cr Al

Alloy 12.5 1.14 1.29 1.15 0.39 0.13 0.18 Bal.

After casting, the Al-Si-Cu-Mg-Ni-Cr alloy was subjected to a T6 heat treatment. Solu-
tion heat treatment (SHT) was conducted in two steps in a chamber resistance furnace with
a temperature deviation of less than 5 ◦C. Following water quenching, the experimental
alloys were immediately aged at different temperatures for various periods. The specific
heat-treatment process is shown in Figure 2.
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Figure 2. Schematic diagram of the heat treatment process.

The phase transition temperatures of the as-cast and solution-treated samples were
analysed using differential scanning calorimetry (DSC, DSC204F1, NETZSCH, Selb, Ger-
many) in the range of 30–600 ◦C under high-purity argon gas at a heating rate of 10 K/min.
The phase compositions of the alloys were identified using X-ray diffraction (XRD; D/Max
2500, Rigaku, Tokyo, Japan) with Cu Kα radiation at 30 kV and 100 mA. The diffraction
angle at which the X-rays hit the sample varied from 10◦ to 80◦ at a scanning rate of 8◦/min.
The microstructure and fracture morphologies were characterised using metallographic
microscopy (DMIL MLED, Leica, Wetzlar, Germany) and scanning electron microscopy
(SEM, FEI Sirion 200, FEI, Hillsboro, IL, USA). The elemental concentration profile of the
microstructure was determined using energy-dispersive X-ray spectroscopy (EDS). The
elemental distribution was analysed using electron probe microanalysis (EPMA, JEOL
JXA-8230, JEOL Ltd., Tokyo, Japan). Image-Pro Plus 6.0 was used to analyse the roundness
(Ra) of primary Si and the aspect ratio of eutectic Si of the alloy. The Ra values of the
primary Si particles are calculated using Equation (1):

Ra =
p2

4πA
(1)

where p is the perimeter and A the area of each eutectic Si particle.
The Vickers microhardness of the polished sample surface was tested according to

ASTM C1327-15, and determined using a computerised microhardness tester (Shimadzu
HMV-2T, Tokyo, Japan) at a load of 1 kg for a dwell time of 15 s. Seven indentations were
made on each sample, and the average microhardness values were reported.

The geometry and dimensions of the sample for the tensile tests according to GB/T
228.1-2010 and GB/T 2288.2-2015 are shown in Figure 3. Room-temperature and high-
temperature tensile tests were carried out at 0.1 mm/min using a tensile testing machine
(DNS100, Cmc test equipment company, Beijing, China). The high-temperature tensile tests
were performed at 350 ◦C. After the temperature was increased to the test temperature, the
test was carried out after a 30 min holding period. To ensure the reliability of the measured
data, three specimens were tested in each group and the average values were reported.
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Figure 3. Schematic diagram and dimensions of the tensile samples (dimensions are in millimetres).

3. Results and Discussion
3.1. Optimization of the Solid Solution Process

Figure 4 shows the XRD patterns of eutectic Al-Si alloys under as-cast and different
SHT conditions. The main phases were α-Al, Si, δ-Al3CuNi, Q-Al5Cu2Mg8Si6, α-Al (Fe, Cr,
Ni) Si, Mg2Si, ε-Al3Ni, and π-Al8FeMg3Si6. In Figure 4a, the diffraction peak intensities
of the δ-Al3CuNi and Q-Al5Cu2Mg8Si6 phases decreased after the two-stage SHT of the
alloys compared to the as-cast and single-stage SHT conditions. When Cu was dissolved in
the matrix, the Cu-rich phase on the surface of the matrix decreased, and the Mg2Si phase
was partially dissolved. The magnified view of the XRD patterns in Figure 4b shows that
the variation in diffraction peak intensities of the α-Al (Fe, Cr, Ni) Si and Al3Ni phases is
insignificant with changing SHT conditions.
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Figure 5 shows optical micrographs of the alloy in the as-cast and single-stage SHT
conditions at 500 ◦C for 2 h. The microstructure included α-Al (Figure 5a,b) and different
secondary phases characterised by reticulated Al3Ni (Figure 5c), fishbone α-Al (Fe, Cr, Ni)
Si, black skeletal Mg2Si, hanky π-Al8FeMg3Si6, and needle-like δ-Al3CuNi (Figure 5d,f).
The mechanical properties of cast alloys are closely related to microstructural parameters,
including the grain size, morphology of eutectic Si, and shape and distribution of inter-
metallic compounds. Primary Si typically exhibits an irregular blocky structure. After
single-stage SHT, Ra of the primary Si in the as-cast state decreases from 4.3 to 3.88 with
edge passivation. Few needle-like eutectic Si particles begin to fragment, and the aspect
ratio decreases from 3.73 to 3.56. Furthermore, the intermetallic compounds showed no
significant change after the single-stage SHT.
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Figure 6 shows the main intermetallic compounds in the as-cast alloy. As shown
in Figure 6a, the white needle-like structure of the Al3CuNi phase (Figure 6e) and the
dark grey Chinese-script π-Al8FeMg3Si6 phase (Figure 6g) are distributed in the matrix.
Meanwhile, Cr mainly formed light grey α-Al (Fe, Cr, Ni) Si (Figure 6f). A greyish-white
bulk Q-Al5Cu2Mg8Si6 phase (Figure 6h) was detected by XRD in combination with EDS
analysis, as shown in Figure 6b). Above 0.6 wt.% Mg content is mainly used to form the
π-Al8FeMg3Si6 phase, and the excess Mg forms Mg2Si (Figure 6d). When the Fe/Ni ratio
was less than one, the formation of the Al-Cu-Ni ternary phase was promoted [27]. A bright
white skeletal ε-Al3Ni phase (Figure 6i) is observed in Figure 6c. As a transition element,
Ni has a low solubility in an α-Al solid solution. Ni-rich precipitation particles have a high
melting point and superior stability, making them an ideal core for refining the grain size
of as-cast alloys and improving their mechanical properties.
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Figure 6. SEM morphology and EDS analysis of as-cast Al-Si alloy: (a–c) SEM morphologies,
(d–i) EDS analysis result of Point A–F in (a–c).

Figure 7 presents the morphologies of eutectic Si and primary Si at different SHT condi-
tions. With the increase in solution time, eutectic Si particles dissolve from the long needles
and split into relatively small particles (Figure 7a,b) at the second solution temperature of
520 ◦C. After the second solid solution treatment at 520 ◦C for 10 h (Figure 7c), the eutectic
Si particles started to become spherical. Simultaneously, the morphology of the primary
silicon particles was edge passivated. After the solid solution process at 540 ◦C for 2–4 h,
the morphology of the eutectic Si particles changed from strip to short rod and spherical,
which indicated that eutectic Si had been well refined (Figure 7d,e). After 10 h of the second
solid solution process (Figure 7f), the passivation of the primary Si no longer had sharp
edges. The eutectic Si is spheroidized and coarsened. The coarsening of eutectic Si affects
the solution effect and adversely affects the mechanical properties of the alloy [28,29].
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(d–f) 500 ◦C for 2 h and 540 ◦C.

Figure 8a,b show detailed statistics on Ra of the primary Si and eutectic Si aspect
ratios, respectively. The curves decrease faster in the second stage SHT at 540 ◦C. The
atomic diffusion rate increases at high temperatures. Owing to the concentration gradient,
elements can quickly dissolve into the matrix, which passivates and spheroids the Si
phase. As shown in Figure 8a, the minimum Ra value was 1.46. As Ra tends to one (with
progressively blunter edges), the morphology of the particles tends to become spherical.
The risk of stress concentration at the tip and corner of the primary Si crystal on the
mechanical properties of the alloy was reduced [30]. As shown in Figure 8b, the aspect ratio
of eutectic silicon has a minimum value of 2.56. However, further extension of the second
solid solution time induced coarsening of the eutectic Si phase at 540 ◦C, worsening the
solid solution effect. The fragmentation and coarsening of eutectic Si occur simultaneously,
which together determine the aspect ratio of eutectic Si. Increasing the solid solution
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temperature accelerates the coarsening of eutectic Si, leading to an increase in the aspect
ratio of eutectic Si [31]. At lower solid solution temperatures, both spheroidization of
eutectic Si and passivation of primary Si require a longer SHT time to achieve excellent
solution results. In contrast, with an increase in the solution temperature, it only takes a
short time to change the microstructure. The trend in the aspect ratio of eutectic silicon
indicates that the Si particles experience spheroidization during the solid solution phase,
which is a typical maturation process. The total number of particles is decreasing, and the
interfacial energy is minimized by the gradual engulfment of smaller particles by larger
ones. Due to the solid solution process, the Si element in the matrix can be dissolved into
the matrix through the concentration gradient, making the Si phase gradually spheroidized.
At the same time, the spheroidization of the Si phase can reduce the interfacial energy of the
Si phase and the matrix. As the solid solution process proceeds, the solubility of elemental
Si in the matrix reaches saturation, so the aspect ratio gradually tends to level off after 4 h.
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Figure 9 shows the backscattered electron images of the Al-Si-Cu-Mg-Ni-Cr alloy
after the second stage SHT at 540 ◦C for various times. As the second solid solution time
increased, the black Mg2Si phase showed a short rod and spherical shape, which was
different from the as-cast skeleton shape. The off-white Al3Ni phase was blocked for 2 h
(Figure 9a) in the second solid-solution step before gradually dissolving partially into short
rods. Because the interfacial energy between the Q phase and the α-Al phase decreases, the
Q phase dissolves from a block to a sphere (Figure 9b,d). The Al3CuNi phase fragmented
into bright white short rods (Figure 9d). The bright grey herringbone α-Al (Fe, Cr, Ni) Si
and dark grey π-Al8FeMg3Si6 phases did not exhibit any significant change in morphology
(Figure 9e). As shown in Figure 9c, short white needle-like phases appeared in the Q and π
phases. In Figure 9f, Al9FeNi is the emerging phase, as determined by EDS analysis. Ni can
transform Al5FeSi into the Al9FeNi phase via an inclusion crystal reaction. When heated
for SHT, the Al9FeNi phase was more easily broken and fragmented. Concurrently, as a
thermodynamically stable phase below the solidus, Al9FeNi can remain intrinsically in the
microstructure after the second solid-solution treatment. In addition, Al9FeNi plays an
important role in improving thermal stability at 450 ◦C [16,32–35].

The microhardness of Al-Si-Cu-Mg-Ni-Cr alloy after two-step solution and ageing at
180 ◦C for 4 h was shown in Figure 10. The microhardness of the alloys tends to increase
and then decrease at both SHT temperatures with the increase in second solid solution
time. As the solid solution temperature increased, the microhardness of the alloy increased
at 540 ◦C for the same solid solution time. This is because an increase in the solution
temperature increases the solution degree, which leads to lattice distortion and increases
dislocation resistance. Simultaneously, the grain size decreases with increasing phase
change drive and nucleation rate [36,37]. With the continuous increase in solution time, the
phase transformation of molten and spheroidized eutectic Si becomes coarse, which leads to
grain growth and adversely affects microhardness. Therefore, the maximum microhardness
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of 155.82HV produced under the optimum solution conditions of 500 ◦C for 2 h and 540 ◦C
for 4 h is much higher than that of as-cast alloy of 85.93 HV.
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3.2. Optimization of the Ageing Process

Figure 11 shows the relationship between microhardness and ageing time. The alloy
exhibited significant strengthening during ageing. As the ageing temperature increased,
the time required for the alloy to reach peak microhardness decreased. The hardening curve
at 180 ◦C has only one microhardness peak value of 155.82 HV at 4 h. With an increase in
ageing time, the microhardness curve decreases marginally and then tends to be stable,
indicating that the phase transformation is more significant. The hardening curve took a
longer duration of approximately 20 h to reach the peak value of 146.22 HV at 160 ◦C. At
the ageing temperature of 200 ◦C, the alloy has two peaks; it reached the first peak value of
153.8 HV in approximately 1.5 h, and then the second peak value of 143.72 HV in 8 h. The
microhardness of the alloy tends to decrease with the extension in time. During ageing, the
movement of solid solution atoms is dominated by a diffusion mechanism, following the
Arrhenius equation in Equation (2):

D = D0 exp[Q/(RT)] (2)

where D0 is the diffusion constant, Q is the activation energy, R is the gas constant, and T is
the thermodynamic temperature [11].
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The rate of diffusion increased at higher temperatures. The de-solvation process in
the supersaturated solid solution treatment required less time. In addition, solute atoms
migrated to the precipitated phase in less time. After peak ageing, with the extension in
time, the precipitation phase in the alloy coarsens and the supersaturation concentration
decreases, resulting in deterioration of the solid solution strengthening effect of the alloy.
Consequently, the microhardness value of the curve decreases. Therefore, the optimum
ageing condition was 180 ◦C for 4 h.

Figure 12 presents the EPMA images of the alloy after 4 h of ageing treatment at
180 ◦C. The spatial distribution of the main alloying elements (Al, Si, Cu, Mg, Ni, Cr,
and Fe) is included. In Figure 12d,e, the reformed Cu and a few Mg elements appear in
the same position in the matrix as the Q phase. In addition, a few Mg elements formed
Mg2Si with Si (Figure 12c,e). Ni was mainly used to form the Al3Ni phase (Figure 12f),
and a few Ni and Fe elements formed the Al9FeNi phase (Figure 12f,h). In addition, Cr
was still mainly involved in the formation of the α-Fe phase (Figure 12g,h). Further, Fe
was observed in the π phase (Figure 12h). Comparing with the SEM image of the as-
cast alloy in Figure 6, it can be found that the alloy re-precipitates into a fine, diffusely
distributed second phase after heat treatment, which includes the Cu-containing phase,
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Mg2Si phase, and Ni-containing phase. This is due to the element segregation caused by
the unbalanced solidification of the alloy during melting, which makes the unbalanced
microstructure appear. Solution treatment makes the distribution of alloy elements uniform
and reduces the unbalanced structure in the alloy. The eutectic Si gradually spheroidizes
and some primary phases gradually dissolve. Cu, Mg, and Ni elements diffuse into Al matrix,
forming complex supersaturated solid solution. After ageing treatment, the alloy elements
dissolved into the matrix are reprecipitated into a fine and dispersed second phase in the form
of dispersed phase.
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3.3. Mechanical Properties

Figure 13 provides a graphical representation of the tensile property data of the as-cast
and T6 alloys at room temperature and 350 ◦C. At peak of ageing, the yield strength (YS)
and e ultimate tensile strength (UTS) of the alloy were significantly improved. At room
temperature, the UTS of the T6 state was 334.75 MPa, yield strength was 245.11 MPa and
elongation was 1.25%. Compared to the as-cast alloy, the mechanical properties such as
UTS, yield strength, and elongation of the T6 alloy at room temperature increased by
68.56%, 66.04%, and 37.60%, respectively. At 350 ◦C, the tensile strength, yield strength,
and elongation of the T6 alloy were 98.70 MPa, 79.35 MPa, and 10.67%, respectively, which
were 18.74%, 21.51%, and 15.18% higher than those of the as-cast alloy, respectively. After
T6 treatment, the mechanical properties of the alloy were significantly improved owing
to the morphological amelioration of the Si phase (Figure 7) and the spheroidization of
the Al3CuNi and Al3Ni phases (Figure 9). With an increase in temperature, the control of
the thermal activation of the lateral slip decreases the ultimate strength and yield strength,
which tend to move dislocations. However, the thermal stability of the Q phase decreases
at 350 ◦C. The Al3Ni, Al3CuNi, and Al9FeNi phases can maintain high thermal stability,
facilitating the T6 state alloy in excellent high-temperature performance [32].
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Figure 13. Tensile results for as-cast and T6 alloys at 25 ◦C and 350 ◦C.

As shown in Table 2, in comparison with the pioneer studies, it was found that in this
paper, with the addition of 0.2 wt.% Cr and the optimized heat treatment process, the UTS
could reach 98.7 MPa at a reinforcing element of 1 wt.% Cu and Ni. Table 3 shows the
material variations and types of tests in this paper.

Table 2. Tensile properties of T6 alloys at 350 ◦C.

Alloy Heat Treatment UTS at 350 ◦C/MPa

Al-12.5Si-5Cu-2.0Ni-0.84Mg-0.24Cr [21] 480 ◦C × 3 h + 200 ◦C × 8 h 77.20
Al-13.0Si-3.7Cu-3.2Ni-1.1Mg-0.5Cr [23] 490 ◦C × 3 h + 200 ◦C × 8 h 98.61

Al-13.1Si-1.08Cu-1.0Ni-1.05Mg [33] 490 ◦C × 3 h + 200 ◦C × 8 h 61.63
Al-12.5Si-1.14Cu-1.29Mg-1.15Ni-0.18Cr 500 ◦C × 2 h + 540 ◦C × 4 h + 180 ◦C × 4 h 98.70

Table 3. The alloy variations and testing types.

Alloy
Variations

Ra of Aspect Ratio Micro-
Hardness

Tensile Properties at 25 ◦C Tensile Properties at 350 ◦C

Primary Si of Eutectic Si UTS/
MPa

YS/
MPa Elongation/% UTS/

MPa
YS/

MPa Elongation/%

As cast 4.3 3.73 85.93 198.59 147.62 0.78 83.12 65.30 9.05
T6 1.46 2.56 155.82 334.74 245.11 1.25 98.70 79.35 10.67
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Figure 14 shows the fracture surfaces of the alloys studied after tensile testing at room
temperature and 350 ◦C. After tensile testing at room temperature, the fracture surfaces
of the as-cast and T6 alloys were intergranular, as shown in Figure 14a,c. In addition,
microcracks tend to initiate brittle intermetallic compounds. The strong interaction between
the plastic or dislocation slip band and dispersed phase precipitation, particularly at the
grain boundary, leads to intergranular fracture. Figure 14b,d show high-temperature tensile
fractures at 350 ◦C. Quasi-cleavage can still be observed on the fracture surfaces of the cast
and T6 alloys. This indicates that the fracture mode of the alloys was a mixture of brittle and
ductile fractures at 350 ◦C. The alloy exhibited numerous small dimples and tearing edges
on the alloy port. A typical ductile fracture is the formation, growing, and coalescence of
micro-voids caused by cracking during diffusion of the second phase. The interface between
the precipitating phase and ductile matrix broke when the interfacial stress exceeded the
critical stress, resulting in the formation of cavities. In addition, defects such as voids
generated during the casting process are the preferred locations for crack initiation.
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Figure 14. SEM micrographs of the typical fracture surface of the (a) as-cast alloy at 25 ◦C, (b) as-cast
alloy at 350 ◦C, (c) T6 state alloy at 25 ◦C, (d) T6 state alloy at 350 ◦C.

SEM micrographs of the tensile fracture surfaces of the as-cast and T6 alloys at different
temperatures are shown in Figure 15. The load transfer depends on the Al matrix, eutectic Si,
and intermetallic compounds. Microcracks appear at different test temperatures (indicated
by red arrows). In Figure 15a,c, microcracks span the intermetallic compounds and eutectic
Si phases. Furthermore, the particles cracked several times without debonding. This
shows that a strong interfacial bond exists between the particles and the matrix at room
temperature. As shown in Figure 15b,d, the solid softens and loses its general properties
at higher temperatures. The crack extended along the interface between the intermetallic
compound and the matrix. The accumulation of dislocations at the interface between the
particles and the matrix leads to debonding [38,39]. In Figure 15c, the cracking of the T6
alloy is concentrated in the eutectic Si and α-Fe phases after drawing at room temperature.
The Ni-rich, Q, and Mg2Si phases, as strengthening phases, have rare cracks. In Figure 15d,
few cracks are observed in the Al3Ni and Al9FeNi phases, indicating that they can inhibit
cracks at 350 ◦C. Furthermore, the width of the crack opening increased significantly with
increasing temperature.
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4. Conclusions

The evolution of the organisation and mechanical properties of Al-Si-Cu-Mg-Ni-Cr
alloys subjected to different heat treatments was investigated. The main conclusions are
as follows.

(1) In the as-cast state, the alloy consists of an α-Al matrix, massive primary Si, needle-like
eutectic Si, dark grey Chinese-script π-Al8FeMg3Si, light grey fishbone α-Al (Fe, Cr,
Ni) Si, black skeletal Mg2Si, grey–white reticulated phase Q-Al5Cu2Mg8Si6, white
needle-like phase δ-Al3CuNi, and white skeletal phase ε-Al3Ni phase.

(2) With an increase in the temperature and time of the second step of SHT, a new white
short rod-like Al9FeNi phase is formed in the alloy. Primary Si passivation is evident,
and eutectic Si also fuses and spheroids. The second phase of the reticular skeleton
gradually fused into short rods; however, the morphology of the π-Fe phase and α-Fe
showed no significant change. According to Ra of the primary Si, aspect ratio of the
eutectic Si, and microhardness test, the optimum SHT conditions were 500 ◦C for 2 h
and 540 ◦C for 4 h.

(3) Under the optimised solid-solution process at 500 ◦C for 2 h and 540 ◦C for 4 h, the
ageing temperature and time were further optimised. The microhardness of the alloy
initially increased. After reaching the maximum microhardness, the microhardness
decreased with an increase in ageing time. The optimum ageing process was 180 ◦C
for 4 h and the microhardness of the alloy reached a maximum value of 155.82 HV.
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(4) The tensile test results at different temperatures show that the mechanical properties
of the alloy were significantly improved after T6 heat treatment. When the heat-
treated alloy is stretched at room temperature, the Ni-rich, Q, and Mg2Si phases play
a major role in strengthening. The Al3Ni and Al9FeNi phases inhibited cracking at
350 ◦C. As the temperature increased, the fracture mechanism changed from quasi-
cleavage to the coexistence of quasi-cleavage and dimples. At the end, optimizing
the high temperature properties of piston materials is an important area of scientific
and technical research. Future work could attempt to add rare earth elements to the
Al-Si-Cu-Mg-Ni-Cr alloy to further improve the elevated temperature mechanical
properties of the alloy.
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