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Abstract: Aluminum–lithium alloys have the potential for use in aerospace applications, and improv-
ing their physical, mechanical, and operational characteristics through alloying is a pressing task.
Lithium, with a density of 0.54 g/cm3, enhances the elastic modulus of aluminum while reducing the
weight of the resulting alloys, making them increasingly attractive. Adding transition metal additives
to aluminum alloys enhances their strength, heat resistance, and corrosion resistance, due to their
modifying effect and grain refinement. The study aimed to investigate the impact of titanium content
on the microstructure, corrosion resistance, and hardness of Al-Li alloys. Four alloys were prepared
with varying amounts of titanium at 0.05 wt%, 0.1 wt%, 0.5 wt%, and 1.0 wt%. The results showed
that the microstructure of the alloy was modified after adding Ti, resulting in a decrease in average
grain size to about 60% with the best refinement at 0.05 wt% Ti content. SEM and EDS analysis
revealed an irregular net-shaped interdendritic microstructure with an observed microsegregation of
Al3Li compounds and other trace elements at the grain boundaries. The samples showed casting
defects due to the high content of Li in the alloy, which absorbed air during casting, resulting in
casting defects such as shrinkage holes. The corrosion resistance test results were low for the samples
with casting defects, with the least resistance recorded for a sample containing 0.1 wt% Ti content,
with more casting defects. The addition of Ti increased the microhardness of the alloy to an average
of 91.8 ± 2.8 HV.

Keywords: grain boundaries; microsegregation; SEM observations; EDS analyses; microhardness

1. Introduction

In the last decade, the development of new materials such as composites has increased
significantly, but metals and alloys continue to be the primary building materials used in
manufacturing machinery, equipment, construction, transportation, and communication.
Therefore, improving upon the performance of metals and alloys is crucial not only to
minimize economic losses but also to offer more technical solutions [1–3].

Aluminum–lithium alloys are a new type of aluminum system that possess an im-
pressive combination of mechanical properties such as low density, elevated modulus of
elasticity, and adequate strength. The increased interest in these alloys stems from the fact
that lithium has a low density of approximately 0.54 g/cm3, resulting in a 3% reduction in
aluminum density and a 5% increase in Young’s modulus for each percentage of lithium
added. Despite these advantages, Al-Li alloys exhibit a marked anisotropy in mechanical
properties and poor ductility. One possible explanation for their brittle behavior is their
high sensitivity to harmful impurities [4].

In the pursuit of enhancing weight efficiency in the aviation and space sector, the
use of materials with lower density is a key focus. Adoption of such materials can lead
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to reduced fuel consumption, extended flight ranges, increased passenger capacity, and a
larger payload volume [5,6]. According to research, the best approach to reducing weight
is by decreasing density, and then increasing strength and stiffness. The inclusion of
1% lithium, which is the lightest metal, results in a decrease of around 3% in density
and a corresponding increase in elastic modulus of about 8% [7]. The first aluminum
alloy that contained lithium was referred to as the Scleron alloy, which was developed in
Germany [8], The composition of the alloy consisted of Al-12Zn-3Cu-0.6Mn-0.1Li, however,
it was no longer produced due to its lack of superior properties compared to conventional
aluminum alloys.

The development of aluminum–lithium alloys began in the 1950s by Alcoa in the
United States. They created the high-strength alloy 2020 in 1957, which was composed
of Al-4.5Cu-1.1Li-0.5Mn-0.2Cd on average [9]. To address the concerns with this alloy,
the Al-Cu-Mg-Li-Cd system aluminum–lithium alloy VAD 23 was developed in 1960 [10].
The alloy in question had a reduced density of 3–5% and an increased elastic modulus
of 3–5% compared to alloy 2020. In 1965, a team of researchers under the leadership
of I. N. Friedlander discovered that the heat treatment of alloys in the Al-Mg-Li system
resulted in a significant strengthening effect in a wide concentration range. They found
that the addition of lithium, which has a lower modulus of elasticity than aluminum,
increased the modulus by 3.8% in the Al-Mg-Li system alloys, a phenomenon known as the
“Friedlander effect” [11]. Despite this, the corrosion resistance of the ternary alloys in the Al-
Li system was low. The addition of manganese and zirconium improved it, leading to the
development of alloy 1420 in 1969, which is the lightest aluminum alloy [12]. Additionally,
it can be hardened through air cooling and artificial aging [13]. Despite operating in harsh
environments and at various latitudes, aircraft built with alloy 1420 performed reliably
without any reported corrosion damage [14]. The A.I. Mikoyan Development Design Office
successfully made the MiG-29M aircraft with welded sealed tanks and a cabin using alloy
1420 in the 1980s. The aircraft’s weight was reduced by 24%, mostly attributed to the alloy’s
lower density [15].

New alloys were created based on alloy 1420 including 1421, 1423, and alloys incorpo-
rating scandium [16–19]. To enhance the production feasibility, flexibility properties, and
resistance to breaking of first-generation alloys [4,20,21], additional research was conducted
on aluminum–lithium alloys in three distinct areas [22]: (1) Modifying the chemical com-
position of the alloys incorporating alloying elements such as zirconium and scandium to
impact the grain structure, and silver and zinc to affect the strengthening phases during heat
treatment; (2) Enhancing the manufacturing processes at every stage of producing semi-
finished products, including homogenization methods, hot deformation and intermediate
heat treatment during cold strain; (3) Developing multi-stage heat treatment techniques
that specifically target the main resource characteristics (fatigue life and crack resistance) of
the complex alloys. The second generation of aluminum–lithium alloys was developed in
the United States and Europe in the 1970s to 1980s and in the Soviet Union in the 1980s
to 1990s with the objective of obtaining alloys that were 8–10% lighter (and stronger) than
conventional alloys of similar nature by adding lithium, copper, and small amounts of
manganese and zirconium to control the grain size [23–25]. The most highly regarded
second-generation aluminum–lithium alloys globally are 2090 and 8090 [26,27]. Following
the success of alloy 1420, the second generation of aluminum–lithium alloys was developed,
including alloys 1430 and 1441 in the Al-Cu-Mg-Li system, alloys 1450, 1451, and 1460 in
the Al-Cu-Li system, and alloy 1424 in the Al-Mg-Li system. The primary goal of these
alloys was to offer a range of operational qualities, including improved fracture toughness,
crack resistance, and corrosion resistance matching the level of alloy 1420 [28–33].

Generation III aluminum–lithium alloys, which are in the process of being devel-
oped, include elements such as silver, zinc, indium, cerium, and tin to improve properties
including corrosion resistance, fracture toughness, and weldability [34].

The addition of titanium as an alloying element has been found to improve the corro-
sion resistance, tensile strength, and fatigue strength of the materials. Optimal titanium con-
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tents of around 0.5 wt% have been reported in the literature for these improvements [35,36].
However, further research is needed to fully understand the effect of titanium on the prop-
erties of Al-Li alloys and to identify the optimal titanium content for different applications.
This research studies the effects of different concentrations of titanium in an Al-Li alloy, on
the microstructural evolution, corrosion resistance, and hardness.

2. Materials and Methods

The alloys were created using aluminum grade A995 (GOST 110669–74), lithium-LE1
(GOST 8774-75), and titanium-VT (GOST 19807-91). The alloys were synthesized in corun-
dum crucibles using a resistance furnace heated to 750–850 ◦C, with an aluminum–titanium
master alloy and a flux layer of NaCl-32.5 and KCl-32.5. Cylindrical samples, measur-
ing 8–10 mm in diameter and 60–100 mm in length, were cast from the melted material
for examination of microstructure and corrosion–electrochemical properties. Alloys with
lithium were prepared using a vacuum oven-resistance type SNVE 1.3.1/16 in a helium
atmosphere at a pressure of 0.5 MPa. Alloy blending took into account metal waste, and
the composition was selectively controlled by chemical analysis and weighing of samples
before and after fusion. The difference in weight before and after melting was less than 2%
(relative). The investigated samples consisting of Al+6%Li with the addition of varying
amounts of Ti as used to create the studied samples are listed in Table 1.

Table 1. Designation of prepared samples for investigations and their respective constituent elements
for fabrication.

Sample ID Alloy Constituents

B Al+6%Li
T1 Al+6%Li + 0.05 wt% Ti
T2 Al+6%Li + 0.1 wt% Ti
T3 Al+6%Li + 0.5 wt% Ti
T4 Al+6%Li + 1.0 wt% Ti

The cross-section of the investigated samples for metallographic tests was prepared
using an automated grinding and polishing system. The specimens underwent a thorough
metallographic preparation, including grinding with SiC papers, polishing with a coarse
diamond suspension, and achieving a mirror finish with 0.04 µm colloidal silica. Finally,
the polished surfaces were etched with Keller’s reagent, a mixture of nitric acid (2.5 vol.%),
hydrochloric acid (1.5 vol.%), hydrofluoric acid (1.0 vol.%), and distilled water.

The microstructural evaluation was carried out using a combination of light mi-
croscopy, AxioVision (ZEISS, Jena, Germany), and scanning electron microscopy (SEM),
with SEM being performed using a Zeiss Evo MA 15 series instrument equipped with an
X-ray energy dispersive spectrometry (EDS) system.

Phase analysis was completed using X-ray diffraction with a PANalytical X’Pert Pro
diffraction system (Panalytical B.V. (currently: Malvern Panalytical Ltd.), Almelo, The Nether-
lands) that was equipped with a cobalt anode lamp (KαCo λ = 0.179 nm), powered by voltage
40 kV, with the filament current intensity = 30 mA. The X-ray diffraction measurements were
performed in the Bragg–Brentano geometry in the angular scope 30–110◦ 2θ with the step
0.05◦ and the step count time 100 s. The obtained diffractograms were analyzed by means
of the X’Pert High Score Plus software (v. 3.0e) with a dedicated Inorganic Crystal Structure
Database—ICSD (FIZ, Karlsruhe, Germany).

The Vickers hardness of the surface layers was measured using FM-ARS 9000 (Future
Tech Corporation, Tokyo, Japan) hardness tester with a load of 4.9 N. The microhardness
measurements were conducted on the XY cross-section of the samples following metallo-
graphic polishing. A total of 64 measurements were taken over a 1.4 mm × 1.4 mm area
for each sample, in the form of an 8 × 8 matrix with an evenly spaced horizontal and
vertical displacement of 0.18 mm. This was completed to determine the hardness of the
surface, accounting for all surface conditions. Subsequently, 10 unevenly spaced points
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were selected and measured for each sample, avoiding surface imperfections that could
interfere with the indenter. The microhardness measurement results from these methods
would later provide insight into how surface imperfections affect the samples’ hardness.

The corrosion resistance of the test samples was evaluated using potentiodynamic
testing, where anodic polarization curves were recorded. The measurements were carried
out using a test setup that included an Atlas 0531 EU potentiostat (ATLAS-SOLLICH,
Rębiechowo, Poland), a computer with AtlasLab software to save and analyze the recorded
curves, and a three-electrode system that consisted of a platinum wire (auxiliary electrode),
a silver/silver chloride electrode (Ag/AgCl) (reference electrode), and the test samples
(anode electrode). The first step was to measure the open circuit potential (Eocp) for a period
of one hour. Once the Eocp was established, the corrosion test was initiated using the initial
potential, which was calculated using Equation (1).

Einit = Eocp − 100 mV (1)

The samples were then polarized by either reaching a potential of 2 V or by measuring
the current density at 1 mA/cm2 along a range of −1 to +1 V at a scanning rate of 1
mV/s. The corrosion potential, Ecorr, was calculated from the results of the polarization
measurements. The resistance to corrosion, Rp, was calculated using Tafel’s method. The
electrochemical experiments were conducted in a solution of 3% NaCl at a temperature of
24 ± 1 ◦C.

3. Results and Discussion
3.1. Microstructure

The microstructure of the unmodified Al-Li alloy is displayed in Figure 1. It is evident
that the typical casting process yields eutectic structures and imperfections, such as shrink-
age holes. This occurrence is a result of the high concentration of Li in the alloy, causing
air absorption during the casting process [37]. The formation of gas holes and microcracks
was observed in Figure 1a. The structure of the as-cast alloy was comprised of a coarse
dendritic network and a considerable amount of non-equilibrium eutectic phases found in
the grain boundaries and the interdendritic region, depicted in Figure 1b.
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Figure 1. Microstructure of as-cast base Al-6Li before addition of Ti alloying elements (a) micrograph
showing the structure of the sample and the shrinkage holes developed after casting (b) micrograph
showing a dendritic network of non-equilibrium eutectic phases distributed in the grain boundaries
(ND: normal direction, TD; transverse direction).

The addition of titanium to the alloy caused a modification in grain size as the titanium
content was increased. The polarized micrographs of the grains of the samples with
different titanium contents are shown in Figure 2. The grain size distribution was analyzed,
and the results are presented in statistical distribution plots and box and whisker charts in
Figure 3. Figure 3a,b shows the grain size distribution and statistical analysis of the base
Al-Li alloy without titanium. The average grain size was 355.2 µm, with a minimum of
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36.6 µm and a maximum of 962.8 µm. The addition of 0.05 wt% titanium to the alloy in
sample T1 resulted in smaller average grain sizes than the base sample. Figure 3c,d shows
the grain size distribution of sample T1, with an average grain size of 222.4 µm, a minimum
of 87.4 µm, and a maximum of 534.9 µm. However, further increasing the titanium content
from 0.05 wt% to 0.1 wt% in sample T2 resulted in larger grain formation in the material. As
shown in Figure 3e,f, the average grain size for sample T2 was 364.4 µm, with a minimum
of 97.7 µm and a maximum of 1061.4 µm. The grain sizes continued to increase as the
titanium content was further increased to 0.5 wt% in sample T3, as seen in Figure 3g,h with
an average grain size of 454.3 µm, a minimum of 104.9 µm, and a maximum of 1456.9 µm.
Similarly, after increasing the titanium content to 1.0 wt% in sample T4, the average grain
size also increased. The mean grain size for this sample was 458 µm, with a minimum of
66.5 µm and a maximum of 1791.8 µm.

After alloying with titanium, the alloy is observed to have a refined crystal structure.
Titanium has a dense hexagonal crystal structure with an atomic radius of 1.468 × 10−10 m.
This enables it to form stable compounds with carbon and oxygen and the precipitation
of nucleants such as Al3Ti. The Ti element is known for being an effective inoculant for
refining the grain of aluminum alloys. However, some studies [38–40] have contended from
the peritectic perspective that the addition of Ti can lead to satisfactory grain refinement
unless it is added up to the maximum solubility limit in the α-Al matrix, triggering a
peritectic reaction. This gives a possible explanation for the observed reduction in grain
sizes with lower contents of Ti element in samples T1 and T2, and the gradual increase
in the grain sizes as the Ti content was increased for samples T3 and T4. As reported by
the research work [41], the peritectic reaction fosters the nucleation of the intermetallic
compound Al3Ti, which enhances the mechanical performance of the alloy.
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Figure 2. Light micrographs of investigated samples showing the microstructural grains and grain
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Figure 4 presents the chemical composition of the alloy after incorporating the titanium
alloying element (Sample T1) as determined by energy-dispersive X-ray spectrometry (EDS).
The analysis of the surface shows it is mainly composed of Al and Li, with small amounts
of other elements from the casting process such as Mg, Fe, and Zr. A closer examination of
the grain boundary, shown in Figure 5, indicates that there is a segregation of chemicals
at the interdendritic phase. With regards to the EDS data and atom %, the constituents
of the examined segregation were mostly made up of Li, with a relatively lower content
of Al along with small amounts of Mg, Fe, or Zr. Figure 6, taken using scanning electron
microscopy (SEM), reveals that the interdendritic phases have an irregular, net-shaped
appearance. A large amount of Li caused the samples to absorb air during casting, resulting
in the formation of defects such as shrinkage holes. These defects were more noticeable
in sample T2 compared to sample T1. As the Ti content increased in samples T3 and T4,
the shrinkage holes became bigger and deeper. The existence of casting defects such as
microcracks and porosity can decrease the material’s resistance to corrosion [42]. The EDS
maps in Figure 7 show the distribution of alloying elements, inhomogenously distributed
within the material. Li was too light to be detected by the EDS during the maps generation
in Figure 7.
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Figure 3. Grain size distribution plots: (left) grain diameter distribution curves (right) box and
whisker charts with statistical derivations (a,b) Sample B, (c,d) Sample T1, (e,f) Sample T2, (g,h) Sam-
ple T3, (i,j) Sample T4.
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The presence of microsegregation at the grain boundaries is attributed to non-equilibrium
segregation of solute elements at these locations. This phenomenon occurs when enough
vacancy–solute complexes form. However, rapid cooling of the melt through a large tem-
perature range can cause the equilibrium concentration of these complexes to decrease and
prevent establishment of true equilibrium concentration, except at sites (sinks) where vacancies
are absorbed [43]. The sinks in the material include surfaces and interfaces between grain
boundaries. The movement of vacancies towards these sinks is facilitated by the formation of a
vacancy concentration gradient in the rapidly cooled melt. This concentration gradient enables
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solute atoms to be carried and deposited at the sinks. The accumulation of excess solute atoms
at the grain boundary leads to non-equilibrium segregation at the grain boundaries [44–46].
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3.2. X-ray Diffraction (XRD)

The X-ray diffraction (XRD) analysis was conducted to determine the phases present
in the alloy after titanium modification. The XRD patterns from the samples studied are
displayed in the stacked plot in Figure 8. The patterns identified included re-flections of
the face-centered cubic (FCC) α-Al phase, represented by Al(111), (200), (220), (311), (222),
and Al-Li phases, based on its main line (022) with relatively lower detection peak. The
XRD patterns of the samples after the addition of Ti are shown in the inset of Figure 8 and
display broadened and shifted Al(111) peaks. The broadening and shift are attributed to
lattice defects such as internal strains, dislocations, small crystal sites, and additional grain
boundaries. According to the XRD results, no new phases were discovered as a result of
the titanium modification. This is likely due to the low content of titanium as an alloying
element. Additionally, it could be a result of a very low quantity of newly formed phases
that is below the detection limit of the XRD method.
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3.3. Corrosion Resistance Tests

Figure 9 shows the open circuit diagram of AlLi6% in its initial state and with various
concentrations of Ti after an exposure time of 1 h. The Eocp values for the samples in their
initial state remained almost unchanged over time. Additionally, some fluctuations in the
Eocp changes were observed, which could indicate instability of the passive layer on the
surface of Sample B under the test conditions. Similarly, fluctuations in the Eocp progress
were also observed for samples T3 and T4. However, the Eocp values for both samples
gradually decreased over the test time, without any visible stabilization. A decrease in Eocp
suggests the possibility of dissolution of the material surface. Only in the case of sample
T2, the Eocp values initially shifted towards more positive values over time, indicating
an increase in the compactness of the passive layer or corrosion products on the sample
over time. For sample T1, the Eocp values initially decrease rapidly up to 250 s and then
gradually increased over time. The highest open circuit potential value was recorded for
the samples in the initial state and the average was close to −770 mV vs. Ag/AgCl. For
all samples with various concentrations of Ti, the Eocp values were lower. However, the
lowest Eocp value was recorded for sample T1 (0.05 wt% Ti). It was found that as the
concentration of titanium in the Al-Li alloy increased, the Eocp values also increased. The
Eocp value for sample T4 (1 wt% Ti) was found to be similar to that of the samples in their
initial state.
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The results of the pitting corrosion test in the form of anodic polarization curves are
shown in Figure 10, and the values that describe the corrosion resistance of the tested
samples are listed in Table 2. The recorded corrosion potential values (Ecorr) match the
behavior of the open circuit potential (Eocp). The highest values of Ecorr were found in the
samples in their initial state, and the lowest in sample T1—as the concentration of titanium
increases, the Ecorr values also increase. However, the results of the experiment showed
that sample T3 had an Ecorr value that was close to −1100 mV vs. Ag/AgCl, which was
lower than the samples with lower titanium concentrations. The data also revealed that
the cathodic polarization curve shifted towards higher current densities with the addition
of titanium to the Al-Li alloy, indicating that the surface of the alloy with titanium had a
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higher rate of hydrogen evolution compared to the Al-Li alloy without titanium. As stated
in the research of El-Sayed et al. [47], the increased reaction of hydrogen evolution on the
surface of the alloy with Ti can be attributed to the lower hydrogen over-potential on the
Al3Ti particles compared to the Al surface. Only in the case of sample T4, there was a slight
increase in the cathodic slope compared to the sample in its original state.
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Table 2. Results of corrosion test.

Sample ID
Ecorr

[mV vs.
Ag/AgCl]

Eb
[mV vs.

Ag/AgCl]

Enp
[mV vs.

Ag/AgCl]

icorr
[µA/cm2]

B −798 −616 - 0.36
T1 −1105 - - 4.56
T2 −863 −705 - 32.44
T3 −1100 −741 −882 4.97
T4 −811 −790 - 5.22

The results of the pitting corrosion tests revealed that all of the tested samples exhibited
similar corrosion mechanisms. It was observed that all samples had a hysteresis loop and in-
effect breakdown potential, indicating the initiation and development of pitting corrosion.
The only exception was sample T3, which showed signs of repassivation, indicating a
reconstruction of the passive layer. Additionally, the values of corrosion current density
(icorr) were found to be higher for the AlLi-Ti samples compared to the initial sample,
indicating that the rate of corrosion increased as the amount of Ti in the specimen increased.
The corrosion current density, or icorr, was found to be the lowest in the sample in their
original state, before the addition of Ti, with an average value of around 0.31 µA/cm2.
However, the icorr values for the AlLi-Ti alloys (excluding sample T2) were significantly
higher, at over 15 times that of the initial state. An exception was sample T2, which had an
icorr value of around 32 µA/cm2, which was 100 times higher than the initial state. This
significant increase in icorr for sample T2 is thought to be due to the presence of casting
defects such as pores on the surface.
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3.4. Hardness

At room temperature, the Vickers microhardness of the prepared samples was investi-
gated, to assess the mechanical performance of the alloy after the addition of the Ti alloying
element. Figure 11 shows the results of the microhardness tests carried out, taking into
account all surface conditions after metallographic polishing, in the form of hardness maps.
The least microhardness value was recorded for the base alloy before the addition of Ti
(Figure 11a). This sample had an average microhardness of 49.4 HV. In Figure 11b,c, a
significant increase in the microhardness was observed for samples T1 and T2 after alloying
with 0.05 wt% Ti and 0.1 wt% Ti, respectively. Sample T1 recorded an average microhard-
ness of 91.8 HV, a minimum value of 85.1 HV, a maximum of 99.2 HV, and a standard
deviation (SD) of 2.8. Sample T2 similarly recorded an average microhardness of 91.8 HV,
having a minimum value of 79.0 HV, a maximum of 101.9 HV, and a standard deviation
of 4.0. Further increase in the Ti content to 0.5 wt% in Sample T3 recorded an average
microhardness of 86.2 HV, a decline of about 6% from T2. For sample T4, containing 1 wt%
Ti, the average microhardness was 89.8 HV, with a standard deviation of 4.0. The outcomes
of microhardness measurements on ten specifically chosen points of each sample’s surface
are presented in Figure 12. The goal was to determine the surface microhardness while
ignoring any surface defects. A similar pattern in hardness was found for all samples as
was earlier observed in the results presented in Figure 11. The base material had the lowest
average hardness (50.5 HV), while the samples containing Ti experienced a rise in average
hardness by a minimum of 44%. Sample T2 had the highest mean hardness of 97.2 HV and
a standard deviation of 2.0 in this case. Based on these hardness tests, it can be concluded
that any irregularities on the surface of the samples resulting from the casting process did
not significantly affect their overall hardness.
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The effect of adding Ti to the alloy on its microhardness was found to be directly
related to the microstructural changes in the alloy, such as grain size and refinement [48].
The samples T1 and T2 had the smallest grain sizes after the addition of Ti (as shown
in Figure 3), resulting in the highest microhardness values. On the other hand, as the
content of Ti increased in samples T3 and T4, their average grain size increased (as shown
in Figure 3), leading to a decrease in the microhardness values. Materials with smaller grain
sizes have more grain boundaries, which effectively impede the motion of dislocations
during indentation more efficiently than materials with larger grain sizes. The observed
increase of about 46% in the microhardness of the alloy after addition of Ti in this work,
is supported by similar research conducted by Zhuang et al. [49], who studied the effect
of titanium alloying on the microstructure and properties of high manganese steel. It was
reported from that research that the addition of Ti facilitated grain refinement of the alloy
and increased the hardness by 87%. Similar studies [50–55] have also reported observed
increase in the microhardness of aluminum alloys upon alloying with Ti. They argue that
the observed increase in the alloy’s hardness is influenced by the refined microstructure
obtained by adding small amounts of Ti element, and with an increase in the content of Ti
element, there is nucleation of peritectic intermetallic Al3Ti, which further increases the
hardness of the alloy.



Materials 2023, 16, 2671 15 of 17

4. Conclusions

In this study, Al-Li alloys were created with added titanium contents to investigate the
impact on the microstructure, corrosion resistance, and hardness. The base alloy consisted of
Al and 6% Li, and different amounts of titanium were added to make the samples at 0.05 wt%,
0.1 wt%, 0.5 wt%, and 1.0 wt%. Based on the research, the following conclusions were drawn.

• The microstructure of the alloy was modified after adding Ti, resulting in a decrease
in average grain size to about 60% with the optimal refinement happening at 0.05 wt%
Ti content. However, further increases in Ti content resulted in an increase in average
grain size.

• SEM observations, coupled with EDS analyses revealed an irregular net-shaped inter-
dendritic microstructure, with an elemental microsegregation at the grain boundaries,
mostly made up of Li.

• Casting defects were observed after sample preparation, attributed to the high content
of Li in the alloy, which absorbed air during casting, resulting in material defects such
as shrinkage holes. The corrosion resistance test results were correspondingly low
for the samples showing casting defects. The sample T2, with more casting defects,
consequently recorded the least corrosion resistance.

• The microhardness of the alloy increased from an average of 49.4 ± 7.7 HV to the
highest average of 91.8 ± 2.8 HV, after the addition of the Ti alloying element. This is
attributed to the structural grain refinement of the alloy and the formation of Al3Ti
intermetallic, upon the addition of Ti to the base Al-Li alloy.
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